
Department of Computer Science 
University of Maryland 

College Park, MD 20742 
Abstract 

PARKA, a frame-based knowledge representation system 
implemented on the Connection Machine, provides a 
representation language consisting of concept descriptions 
(frames) and binary relations on those descriptions (slots). 
The system is designed explicitly to provide extremely 
fast property inheritance inference capabilities. PARKA 
performs fast “recognition” queries of the form “find all 
frames satisfying p property constraints” in O(d+p) 
time-proportional only to the depth, (i, of the knowledge 
base (KB), and independent of its size. For conjunctive 
queries of this type, PARKA’s performance is measured in 
tenths of a second, even for KBs with 100,000+ frames, 
with similar results for timings on the Cyc KB. Because 
PARKA’s run-time performance is independent of KB size, 
it promises to scale up to arbitrarily larger domains. With 
such run-time performance, we believe PARKA is a 
contender for the title of “fastest knowledge representation 
system in the world”. 

I. Introduction 

Currently, AI is experiencing a period of soul-searching. 
Critics contend that the promise of the AI techniques of the 
80’s evaporated because those techniques did not deliver. It 
wasn’t that their formalisms and theory were unacceptable 
(in fact, they worked fine for relatively small, contrived 
domains). Real-life domains, however, are orders of 
magnitude larger, and the run-time performance of these 
earlier AI techniques is often completely unacceptable for 
such domains (and even much smaller ones); that is, these 
techniques, while quite useful, are computationaZZy hefictive 
(Shastri 1986). 

The field of knowledge representation (KR) offers many 
problems for which these classic AI techniques have yielded 
unacceptably slow performance. One example is recognition, 
the problem of identifying those frames that satisfy a 
given set of property constraints. For example, “Find all x 
such that x is yellow, alive, and flies.” Existing KR 
systems efficiently solve the converse problem-retrieving 
the properties of any given frame-but cannot do the same 
for recognition. In general, they answer recognition queries 
by traversing the entire knowledge base (KB), collecting 
the set of frames satisfying the given constraints. Their 
run-time for recognition queries is no better than linear in 
the size of the KB, i.e., O(n). 

It has been our goal to design a KR system fast enough 
to provide computationally effective recognition queries (and 

‘Email: evett@cs.umd.edu 
2Email: hendler@cs.umd.edu 
3Email: waander@cs.umd.edu 

other types of queries) on KBs large enough to support real 
world commonsense reasoning. Such a system will serve 
as a foothold for the development of realistic AI applications 
requiring rapid response time. Our system, PARKA, is a 
symbolic, frame-based KR system that takes advantage of 
the Connection Machine’s (CM) massive parallelism to 
deliver high run-time performance. It effects recognition 
queries in time virtually independent of the size of the KB, 
and dependent only on the KB’s depth, d (For large KB’s, 
usually d = /g(n).) 

In the remainder of this paper, we discuss the design and 
implementation of PARKA, and present a short analysis of 
the expected and observed run-time performance of those 
operations used in answering recognition queries. To validate 
PARKA’s inference mechanisms on a KB of realistic size 
and topology, we test PARKA’s performance on the Cyc 
KB and argue that the performance shows that PARKA 
offers computationally effective recognition queries on 
realistically large KBs. 

2. 
PARKA was designed a general-purpose KB, for use by 
other AI systems. We chose a frame-based symbolic 
representation paradigm for two main reasons: first, fmme 
systems have been used in KR for year and remain a 
common paradigm in contemporary AI research (Sowa 1991; 
J.CMA 1992, e.g.); second, semantic nets readily lend 
themselves to the data-level parallelism design so important 
in efficient parallel implementation. 

Most KR systems have two primary goals: expressiveness 
and formality. The authors of these systems want to express 
as many semantic concepts as possible with an unambiguous, 
rigorous formalism. For them, run-time efficiency is of 
secondary importance. They emphasize classic search and 
rule-based approaches, consequently suffering run-time that 
is at best linear, and at worst exponential, in the size of the 
problem. While these methodologies have a place in AI, 
their application to large KB’s leads to unacceptable run-time 
performance, and it is expected that realistic KB’s will be 
very large, indeed-on the order of lo’s or 100’s of millions 
of frames (Lenat & Guha 1990; Stanfill & Waltz 1986, 
etc.) Such KB’s would be orders of magnitude larger than 
any existing today. 

To achieve computational effectiveness on large KBs, we 
designed PARKA with run-time performance as a primary 
goal of the system. Thus, we somewhat constrained PARKA’s 
expressiveness-this was unavoidable because many 
operations, are, in general, NP or even undecidable for 
term-subsumption languages that are sound and complete. 

Large Scale Knowledge 297 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



Recognition, in particular, is NP, though it is a special 
case of classification, which can be undecidable (Rebel 
1990). So, although PARKA’s semantics are roughly based 
upon those of NETL (Fahlman 1979) and KL-0NlE (Bra&man 
& Schmolze 1985), we avoided semantic constructs lacking 
a computationally effective implementation. We believe 
PARKA’s run-time performance on even very large KBs 
more than compensates for its slighlty restricted 
expressiveness when compared to that of other, serial, KR 
systems. 

2. I Design specifics 
PARKA is a basic frame system: each fkame corresponds to 
a concept represented in the KB and the collection of relations 
to which it belongs. Relations among concepts are represented 
as directed graphs whose arcs (or links) are stored as frame 
pointers in the slots of frames. Properties of frames are 
represented as relations for which the domain is the frames 
having the property, and the range is the corresponding 
property values. The KB can be viewed as the network 
formed by the frames and the links that connect them, 
similar to a semantic network (Fahlman 1979, e.g.) 

Ontological relations among frames are encoded via the 
IS-A (“is a”) relation, which is intimately involved in the 
calculation of property inheritance inferences (see below) 
As such, it has special status in PARKA. The subgraph 
consisting of all IS-A links and frames is referred to as the 
IS-A hierarchy of the net. All PARKA IS-A hierarchies are 
rooted and acyclic. 

A small subset of a frame network is shown in Figure 1. 
The frames are shown as ovals. The properties of each 
frame are represented by the arcs emanating from them. 
Unlabelled arcs are IS-A links. 

Figure I: Subset of a Frame Network 

2.2 Inheritance 
PARKA employs a property inheritance mechanism on its 
IS-A hierarchy. A frame is said to be explicitly-valued for a 
given property if it is incident on a property link of that 
type-that is, if the frame contains a slot by that name. 
Any frame not explicitly-valued for a given property inherits 
the value of its nearest ancestor(s) (using a metric based on 
Touretzky’s inferential distance ordering (IDO)) that is 
explicitly-valued for that property. Because PARKA supports 
multiple inheritance, it is possible to have more than one 

such node. In that case, PARKA disambiguates among 
viable ancestors. 

The first version of PARKA (Evett, Spector & Hendler 
1993; Evett & Hendler 1992) handled multiple- 
inheritance-as have other frame-based KR systems (i.e., 
Brachman & Schmolze 1985, e.g.)-by using inheritance 
path length to disambiguate multiple inheritance paths. 
The system chooses the ancestor having the shortest IS-A 
path from the inheritor. This inheritance paradigm suffers 
from redundancy, ambiguity, and other problems, and has 
been soundly criticized in the philosophical community as 
being epistemologically inadequate. Many of these criticisms 
are detailed in (Touretzky 1986) and (Brachman 1985). 

The current implementation uses a top-down, path-based, 
credulous inheritance mechanism based on Touretzky’s IDQ 
metric to disambiguate multiple inherited values that works 
like this: assume the frame in question, X, is not explicitly 
valued for the given property, P. Let B be the set of 
ancestors (B,, B,, . ..) of X that are explicitly valued for P. 
X takes B,‘s value for P as its own, provided B,. is an 
element of B such that there is no B. 0’ f i) such that B. is 
an IS-A descendant of Bi. If more than one element of B 
meets this criterion, X is said to be ambiguously valued for 
Property p. 

Unfortunately, many retrieval operations involving top- 
down, path-based inheritance mechanisms, including IDO, 
have been shown to be m-hard (Selman & Levesque 1989). 
To calculate these operations in a timely manner, we adopted 
a slightly weaker ordering scheme for inheritance 
disambiguation. Again, let B be the set of ancestors of X 
that are explicitly valued for property P. X takes Bi’s value 
for P as its own, where Bi is that element of B with the 
largest topoZogica2 number. The topological number, 
topo(Z), of a frame Z, is defined inductively: 
topo(rootNode)=O and for all other frames, Z, 
topo(Z) = I+ max(topo(y)) where C is the set of frames 

YEC 

that are parents of Z. 
Though PARKA’s disambiguation mechanism is not quite 

as powerful as complete IDO, it enjoys many of the same 
advantages and is considerably stronger than a simple path- 
length based scheme. It does not suffer from the problems 
of redundancy noted in (Touretzky 1986) and in only one 
case does our inheritance scheme differ from IDO: in full 
IDO, if there are two explicitly valued ancestors, X and Y, 
but X is also an ancestor of Y, then Y is “more specific” 
than X, and so its property value is chosen. Our topological 
disambiguation scheme, however, may arbitrarily 
disambiguate among the two ancestors, even when neither 
is an IS-A ancestor of the other. In the vast majority of 
cases, though, PARKA’s mechanism is equivalent to IDO. 
PARKA’s encoding of the Cyc commonsensc KB (see Section 
3.4) revealed no cases in which PARKA disambiguates an 
inheritance relation that is ambiguous via IDO. If Cyc 
turns out to be typical of future KBs, this shortcoming of 
topologicial disambiguation will have little impact on most 
inferences. 

298 Evett 



2.3 Implementation 
PARKA’s internal representation of a frame consists of a 
block of processors, one for each of that frame’s IS-A 
parents. These processors are contiguous across the CM’s 
processor address space. One processor of each block is 
distinguished as a referent for all other frames pointing to 
the represented frame. 

The slots of each frame are encoded in a slot table, stored 
in one of the processors of that frame’s block. The table is 
a list of pairs (<property>, <property-value>), each 
component being a processor address. Figure 2 illustrates 
the internal representation on the CM of part of the net 
shown in Figure 1. The large rectangles represent the 
distinguished processor of each block of processors 
corresponding to a particular frame. The smaller rectangles 
represent the remaining processors of those blocks. The 
square-bracketed values represent the address of the processor 
representing the property of that corresponding name. 

processor #20 processor #21 processor #140 

name: 

IS-A: 

slot-table: 

1 1 
processor segment for frame 

“Barney” 

Figure 2: Internal CM representation of a small 
subset of a frame network 

To determine if a frame, Y, is explicitly valued for a 
given property, P, PARKA determines the (explicit) value 
of P for every frame in the KB by scanning through every 
frame’s slot table in parallel, seeking an entry corresponding 
to P. If a matching entry is found in frame Y’s slot table, 
the corresponding value stored there is the address of the 
processor representing the frame that is the value of property 
P for frame Y. In general, slot retrieval is proportional to 
the size of the largest slot table in the KB. Because property 
values tend to be scattered across inheritance paths, these 
tables are typically quite small. The largest slot table in 
our implementation of the Cyc KB had only 43 entries. 
Even so, PARKA maintains a cache of the most recently 
accessed properties to accelerate explicit property look-up. 

3. esformance 
To demonstrate that PARKA provides computationally 
effective KR, we implemented and timed several retrieval 
operations on very large KBs which included inheritance 
queries on very large, pseudo-random KB’s and recognition 
queries on the Cyc KB. 

3. I Inheritance 
Almost all KB queries involve some inferencing along the 
IS-A hierarchy because almost all involve calculating the 
inherited value of a set of properties for a set of frames. 
PARKA uses several data structures to make such inheritance 
inferencing very fast, including using multiple processors 
to represent frames having multiple parents. PARKA uses 
an activation wave propagation algorithm to calculate the 
value for a given property of every frame in the KB in time 
independent of the size of the network. 

First, the IS-A root frame is “activated”, forming a nascent 
activation wave. At each iteration, this wave is passed 
downward along IS-A links. The activation wave propagates 
synchronously; all nodes in the current “wave front” 
simultaneously activating the incident nodes that have not 
yet been activated. Each such iteration is a propagation 
step. Because PARKA is implemented on the CM, each 
propagation step is accomplished with a single parallel 
operation. In detail, at propagation step i: 

1. 

2. 

3 

Frames with a topological value of i (i.e., those at 
topological level i) that are explicitly valued for the 
property set their wave value to k, where k’s high 
order bits are i, and k’s low order bits are the frame’s 
property value. 
Every frame (processor) not explicitly valued for the 
property in question that has parent nodes at topological 
level i-l “pulls” down the value of the activation wave 
from those parents. 
Non-explicitly valued frames at topological level i 
choose as their own activation wave value the largest 
of those pulled down from the parent frames. Because 
the high order bits of each wave value arc the topological 
level of the origin node, the selected value conforms to 
the inheritance scheme outlined in section 2.2. 

Figure 3: The Basic Inheritance Algorithm 

The number of propagation steps required to calculate a 
property value is equivalent to the depth, d, of the network’s 
IS-A hierarchy. Consequently, PARKA’s run-time for queries 
such as “what things are black?“, is O(d), and is independent 
of the size of the KB. We refer to such queries as “top-down”, 
and they are the bane of most serial KR systems, requiring 
O(n) time to effect, where n is the size of the KB. Serial 
systems use indexing schemes to mitigate this computational 
morass, but indexing can be unsatisfactory for a variety of 
reasons (as we discuss in (Kettler, Hendler & Andersen 
1993b)) including that it is typically infeasible to explicitly 
index all properties. 

The comparison between serial and parallel run-times is 
more striking when realizing that for realistic networks d = 
Zg(n). It is commonly believed that such network shallowness 
will persist and probably be accentuated as net size increases. 
Our PARKA implementation of the Cyc commonsense MB 
(see section 3.4), enjoys a similarly shallow IS-A topology. 

To compare PARKA against a serial representation system, 
we created a serial version of PARKA, called SPARKA 

Large Scale owledge Bases 299 



(“serial-PARKA”). To make the comparison as fair as 
possible, we implemented SPARKA as a severely stripped- 
down version of a more complete serial implementation 
(detailed in (Spector, Evett & Hendler 1990)). It has very 
little functionality other than for simple property inheritance 
calculations, but is optimized to effect those calculations as 
quickly as possible. 

We tested our analytical predictions of PARKA’s run-time 
performance of simple property inheritance queries by timing 
PARKA’s response to example queries on topologies of 
varying size and depth. Then, we timed SPARKA on the 
same queries and networks. The networks were quite large-up 
to 128K nodes4. Because encoding such large networks by 
hand was not possible, we developed algorithms for generating 
pseudo-random networks with certain topological 
characteristics. These techniques are described in (Evett, 
Spector & Hendler 1993; Evett & Hendler 1992). Our 
experience with the Cyc KB (see section 3.4) has affirmed 
our belief that the topologies used to measure PARKA’s 
performance reflect those of realistic KBs. 

Cl 1 parent, serial A 1 parent, PARKA 

0 4 parents, serial 0 4 parents, PARKA 

1.8 

1.6 

El a 0.8 . 

$ 0.6 d---d- 

04 

“Ejgmgm \D 
Knowledge Base Size (proc&ors) 

2 3 

Figure 4: Run-time performance of inheritance queries 
on 8-level networks of varying sizes. 

Figure 4 shows PARKA’s run-time for frame networks 
of depth 8, and of varying size. This timing suite isolates 
the effect of network size on run-time. These timings 
support our supposition that PARKA’s computation of 
inheritance queries is independent of network size’. Thus, 

%mings were made on a “quarter” CM-2, consisting of only 
16K processors. 
‘Actually, we observed a correlation between PARKA’s run- 
time and the size of the networks. We examined this degradation 
away from our theoretical performance predictions (the results 
of this study are detailed in (Evett & Hendler 1993)). The 
degradation is completely accounted for by the performance of 

PARKA’s performance should scale up to arbitrarily larger 
KBs. The serial system’s run-time, on the other hand, was 
linear with respect to network size. The figure contains 
best-fit curves to highlight this linear relation. 

The networks used in the timings were of two topological 
types: trees (each frame with exactly one parent) and directed 
graphs (each frame with between one and four parents). We 
used different topologies to demonstrate that PARKA’s run- 
time is independent of upward IS-A fan-out. 

A comparison between the performance figures of 
SPARKA and PARKA in Figure 4 demonstrates that the 
latter remains computationally effective even for very large 
KBs, while the former’s performance is unacceptable for 
large networks. We anticipate that this contrast will become 
increasingly stark for much larger KBs of applications in 
real-world domains. 

3 2 Recognition Queries 
The ability to solve recognition queries has driven much of 
PARKA’s design. The problem of recognition is well-known 
in the field of KR (Wilensky 1986, e.g.) and is the problem 
of answering KB queries of the form: “find all frames x 
such that P,(x,c,) A P2(x,c,) A . . . A P (x,cJ, where Pi(x,ci), 
Vi, is a unary predicate true for alf frames, X, that have 
value ci for property Pi. E.g.: “What object is most 
characterized by this list of property values? . ...” and “what 
have trunks, tusks, and are big and gray?” Such queries are 
extremely time-consuming for serial-based systems, often 
running in time no better than O(pn), even on systems 
employing a highly constrained description language. 

PARKA’s ability to execute inheritance inferences quickly 
makes it particularly suitable to recognition. Because 
PARKA determines which objects have a given value for a 
given property in O(d) time, PARKA determines which 
objects satisfy a set of p property constraints in no more 
than 0(&J time, where d is the depth of the net. 

But PARKA does even better, using a pipelining technique 
to evaluate recognition queries in time O(d+p). Because 
each wave propagation step of an inheritance inference occurs 
“in lockstep” -all frames at the same topological level 
calculating their property value simultaneously-pipelining 
can be added to the basic process outlined in Figure 3. At 
each propagation step i, all frames at topological level j, 
such that p2j>i , retrieve from their parent(s) the wave 
activation value having to do with the (j-i)-th element of 
the set of properties being inferred. Thus, the complete 
propagation requires a+-1 propagation steps. 

3.3 Using Cyc for Validation of PARKA 
We tested our run-time predictions by timing PARKA’s 
performance for recognition queries on an implementation 
of the Cyc KB (Lenat & Guha 1990). Our motivation for 
using Cyc to evaluate PARKA’s performance is twofold. 
First, we want to validate PARKA’s inference mechanisms 
on a KB of large size and realistic topology. Because Cyc 

the CM’s interprocessor communication operations. The run- 
time of these operations degrades proportionally with router 
network load. 

300 Evett 



is the largest and most comprehensive commonsense KB in 
existence, it is an obvious choice. A second and more 
exciting motivation is that we envision some future version 
of Cyc being built on top of a massively parallel substrate, 
like PARKA, to make its reasoning services fast enough to 
be used by an intelligent agent operating in the world in 
real time. 

On the lowest level, Cyc consists of a frame system 
(frames are called “units” in Cyc), representing assertions 
(in the form of binary relations, or slots) about entities in 
the world. Above that level is the CycL “constraint language”, 
which allows the specification of inferences to be made 
about units in the KB. The inference mechanisms provided 
by CycL range from the very simple, such as the slot 
inverse mechanism (e.g. father(John,Mary) + 
fatherOf(Mary,John)), to theorem proving using general 
“wffs”, and to unsound inference methods such as analogy. 

PARKA implements only some of the inference 
capabilities provided by CycL, particularly those having to 
do with property inheritance. For our tests we represented 
only that subset of Cyc that involved IS-A based property 
inheritance and ontologies. This subset contained a total of 
26,214 units, 8591 (33%) of which were collections, and 
17,623 (67%) instances. Of the instances, 403 1 (15% of 
the total) were slots (slots are explicitly represented in the 
Cyc ontology). To accommodate a KB of this size, we used 
a 16,384 processor CM-2 with a virtual processor ratio of 
4:l. The maximum depth of the KB along the IS-A relation 
was 23, (i.e., shallow relative to KB size, as expected.) 

3.4 Performance of ecognition Queries 

To test recognition query performance, we timed queries 
similar to those usedby CycL to find units “similar” to a 
given unit. Units are considered similar if they share the 
same values for a number of properties exceeding some 
threshold. First, we selected a Cyc unit (#%Bumta-1986) 
with a relatively large number (22) of local assertions (i.e., 
explicitly-valued properties), assigning an arbitrary ordering 
to those properties. We then ran recognition queries in 
PARKA to identify those frames that matched at least 50% 
of the first n slots (II n 122) of #%Burma-1986. The 
recognition queries themselves, then, involved between 1 
and 22 conjuncts. The run-time performance of these queries 
is plotted in Figure 5. 

As Figure 5 clearly shows, the time required to perform 
recognition queries grows only linearly in the number of 
conjuncts, p, and overall performance, even for a query of 
22 conjuncts, is excellent. The run-time matches the Q(d+p) 
performance predicted by analysis. This performance 
compares very favorably with recognition queries on serial 
systems, which require O(pn) time for the same queries, 
where n is the size of the MB. Recognition queries in 
PARKA are independent of KB size, and should scale up to 
arbitrarily larger domains. Indeed, in (Kettler et al 1993a) 
we report sub-second run-time performance of recognition 
queries in a case-based planning system using KB’s of over 
100,000 frames. This is a speed-up of more than 10,000 
over the highly optimized serial version of PARKA. 

O.OUOO 
0 5 10 15 20 25 

Number of Conjuncts 

Figure 5: Run-time of recognition queries of various 
sizes on the PARKA implementation of the Cyc KB 

This experiment was designed not ony to demonstrate the 
O(d+p) complexity of conjunctive recognition queries in 
PARKA, but also to show that PARKA can supply fast 
matching for analogy-related functions, a task that 
traditionally has been difficult for serial systems. For 
example, the CycL query that most nearly corresponds to 
those of Figure 5 finds only an arbitrary subset of the 
matching units. By exhaustively matching the probe against 
the entire KB simultaneously, PARKA finds all appropriate 
matches. 

elate ark 

PARKA is intended as a basis for large AI systems. The 
implementation of the Cyc KB in PARKA is the first of a 
series of uses of PARKA in other large AI systems. Potential 
uses for PARKA include case-based AI systems, as the 
basis of a massively parallel knowledge server, and as part 
of a knowledge-mining system. We plan to examine how 
PARKA might be more fully integrated into the Cyc 
representation system, proper. 

Also, we implemented a simple version of PARKA on 
the MIMD CM-5. Preliminary results show that we should 
be able to represent KBs of over 1M fi-ames on a lK-processor 
CM-5 and obtain run-time performance nearly an order of 
magnitude better than the results in this paper. Because the 
C&I-5 is a MIMD machine (though we use it as a SPMD 
machine), we can use several inferencing techniques that 
aren’t possible on the SIMD CM-2. In particular, we plan 
to use an active messaging scheme (Von Eicken et al 1992) 
to increase the flexibility of PARKA’s memory association 
schemes, and to increase the use of pipelining in inferencing. 

There are a few other parallel KR systems (Geller 1991; 
Moldovan, Lee & Lin 1989 to name two) and these are 
discussed more fully in (Evett 1993). 

Large Scale Knowledge Bases 301 



5. Conclusion 
Using KBs with over 100,000 frames, we have shown that 
PARKA computes property inheritance and recognition 
queries in time independent of the size of the KB and 
dependent only on network depth. The run-time of these 
operations is in the tenths of seconds. This performance 
compares very favorably to serial representation systems. 
Because empirical evidence to date supports our analytical 
claims, we believe that PARKA’s performance will scale 
up to larger KBs, even to the those necessitated by memory 
based reasoning6 technology. Thus, we argue that PARKA 
can supply computationally effective recognition queries 
for realistic KBs. 

Acknowledgments 
The author wishes to thank the Systems Research Center at 
the University of Maryland, for their early support in this 
research, and for the continuing use of their hardware in the 
development of PARKA. The authors also wish to thank 
the University of Maryland Institute for Academic Computing 
Services (UMIACS) and Thinking Machines Corp. for the 
use of their Connection Machines. The support staff at 
both institutions was very helpful during the development 
of PARKA. 

This work has been supported by AFOSR grant 01-5- 
28180, ONR grant NOO14-88-K-0560, and NSF grant lRl- 
8907890. 

eferences 
Brachman, R.J. I Lied about the Trees. AI Msg. 6, 3 (Fall, 

1985). 
Brachman, R.J. and Schmolze, J.G. An Overview of the 

KL-ONE Knowledge Representation System. Cog. Sci., 
9,2 (April-June 1985). 

J. Computers and Mathematics with Applications - special 
issue on semantic networks, 2 3(2-5), 1992. 

Evett, M.P. PARKA: A System for Massively Parallel 
Knowledge Representation. Ph.D. diss., Dept. of 
Computer Science, Univ. Maryland, College Park, 1993. 
Forthcoming. 

Evett, M.P., Spector, L. and Hendler, J.A. Massively Parallel 
Frame-Based Property Inheritance in PARKA. To appear 
in Journal for Parallel and Distributed Computing. 

Evett, M.P. and Hendler, J.A. Degradation of Interprocessor 
Communication Operations on the Connection Machine. 
Tech. Rep., Department of Computer Science, Univ. 
Maryland, College Park, March, 1993. 

Evett, M.P. and Hendler, J.A. An Update of PARKA, a 
Massively Parallel Knowledge Representation System. 
Tech. Rep., CS-TR-2850, Department of Computer 
Science, Univ. Maryland, College Park, February, 1992. 

Fahlman, S.E. NETL: A System for Representing and 

%Ve use the term “MBR” in a broader sense than in (Stanfill 
& Waltz 1986) to include such paradigms as case-based reasoning 
(Hammond 1989; Kettler et al 1993; Kitano & Higuchi 1991.) 

Using Real World Knowledge. MIT Press, Cambridge, 
MA, 1979. 

Operations in Massively Parallel 
n. Tech. Rep. CIS-91-28, Dept. 

Computer and Information Science, New Jersey Institute 
of Technology, Newark, NJ, 199 1. 

Hammond, K. Case-Based Planning: Viewing Planning as 
a Memory Task. Academic Press, 1989. 

Kettler, B .P., Hendler, J.A., Andersen, W.A., and 
Evett, M.P. (1993a) “Massively Parallel Support for a 
Case-based Planning System”. In Proceedings of the 
Ninth IEEE Conference on AI Applications, IEEE 1993. 

Kettler, B.P., Hendler, J.A. and Andersen, W.A. (1993b) 
Why Explicit Indexing Can’t Work. Tech. Rep., 
Department of Computer Science, Univ. Maryland, 
College Park, April, 1993. 

Kitano, H. and Higuchi, T. Massively Parallel Memory-Based 
Parsing. Proceedings of IJCAI-91, 199 1. 

Lenat, D.B. and Guha, R.V. Building Large Knowledge-Based 
Systems. Addison Wesley, Reading, Mass., 1990. 

Moldovan, D., Lee, W., and Lin, C. SNAP: A Marker- 
Propagation Architecture for Knowledge Processing. Tech. 
Rep. CENG 89-10, Dept. Electrical Engineering-Systems, 
Univ. of Southern California, Los Angeles, CA, 1989. 

Nebel, B. Terminological Reasoning Is Inherently Intractable. 
AIJ, 43,2 (May, 1990). 

Selman, B. and Levesque, H. The Tractability of Path-Based 
Inheritance. Proceedings of IJCAI-89, Morgan-Kaufman, 
San Mateo, CA, 1989. 

Shastri, L. Massive Parallelism in Artificial Intelligence. 
Tech. Rep. MS-CIS-86-77 (LINC LAB 43), Dept. of 
Computer and Information Science, University of 
Pennsylvania, Philadelphia, PA, 1986. 

Sowa, J. (ed.) Principles of Semantic Networks. Morgan- 
Kaufman, San Mateo, CA, 1991. 

Spector, L., Evett, M. and Hendler, J.. Knowledge 
Representation in PARKA. Tech. Rep. TR-2409, 
Department of Computer Science, University of Maryland, 
College Park, MD, Feb. 1990. 

Stanfill, C. and Waltz, D. Toward Memory-Based Reasoning. 
Communications of the ACM, Vol. 29, No. 12, December 
1986, pp. 1213-1228. 

Touretzky, D.S. The Mathematics of Inheritance Systems. 
Morgan Kaufmann, Los Altos, CA, 1986. 

Von Eicken, T., Culler, D., Goldstein, S. and Schauser, K. 
Active Messages: a Mechanism for Integrated 
Communication and Computation. Tech. Rep. UCB/CSD 
92/#675, Computer Science Division, EECS, University 
of California, Berkeley, CA, 1992. 

Wilensky, R. Some Problems and Proposals for Knowledge 
Representation. Tech. Rep. UCB/CSD 86/294, University 
of California, Berkeley, May 1986. 

302 Evett 


