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Abstract 

This paper introduces OCl, a new algorithm for 
generating multivariate decision trees. Multivari- 
ate trees classify examples by testing linear com- 
binations of the features at each non-leaf node of 
the tree. Each test is equivalent to a hyperplane at 
an oblique orientation to the axes. Because of the 
computational intractability of finding an optimal 
orientation for these hyperplanes, heuristic meth- 
ods must be used to produce good trees. This 

c paper explores a new method that combines de- 
terministic and randomized procedures to search 
for a good tree. Experiments on several different 
real-world data sets demonstrate that the method 
consistently finds much smaller trees than compa- 
rable methods using univariate tests. In addition, 
the accuracy of the trees found with our method 
matches or exceeds the best results of other ma- 
chine learning methods. 

1 Introduction 
Decision trees (DTs) have been used quite extensively 
in the machine learning literature for a wide range of 
classification problems. Many variants of DT algo- 
rithms have been introduced, and a number of differ- 
ent goodness-of-split criteria have been explored. Most 
of the research to date on decision tree algorithms 
has been restricted to either (1) examples with sym- 
bolic attribute values [Quinlan, 19861 or (2) univari- 
ate tests for numeric attributes [Breiman et al., 19841, 
[Quinlan, 19921. Univariate tests compare the value of 
a single attribute to a constant; i.e., they are equiv- 
alent to partitioning a set of examples with an axis- 
parallel hyperplane. Although Breiman et al [1984] 
suggested an elegant method for inducing multivari- 
ate linear decision trees, there has not been much ac- 
tivity in the development of such trees until very re- 
cently [Utgoff and Brodley, 19911, [Heath et al., 19921. 
Because these trees use oblique hyperplanes to parti- 
tion the data, we call them oblique decision trees. 

This paper presents a new method for inducing 
oblique decision trees. As it constructs a tree, this 

method searches at each node for the best hyperplane 
to partition the data. Although most of the search- 
ing is deterministic hill-climbing, we have introduced 
randomization to determine the initial placement of a 
hyperplane and to escape from local minima. By lim- 
iting the number of random choices, the algorithm is 
guaranteed to spend only polynomial time at each node 
in the tree. In addition, randomization itself has pro- 
duced several benefits. Our experiments indicate that 
it successfully avoids local minima in many cases. Ran- 
domization also allows the algorithm to produce many 
different trees for the same data set. This offers the 
possibility of a new family of classifiers: Ic-decision- 
tree algorithms, in which an example is classified by 
the majority vote of k trees (See [Heath, 19921). 

Two other methods for generating oblique trees, 
that have been introduced recently, are perceptron 
trees [Utgoff and Brodley, 19911 and simulated anneal- 
ing (SADT) [Heath et al., 19921. The former shows 
that much smaller trees can be induced when oblique 
hyperplanes are used. However, theirs is a determinis- 
tic algorithm, and Heath [1992] shows that the problem 
of finding an optimal oblique tree is NP-Complete.3 
This work also introduces a completely randomized 
technique for finding good hyperplanes. The motiva- 
tion for randomization is given in [Heath et al., 19921, 
but the idea can briefly be explained as follows. Con- 
sider the hyperplane associated with the root of a de- 
cision tree. The optimal (smallest) decision tree may 
use non-optimal decision plane at the root. Obviously 
this is true for each node of the tree; this observa- 
tion suggests a randomized strategy where we try to 
construct the smallest tree using several candidate hy- 
perplanes at each node. This idea can be facilitated 
by using a randomized algorithm to find good separat- 
ing hyperplanes. That is, if a randomized algorithm 
is executed repeatedly, it will find different hyperlanes . 
each time. [Heath et al., 19921 use an algorithm based 
on simulated annealing to generate good splits. Our 

3More precisely, Heath [Heath, 19921 proves that the 
problem of finding an optimal oblique split is NP-Complete, 
using the number of misclassified examples as the error 
measure. 
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method is also randomized, but it includes a substan- 
tial directed search component that allows it to run 
much faster. In our experiments, our method ran much 
faster than SADT without sacrificing accuracy in the 
resulting classifier. 

The algorithmic content of this paper focusses on 
the question of how to partition a given sample space 
into homogeneous regions. A complete description of 
any DT building method should also include discus- 
sion of its choices regarding the pruning strategies and 
the stop-splitting criteria. However, we do not ad- 
dress these issues here, because our choices for them 
are quite straightforward and standard in the litera- 
ture. We stop splitting when the sample space asso- 
ciated with the current node has zero impurity (see 
Section 2.4). The only pruning done by our method 
consists of cutting off subtrees at nodes whose impu- 
rity measure is less than a certain threshold. For a 
good review and comparison of pruning strategies, see 
[Mingers, 19891 and [Quinlan, 19921. 

The problem of partitioning the sample space in- 
volves the following related issues: 

8 restrictions 
planes, 

on the location and orientation of hyper- 

e goodness measures for evaluating a split, 
o strategies to search through the space of 

hyperplanes for the best hyperplane, and 
possible 

o methods for choosing 
above search begins. 

a hyperplane from which the 

These issues are fundamental to the design of a DT al- 
gorithm [Breiman et al., 19841, and many existing DT 
algorithms can be classified on the basis of how they 
make these choices. Section 2 elaborates our algorithm 
with respect to each of these issues. Section 3 presents 
the results of using our method to classify several real- 
world data sets, and compares our results to those 
of some existing methods. Section 4 summarizes the 
lessons learned from these experiments. 

2 The OCI Algorithm 

In this section we discuss details of our oblique de- 
cision tree learning method. We call this algorithm 
OCl, for Oblique Classifier 1. OCl imposes no re- 
strictions on the orientation of the hyperplanes. This 
is the main difference between OCl and methods such 
as ID3 and CART, which use only axis-parallel hyper- 
planes. However, OCl cannot distinguish between two 
hyperplanes that have identical sets of points on both 
sides. In other words, if the sample space consists of 
n examples in d dimensions (d attributes), then our 
algorithm recognizes only (:) distinct hyperplanes. 

The initial hyperplane at each node in the decision 
tree is chosen randomly by OCl. Even if such a ran- 
domly placed hyperplane has a very poor location, it is 
usually improved greatly in the first few perturbations. 

2.1 Search Strategies 
The strategy of searching through the space of possi- 
ble hyperplanes is defined by the procedure that per- 
turbs the current hyperplane into a new location. As 
there are an exponential number, (i), of possible hy- 
perplane locations, any procedure that simply enumer- 
ates all of them will be unreasonably costly. The two 
main alternatives considered in the past have been to 
use a non-deterministic search procedure, as in SADT 
[Heath et al., 19921, or to use a heuristic deterministic 
procedure, as in CART [Breiman et al., 19841. OCl 
combines these two approaches, using heuristic search 
until it finds a local minimum, and then using 8 non- 
deterministic search step to get out of the local mini- 
mum. 

We will start by explaining how we perturb a hyper- 
plane to split the sample space P at a node of a DT. P 
contains n examples, each with d attributes. Each ex- 
ample belongs to a particular category. The 
of the current hyperplane H can be written: 

kc ) aiXi + ad+1 = 0 
i= 1 

equation 

Let Pj = (Xjl, Xj2,. . ., zjd) be the jth example from 
the sample space P. If we substitute Pj into the 
equation for H, we get: Cfzl(ai2ji) + ad+1 = Vj, 
where the sign of Vj tells US whether the point Pj 
is above or below the hyperplane H. If H splits the 
sample space P perfectly, then all points belonging to 
the same category in P will have the same sign i.e., 
SiCJn( Vj ) = sign(&) iff catego?YJ(P;) = CdegOT2J(Pj) 

OCl perturbs the coefficients of H one at a time. 
If we consider the coefficient a, as a variable, and all 
other coefficients as constants, Vj can be viewed as a 
function of a,. If Vj is defined as 

Uj = amxjm -vj 

xjrn 
(1) 

then the point Pj is above H if a, > Vi, and below 
otherwise. Thus, by fixing the values of the coefficients 
al . . . ad+1 , except am, we can obtain n constraints on 
the value of Umr using the n points in 
suming no degeneracies). 

the set P (as- 

The problem then is to find a value for a, that satis- 
fies as many of these constraints as possible. (If all the 
constraints-are satisfied , then we have a perfect split.) 
This problem is easy to solve; in fact, it is just an axis 
parallel split in 1-D. The value am, obtained by solv- 
ing this one dimensional problem is a good candidate 
to be used as the new value of the coefficient a,. ILet 
HI be the hyperplane obtained by changing a, to a,, 
in H. If H has better (lower) impurity than HI, then 
HI is discarded. If HI has lower impurity, HI becomes 
the new locatiorl of the hyperplane. If H and HI have 
identical impurities, and different locations, 
accepted with probability stag-prob. 

then HI is 
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Perturb(H,m) 
1 

forj = 1 ton 
Compute i7+ (Eq. 1) 

Sort 771.. . V, m nondecreasing order. 
am, = best univariate split of the sorted V’s. 
HI = result of substituting am, for am in H. 
If (;m~.rity( H) < impwity( HI)) 

=%b,; stagnant = 0 3 
Else if (impurity(H) = impwity(.H~)) 

{ % = am, with probability 
stag-p& = e--rtaPnant 

stagnant = stagnant + 1 3 
3 

Figure 1: Perturbation Algorithm 

The parameter stag,prob, denoting “stagnation 
probability”, is the probability that a hyperplane is 
perturbed to a location that does not change the impu- 
rity measure. To prevent the impurity from remaining 
stagnant for a long time, stag-prob decreases exponen- 
tially with the number of “stagnant” perturbations. It 
is reset to 1 every time the global impurity measure is 
improved. Pseudocode for our perturbation procedure 
is given in Fig. 1. 

Now that we have a method for locally improving a 
coefficient of a hyperplane, we need a method for de- 
ciding which of the d+ 1 coefficients to pick for pertur- 
bation. We experimented with three different orders of 
coefficient perturbation, which we labelled Seq, Best, 
and R-50: 

Seq : Repeat until none of the coefficient values is 
modified in the for loop: 

For i = 1 to d + 1, Perturb(H, ;) 
Best: Repeat until coefficient m remains unmodified : 

m= coefficient which when perturbed, 
results in the maximum improvement 
of the impurity measure. 

Perturb(H,m) 
R-50: Repeat a fixed number of times : 

(50 in our experiments) 
m= random integer between 1 and d + 1 
Perturb(H,m) 

As will be shown in our experiments (Section 3), 
the order of perturbation of the coefficients does not 
affect the classification accuracy as much as other pa- 
rameters, especially the number of iterations (see Sec- 
tion 2.2.2). But if the number ofiterations and the im- 
purity measure are held constant, the order can have 
a significant effect on the performance of the method. 
In our experiments, though, none of these orders was 
uniformly better than any other. 

A sequence of perturbations stops when the split 
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reaches a local minimum (which may also be a global 
minimum) for the impurity measure. Our method uses 
randomization to try to jump out oflocal minima. This 
randomization technique is described next. 

2.2 Local Minima 

A big problem in searching for the best hyperplane 
(and in many other optimization problems, as well) is 
that of local minima. The search process is said to 
have reached a local minimum if no perturbation of 
the current hyperplane, as suggested by the perturba- 
tion algorithm, decreases the impurity measure, and 
the current hyperplane does not globally minimize the 
impurity measure. 

We have implemented two ways of dealing with local 
minima: perturbing the hyperplane in a random direc- 
tion, and re-running the perturbation algorithm with 
additional initial hyperplanes. While the second tech- 
nique is a variant of the standard technique of multiple 
local searches, the first technique of perturbing the hy- 
perlane in a random direction is novel in the cant ext 
of decision tree algorithms. Notably, moving the hy- 
perlane in a random direction rather than modifying 
one of the coefficients one at a time does not modify 
the time complexity of the algorithm. 

2.2.1 Perturb coefficients in a random direc- 
tion When a hyperplane H = Cf-, ai*zi+ad+l can 
not be improved by deterministic perturbation, we do 
the following. 

Let R = (T~,Q,..., ~d+l) be a random vector. Let 
Q be the amount by which we want to perturb H in 

the direction R. i.e., Let HI = cf=, (ai + crri)z; + 
(ad+1 + o~d+l) be the suggested perturbation of H. 

The only variable in the equation of HI is cr. There- 
fore each of the n examples in P, depending on its 
category, imposes a constraint on the value of a 
(See Section 2.1). Use the perturbation algorithm 
in Fig. 1 to compute the best value of cr. 

If the hyperplane HI obtained thus improves the im- 
purity measure, accept the perturbation. Continue 
with the coefficient perturbation procedure. Else 
stop and output H as the best possible split of P. 

We found in our experiments that a single random 
perturbation, when used at a local minimum, proves 
to be very helpful. Classification accuracy improved 
for every one of our data sets when such perturbations 
were made. 

2.2.2 Choosing multiple initial hyperplanes 
Because most of the steps of our perturbation algo- 
rithm are deterministic, the initial randomly-chosen 
hyperplane determines which local minimum will be 
encountered first. Perturbing a single initial hyper- 
plane deterministically thus is not likely to lead to the 
best split of a given dataset. In cases where the ran- 
dom perturbation method may have failed to escape 



from local minima, we thought it would be useful to 
start afresh, with a new initial hyperplane. 

We use the word iteration to denote one run of the 
perturbation algorithm, at one node of the decision 
tree, using one random initial hyperplane; i.e., one at- 
tempt using either Seq, Best, or R-50 to cycle through 
and perturb the coefficients of the hyperplane. One 
iteration also includes perturbing the coefficients ran- 
domly once at each local minimum, as described in Sec- 
tion 2.2.1. One of the input parameters to OCl tells 
it how many iterations to use. If it uses more than 
one iteration, then it always saves the best hyperplane 
found thus far. 

In all our experiments, the classification accuracies 
increased with more than one iteration. Accuracy 
seemed to increase up to a point and then level off 
(after about 20-50 iterations, depending on the do- 
main). Our conclusion was that the use of multiple 
initial hyperplanes substantially improved the quality 
of the best tree found. 

2.3 Comparison to Breiman et a1.‘s 
method 

Breiman et al [1984, pp. 171-1731 suggested a method 
for inducing multivariate decision trees that used a per- 
turbation algorithm similar to the deterministic hill- 
climbing method that OCl uses. They too perturb 
a coefficient by calculating a quantity similar to Uj 
(Eq. 1) for each example in the data, and assign the 
new value of the coefficient to be equal to the best 
univariate split of the U’s* In spite of this apparent 
similarity, OCl is significantly different from the above 
algorithm for the following reasons. 

Their algorithm does not use any randomization. 
They choose the best univariate split of the dataset 
as their only choice of an initial hyperplane. When 
a local minimum is encountered, their deterministic 
algorithm halts. 

Their algorithm modifies one coefficient of the hy- 
perplane at a time. One step of our algorithm can 
modify several coefficients at once. 

Breiman et al. report no upper bound on the time it 
takes for a hyperplane to reach a (perhaps locally) 
optimal position. In contrast, our procedure only ac- 
cepts a limited number of perturbations. The num- 
ber of changes that reduce the impurity is limited to 
n, the number of examples. The number of changes 
that leave impurity the same is limited by the pa- 
rameter stag-prob (Section 2.1). Due to these restric- 
tions, OCl is guaranteed to spend only polynomial 
time on each hyperplane in a tree.4 

‘The theorethical bound on the alnount of time OCl 
spends on perturbing a hyperplane is O(dn’log n). To 
guarantee this bound, we have to reduce atcrgqrob to zero 
after a fixed number of changes, rather than reducing it 
exponentially to zero. The latter method leaves an expo- 

In addition, the procedure in [Breiman et al., 19841 
is at best an outline: though the idea is elegant, many 
details were not worked out, and few experiments were 
performed. Thus, even without the significant changes 
to the algorithm we have introduced, there was a need 
for much more experimental work on this algorithm. 

2.4 Goodness of a hyperplane 

Our algorithm attempts to divide the d-dimensional 
attribute space into homogeneous regions, i.e., into re- 
gions that contain examples from just one category. 
(The training set P may contain two or more cate- 
gories.) The goal of each new node in the tree is to 
split the sample space so as to reduce the “impurity” 
of the sample space. Our algorithm can use any mea- 
sure of impurity, and in our experiments, we considered 
four such measures: information gain [Quinlan, 19861, 
max minority, sum minority, and sum of impurity (all 
three defined in [Heath, 19921). Any of these measures 
seem to work well for our algorithm, and the classifica- 
tion accuracy did not vary significantly as a function of 
the goodness measure used. More details of the com- 
parisons are given in Section 3 and Table 2. 

2.4.1 Three new irupurity measures The im- 
purity measures max minority, sum minority, and 
sum of impurity were all very recently introduced 
in the context of decision trees. We will there- 
fore briefly define them here. For detailed compar- 
isons, see [Heath, 19921. For a discussion of other 
impurity measures, see [Fayyad and Irani, 19921 and 
[Quinlan and Rivest, 19891. 

Consider the two half spaces formed by splitting a 
sample space with a hyperplane H, and call these two 
spaces L and R (left and right). Assume that there are 
only two classes of examples, though this definition is 
easily extended to multiple categories. If all the exam- 
ples in a space fall into the same category, that space 
is said to be homogeneous. The examples in any space 
can be divided into two sets, A and B, according to 
their class labels, and the size of the smaller of those 
two sets is the minority. The max minority (MM) mea- 
sure of H is equal to the larger of the two minorities 
in L and R. The sum minority measure (SM) of H is 
equal to the sum of the minorities in both L and R. 

The sum of impurity measure requires us to give the 
two classes numeric values, 0 and 1. Let Pi, ..) PL be 
the points (examples) on the left side of H. Let L”pi be 
the category of the point Pi. We can define the average 

class avg of L as avg = cf= CPi i . The impurity of L is 
then defined as CF’.,, (Cp; - avg)2 The sum of impurity 
(SI) of H is equal to the sum of the impurity measures 

nentially small chance that a large number of perturbations 
will be permitted. In practice, however, hyperplanes were 
never perturbed more than a small (< 12) times. The ex- 
pected runnin g time of OC1 for perturbing a hyperplane 
appears to be O(Enlog n), where k is a small constant. 
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Table 

Data 

Star 
Galaxy 

(Bright) 

Star 
Galaxy 
w4 

IRIS 

Cancer 

! 3 - 

I 

1: Compa 

Method 

ax--- 
CSADT 
ID3 
l-NN 
BP 
OCl 
l-NN 

zk- 
CSADT 
ID3 
l-NN 
BP 
OCl 
CSADT 
ID3 
l-NN 

isons with 
Accuracy 

.-Jz!L 
99.2 
99.1 
99.1 
98.8 
99.8 
95.8 
95.1 
92.0 
98.0 
94.7 
94.7 
96.0 
96.7 
97.4 
94.9 
90.6 
96.0 

,her n 
Tree 
Size 
15.6 
18.4 
44.3 

- 
- - 

36.0 SI 
- - 
- - 

3.0 SI 
4.2 SM 

10.0 MM 
- - 
- - 

2.4 SI 
4.6 SM 

36.1 SI 
- - 

ethods 
Impurity 
Measure 

Sl 
SI 
SI 
- 

on both 1; and R. 

3 Experiments 
In this section, we present results of experiments we 
performed using OCl on four real-world data sets. 
These results, along with some existing classification 
results for the same domains, are summarized in Ta- 
ble 1. All our experiments used lo-fold cross-validation 
trials. We built decision trees for each data set using 
various combinations of program parameters (such as 
the number of iterations, order of coefficient perturba- 
tion, impurity measure, impurity threshold at which a 
node of the tree may be pruned). The results in Table 1 
correspond to the trees with the highest classification 
accuracies. 

The results for the CSADT and ID3 methods are 
taken from Heath [Heath, 19921. CSADT is an alter- 
native approach to building oblique decision trees that 
uses simulated annealing to find good hyperplanes. 
These prior results used identical data sets to the ones 
used here, although the partitioning into training and 
test partitions may have been different. In each case, 
though, we cite the best published result for the algo- 
rithm used in the comparison. 

Star/galaxy discrimination. Two of our data sets 
came from a large set of astronomical images collected 
by Odewahn et al [Odewahn et al., 19921. In their 
study, they used these images to train perceptrons and 
back propagation (BP) networks to differentiate be- 
tween stars and galaxies. Each image is characterized 
by 14 real-valued attributes and one identifier, viz., 
Ustar” or ugalaxy”. The objects in the image were di- 
vided by Odewahn et al. into “bright” and “dim” data 

Table 2: Effect of parameters on accuracv and DT size 
Imp. 

l-7 

Prune Act. Tree 

Iter Meas. Order Thresh. (%I 
T- 

1 SI R-50 10 96.4 
10 SM Best 4 97.0 
10 SM seq 10 96.6 
20 SM R-50 8 96.8 
50 MM Best 6 97.1 

100 SI Best 8 96.9 
1 MM sea 0 93.7 
1 MM seq 2 93.8 
1 MM SW 10 92.5 
1 MM Best 10 89.2 
1 MM R-50 10 92.3 

Depth 
& Size 
3.0,4.9 
3.3,4.3 
2.3,3.3 
3.1,4.3 
1.9,2.8 
1.9,2.3 

6.2,19.6 
4.9,14.3 
2.9,5.6 
3.9,6.7 
2.8,5.0 

sets based on the image intensity values, where the 
“dim” images are inherently more difficult to classify. 
The bright set contains 3524 objects and the dim set 
contains 4652 objects. 

Heath [Heath, 19921 reports the results of applying 
the SADT and ID3 algorithms only to the bright im- 
ages. We ran OCl on both the bright and dim images, 
and our results are shown in Table 1. The table com- 
pares our results with those of CSADT, ID3, l-nearest- 
neighbor (l-NN), and back propagation on bright im- 
ages, and with l-NN [Salzberg, 19921 and back propa- 
gation on the dim images. 

Classifying irises. The iris dataset has been exten- 
sively used both in statistics and for machine learning 
studies [Weiss and Kapouleas, 19891. The data con- 
sists of 150 examples, where each example is described 
by four numerical attributes. There are 50 exam- 
ples in each of three different categories. Weiss and 
Kapouleas [Weiss and Kapouleas, 19891 obtained ac- 
curacies of 96.7% and 96.0% on this data with back 
propagation and l-NN, respectively. 

Breast cancer diagnosis. A method for classify- 
ing using pairs of oblique hyperplanes was described in 
[Mangasarian et al., 19901. This was applied to classify 
a set of 470 patients with breast cancer, where each ex- 
ample is characterized by nine numeric attributes plus 
the label, benign or malignant. The results of CSADT 
and ID3 are from Heath [Heath, 19921, and those of 
l-NN are from Salzberg [Salzberg, 19911. 

Table 2 shows how the OCl algorithm’s performance 
varies as we adjust the parameters described earlier. 
The table summarizes results from different trials us- 
ing the cancer data. We ran similar experiments for all 
our data sets, but due to space constraints this table is 
shown as a representative. The most important param- 
eter is the number of iterations; we consistently found 
better trees (smaller and more accurate) using 50 or 
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more iterations. There was no significant correlation 
between pruning thresholds and accuracies, and the 
sum minority (SM) impurity measure almost always 
produced the smallest (though not always the most 
accurate) trees. We did not find any other significant 
sources of variation, either in the impurity measure OP 

the order of perturbing coefficients. 

4 Conclusions 
Our experiments seem to support the following conclu- 
sions: 

The use of multiple iterations; i.e., several differ- 
ent initial hyperplanes, substantially improves per- 
formance. 

The technique of perturbing the entire hyperplane in 
the direction of a randomly-chosen vector is a good 
means for escaping from local minima. 

No impurity measure has an overall better perfor- 
mance than the other measures for OCl. The nature 
of the data determines which measure performs the 
best. 

No particular order of coefficient perturbation is su- 
perior to all others. 

One of OUP immediate next steps in the development 
of OCl will be to use the training set to determine the 
program parameters (e.g., number of iterations, best 
impurity measure for a dataset, and order of perturba- 
tion). 

The experiments contained here provide an impor- 
tant demonstration of the usefulness of oblique decision 
trees as classifiers. The OCl algorithm produces re- 
markably small, accurate trees, and its computational 
requirements are quite modest. The small size of the 
trees makes them more useful as descriptions of the do- 
mains, and their accuracy provides a strong argument 
for their use as classifiers. At the very least, oblique de- 
cision trees should be used in conjunction with other 
methods to enhance the tools currently available for 
many classification problems. 
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