
Cl 4 e andomize etio e ecisio trees

Sreerama Murthy: Simon Kasif: Steven Salzbergi Richard

lDept. of Comp uter Science, Johns Hopkins University, Baltimore, MD 21218
2Dept. of Co m p uter Science, Yale University, New Haven, CT 06520

‘lastname& j s. hu.edu, 2beigel-richard@cs.yale.edu

Abstract

This paper introduces OCl, a new algorithm for
generating multivariate decision trees. Multivari-
ate trees classify examples by testing linear com-
binations of the features at each non-leaf node of
the tree. Each test is equivalent to a hyperplane at
an oblique orientation to the axes. Because of the
computational intractability of finding an optimal
orientation for these hyperplanes, heuristic meth-
ods must be used to produce good trees. This

c paper explores a new method that combines de-
terministic and randomized procedures to search
for a good tree. Experiments on several different
real-world data sets demonstrate that the method
consistently finds much smaller trees than compa-
rable methods using univariate tests. In addition,
the accuracy of the trees found with our method
matches or exceeds the best results of other ma-
chine learning methods.

1 Introduction
Decision trees (DTs) have been used quite extensively
in the machine learning literature for a wide range of
classification problems. Many variants of DT algo-
rithms have been introduced, and a number of differ-
ent goodness-of-split criteria have been explored. Most
of the research to date on decision tree algorithms
has been restricted to either (1) examples with sym-
bolic attribute values [Quinlan, 19861 or (2) univari-
ate tests for numeric attributes [Breiman et al., 19841,
[Quinlan, 19921. Univariate tests compare the value of
a single attribute to a constant; i.e., they are equiv-
alent to partitioning a set of examples with an axis-
parallel hyperplane. Although Breiman et al [1984]
suggested an elegant method for inducing multivari-
ate linear decision trees, there has not been much ac-
tivity in the development of such trees until very re-
cently [Utgoff and Brodley, 19911, [Heath et al., 19921.
Because these trees use oblique hyperplanes to parti-
tion the data, we call them oblique decision trees.

This paper presents a new method for inducing
oblique decision trees. As it constructs a tree, this

method searches at each node for the best hyperplane
to partition the data. Although most of the search-
ing is deterministic hill-climbing, we have introduced
randomization to determine the initial placement of a
hyperplane and to escape from local minima. By lim-
iting the number of random choices, the algorithm is
guaranteed to spend only polynomial time at each node
in the tree. In addition, randomization itself has pro-
duced several benefits. Our experiments indicate that
it successfully avoids local minima in many cases. Ran-
domization also allows the algorithm to produce many
different trees for the same data set. This offers the
possibility of a new family of classifiers: Ic-decision-
tree algorithms, in which an example is classified by
the majority vote of k trees (See [Heath, 19921).

Two other methods for generating oblique trees,
that have been introduced recently, are perceptron
trees [Utgoff and Brodley, 19911 and simulated anneal-
ing (SADT) [Heath et al., 19921. The former shows
that much smaller trees can be induced when oblique
hyperplanes are used. However, theirs is a determinis-
tic algorithm, and Heath [1992] shows that the problem
of finding an optimal oblique tree is NP-Complete.3
This work also introduces a completely randomized
technique for finding good hyperplanes. The motiva-
tion for randomization is given in [Heath et al., 19921,
but the idea can briefly be explained as follows. Con-
sider the hyperplane associated with the root of a de-
cision tree. The optimal (smallest) decision tree may
use non-optimal decision plane at the root. Obviously
this is true for each node of the tree; this observa-
tion suggests a randomized strategy where we try to
construct the smallest tree using several candidate hy-
perplanes at each node. This idea can be facilitated
by using a randomized algorithm to find good separat-
ing hyperplanes. That is, if a randomized algorithm
is executed repeatedly, it will find different hyperlanes .
each time. [Heath et al., 19921 use an algorithm based
on simulated annealing to generate good splits. Our

3More precisely, Heath [Heath, 19921 proves that the
problem of finding an optimal oblique split is NP-Complete,
using the number of misclassified examples as the error
measure.

322 Murthy

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

method is also randomized, but it includes a substan-
tial directed search component that allows it to run
much faster. In our experiments, our method ran much
faster than SADT without sacrificing accuracy in the
resulting classifier.

The algorithmic content of this paper focusses on
the question of how to partition a given sample space
into homogeneous regions. A complete description of
any DT building method should also include discus-
sion of its choices regarding the pruning strategies and
the stop-splitting criteria. However, we do not ad-
dress these issues here, because our choices for them
are quite straightforward and standard in the litera-
ture. We stop splitting when the sample space asso-
ciated with the current node has zero impurity (see
Section 2.4). The only pruning done by our method
consists of cutting off subtrees at nodes whose impu-
rity measure is less than a certain threshold. For a
good review and comparison of pruning strategies, see
[Mingers, 19891 and [Quinlan, 19921.

The problem of partitioning the sample space in-
volves the following related issues:

8 restrictions
planes,

on the location and orientation of hyper-

e goodness measures for evaluating a split,
o strategies to search through the space of

hyperplanes for the best hyperplane, and
possible

o methods for choosing
above search begins.

a hyperplane from which the

These issues are fundamental to the design of a DT al-
gorithm [Breiman et al., 19841, and many existing DT
algorithms can be classified on the basis of how they
make these choices. Section 2 elaborates our algorithm
with respect to each of these issues. Section 3 presents
the results of using our method to classify several real-
world data sets, and compares our results to those
of some existing methods. Section 4 summarizes the
lessons learned from these experiments.

2 The OCI Algorithm

In this section we discuss details of our oblique de-
cision tree learning method. We call this algorithm
OCl, for Oblique Classifier 1. OCl imposes no re-
strictions on the orientation of the hyperplanes. This
is the main difference between OCl and methods such
as ID3 and CART, which use only axis-parallel hyper-
planes. However, OCl cannot distinguish between two
hyperplanes that have identical sets of points on both
sides. In other words, if the sample space consists of
n examples in d dimensions (d attributes), then our
algorithm recognizes only (:) distinct hyperplanes.

The initial hyperplane at each node in the decision
tree is chosen randomly by OCl. Even if such a ran-
domly placed hyperplane has a very poor location, it is
usually improved greatly in the first few perturbations.

2.1 Search Strategies
The strategy of searching through the space of possi-
ble hyperplanes is defined by the procedure that per-
turbs the current hyperplane into a new location. As
there are an exponential number, (i), of possible hy-
perplane locations, any procedure that simply enumer-
ates all of them will be unreasonably costly. The two
main alternatives considered in the past have been to
use a non-deterministic search procedure, as in SADT
[Heath et al., 19921, or to use a heuristic deterministic
procedure, as in CART [Breiman et al., 19841. OCl
combines these two approaches, using heuristic search
until it finds a local minimum, and then using 8 non-
deterministic search step to get out of the local mini-
mum.

We will start by explaining how we perturb a hyper-
plane to split the sample space P at a node of a DT. P
contains n examples, each with d attributes. Each ex-
ample belongs to a particular category. The
of the current hyperplane H can be written:

kc) aiXi + ad+1 = 0
i= 1

equation

Let Pj = (Xjl, Xj2,. . ., zjd) be the jth example from
the sample space P. If we substitute Pj into the
equation for H, we get: Cfzl(ai2ji) + ad+1 = Vj,
where the sign of Vj tells US whether the point Pj
is above or below the hyperplane H. If H splits the
sample space P perfectly, then all points belonging to
the same category in P will have the same sign i.e.,
SiCJn(Vj) = sign(&) iff catego?YJ(P;) = CdegOT2J(Pj)

OCl perturbs the coefficients of H one at a time.
If we consider the coefficient a, as a variable, and all
other coefficients as constants, Vj can be viewed as a
function of a,. If Vj is defined as

Uj = amxjm -vj

xjrn
(1)

then the point Pj is above H if a, > Vi, and below
otherwise. Thus, by fixing the values of the coefficients
al . . . ad+1 , except am, we can obtain n constraints on
the value of Umr using the n points in
suming no degeneracies).

the set P (as-

The problem then is to find a value for a, that satis-
fies as many of these constraints as possible. (If all the
constraints-are satisfied , then we have a perfect split.)
This problem is easy to solve; in fact, it is just an axis
parallel split in 1-D. The value am, obtained by solv-
ing this one dimensional problem is a good candidate
to be used as the new value of the coefficient a,. ILet
HI be the hyperplane obtained by changing a, to a,,
in H. If H has better (lower) impurity than HI, then
HI is discarded. If HI has lower impurity, HI becomes
the new locatiorl of the hyperplane. If H and HI have
identical impurities, and different locations,
accepted with probability stag-prob.

then HI is

Machine Learning 323

Perturb(H,m)
1

forj = 1 ton
Compute i7+ (Eq. 1)

Sort 771.. . V, m nondecreasing order.
am, = best univariate split of the sorted V’s.
HI = result of substituting am, for am in H.
If (;m~.rity(H) < impwity(HI))

=%b,; stagnant = 0 3
Else if (impurity(H) = impwity(.H~))

{ % = am, with probability
stag-p& = e--rtaPnant

stagnant = stagnant + 1 3
3

Figure 1: Perturbation Algorithm

The parameter stag,prob, denoting “stagnation
probability”, is the probability that a hyperplane is
perturbed to a location that does not change the impu-
rity measure. To prevent the impurity from remaining
stagnant for a long time, stag-prob decreases exponen-
tially with the number of “stagnant” perturbations. It
is reset to 1 every time the global impurity measure is
improved. Pseudocode for our perturbation procedure
is given in Fig. 1.

Now that we have a method for locally improving a
coefficient of a hyperplane, we need a method for de-
ciding which of the d+ 1 coefficients to pick for pertur-
bation. We experimented with three different orders of
coefficient perturbation, which we labelled Seq, Best,
and R-50:

Seq : Repeat until none of the coefficient values is
modified in the for loop:

For i = 1 to d + 1, Perturb(H, ;)
Best: Repeat until coefficient m remains unmodified :

m= coefficient which when perturbed,
results in the maximum improvement
of the impurity measure.

Perturb(H,m)
R-50: Repeat a fixed number of times :

(50 in our experiments)
m= random integer between 1 and d + 1
Perturb(H,m)

As will be shown in our experiments (Section 3),
the order of perturbation of the coefficients does not
affect the classification accuracy as much as other pa-
rameters, especially the number of iterations (see Sec-
tion 2.2.2). But if the number ofiterations and the im-
purity measure are held constant, the order can have
a significant effect on the performance of the method.
In our experiments, though, none of these orders was
uniformly better than any other.

A sequence of perturbations stops when the split

324 Murthy

reaches a local minimum (which may also be a global
minimum) for the impurity measure. Our method uses
randomization to try to jump out oflocal minima. This
randomization technique is described next.

2.2 Local Minima

A big problem in searching for the best hyperplane
(and in many other optimization problems, as well) is
that of local minima. The search process is said to
have reached a local minimum if no perturbation of
the current hyperplane, as suggested by the perturba-
tion algorithm, decreases the impurity measure, and
the current hyperplane does not globally minimize the
impurity measure.

We have implemented two ways of dealing with local
minima: perturbing the hyperplane in a random direc-
tion, and re-running the perturbation algorithm with
additional initial hyperplanes. While the second tech-
nique is a variant of the standard technique of multiple
local searches, the first technique of perturbing the hy-
perlane in a random direction is novel in the cant ext
of decision tree algorithms. Notably, moving the hy-
perlane in a random direction rather than modifying
one of the coefficients one at a time does not modify
the time complexity of the algorithm.

2.2.1 Perturb coefficients in a random direc-
tion When a hyperplane H = Cf-, ai*zi+ad+l can
not be improved by deterministic perturbation, we do
the following.

Let R = (T~,Q,..., ~d+l) be a random vector. Let
Q be the amount by which we want to perturb H in

the direction R. i.e., Let HI = cf=, (ai + crri)z; +
(ad+1 + o~d+l) be the suggested perturbation of H.

The only variable in the equation of HI is cr. There-
fore each of the n examples in P, depending on its
category, imposes a constraint on the value of a
(See Section 2.1). Use the perturbation algorithm
in Fig. 1 to compute the best value of cr.

If the hyperplane HI obtained thus improves the im-
purity measure, accept the perturbation. Continue
with the coefficient perturbation procedure. Else
stop and output H as the best possible split of P.

We found in our experiments that a single random
perturbation, when used at a local minimum, proves
to be very helpful. Classification accuracy improved
for every one of our data sets when such perturbations
were made.

2.2.2 Choosing multiple initial hyperplanes
Because most of the steps of our perturbation algo-
rithm are deterministic, the initial randomly-chosen
hyperplane determines which local minimum will be
encountered first. Perturbing a single initial hyper-
plane deterministically thus is not likely to lead to the
best split of a given dataset. In cases where the ran-
dom perturbation method may have failed to escape

from local minima, we thought it would be useful to
start afresh, with a new initial hyperplane.

We use the word iteration to denote one run of the
perturbation algorithm, at one node of the decision
tree, using one random initial hyperplane; i.e., one at-
tempt using either Seq, Best, or R-50 to cycle through
and perturb the coefficients of the hyperplane. One
iteration also includes perturbing the coefficients ran-
domly once at each local minimum, as described in Sec-
tion 2.2.1. One of the input parameters to OCl tells
it how many iterations to use. If it uses more than
one iteration, then it always saves the best hyperplane
found thus far.

In all our experiments, the classification accuracies
increased with more than one iteration. Accuracy
seemed to increase up to a point and then level off
(after about 20-50 iterations, depending on the do-
main). Our conclusion was that the use of multiple
initial hyperplanes substantially improved the quality
of the best tree found.

2.3 Comparison to Breiman et a1.‘s
method

Breiman et al [1984, pp. 171-1731 suggested a method
for inducing multivariate decision trees that used a per-
turbation algorithm similar to the deterministic hill-
climbing method that OCl uses. They too perturb
a coefficient by calculating a quantity similar to Uj
(Eq. 1) for each example in the data, and assign the
new value of the coefficient to be equal to the best
univariate split of the U’s* In spite of this apparent
similarity, OCl is significantly different from the above
algorithm for the following reasons.

Their algorithm does not use any randomization.
They choose the best univariate split of the dataset
as their only choice of an initial hyperplane. When
a local minimum is encountered, their deterministic
algorithm halts.

Their algorithm modifies one coefficient of the hy-
perplane at a time. One step of our algorithm can
modify several coefficients at once.

Breiman et al. report no upper bound on the time it
takes for a hyperplane to reach a (perhaps locally)
optimal position. In contrast, our procedure only ac-
cepts a limited number of perturbations. The num-
ber of changes that reduce the impurity is limited to
n, the number of examples. The number of changes
that leave impurity the same is limited by the pa-
rameter stag-prob (Section 2.1). Due to these restric-
tions, OCl is guaranteed to spend only polynomial
time on each hyperplane in a tree.4

‘The theorethical bound on the alnount of time OCl
spends on perturbing a hyperplane is O(dn’log n). To
guarantee this bound, we have to reduce atcrgqrob to zero
after a fixed number of changes, rather than reducing it
exponentially to zero. The latter method leaves an expo-

In addition, the procedure in [Breiman et al., 19841
is at best an outline: though the idea is elegant, many
details were not worked out, and few experiments were
performed. Thus, even without the significant changes
to the algorithm we have introduced, there was a need
for much more experimental work on this algorithm.

2.4 Goodness of a hyperplane

Our algorithm attempts to divide the d-dimensional
attribute space into homogeneous regions, i.e., into re-
gions that contain examples from just one category.
(The training set P may contain two or more cate-
gories.) The goal of each new node in the tree is to
split the sample space so as to reduce the “impurity”
of the sample space. Our algorithm can use any mea-
sure of impurity, and in our experiments, we considered
four such measures: information gain [Quinlan, 19861,
max minority, sum minority, and sum of impurity (all
three defined in [Heath, 19921). Any of these measures
seem to work well for our algorithm, and the classifica-
tion accuracy did not vary significantly as a function of
the goodness measure used. More details of the com-
parisons are given in Section 3 and Table 2.

2.4.1 Three new irupurity measures The im-
purity measures max minority, sum minority, and
sum of impurity were all very recently introduced
in the context of decision trees. We will there-
fore briefly define them here. For detailed compar-
isons, see [Heath, 19921. For a discussion of other
impurity measures, see [Fayyad and Irani, 19921 and
[Quinlan and Rivest, 19891.

Consider the two half spaces formed by splitting a
sample space with a hyperplane H, and call these two
spaces L and R (left and right). Assume that there are
only two classes of examples, though this definition is
easily extended to multiple categories. If all the exam-
ples in a space fall into the same category, that space
is said to be homogeneous. The examples in any space
can be divided into two sets, A and B, according to
their class labels, and the size of the smaller of those
two sets is the minority. The max minority (MM) mea-
sure of H is equal to the larger of the two minorities
in L and R. The sum minority measure (SM) of H is
equal to the sum of the minorities in both L and R.

The sum of impurity measure requires us to give the
two classes numeric values, 0 and 1. Let Pi, ..) PL be
the points (examples) on the left side of H. Let L”pi be
the category of the point Pi. We can define the average

class avg of L as avg = cf= CPi i . The impurity of L is
then defined as CF’.,, (Cp; - avg)2 The sum of impurity
(SI) of H is equal to the sum of the impurity measures

nentially small chance that a large number of perturbations
will be permitted. In practice, however, hyperplanes were
never perturbed more than a small (< 12) times. The ex-
pected runnin g time of OC1 for perturbing a hyperplane
appears to be O(Enlog n), where k is a small constant.

Machine Learning 325

Table

Data

Star
Galaxy

(Bright)

Star
Galaxy
w4

IRIS

Cancer

! 3 -

I

1: Compa

Method

ax---
CSADT
ID3
l-NN
BP
OCl
l-NN

zk-
CSADT
ID3
l-NN
BP
OCl
CSADT
ID3
l-NN

isons with
Accuracy

.-Jz!L
99.2
99.1
99.1
98.8
99.8
95.8
95.1
92.0
98.0
94.7
94.7
96.0
96.7
97.4
94.9
90.6
96.0

,her n
Tree
Size
15.6
18.4
44.3

-
- -

36.0 SI
- -
- -

3.0 SI
4.2 SM

10.0 MM
- -
- -

2.4 SI
4.6 SM

36.1 SI
- -

ethods
Impurity
Measure

Sl
SI
SI
-

on both 1; and R.

3 Experiments
In this section, we present results of experiments we
performed using OCl on four real-world data sets.
These results, along with some existing classification
results for the same domains, are summarized in Ta-
ble 1. All our experiments used lo-fold cross-validation
trials. We built decision trees for each data set using
various combinations of program parameters (such as
the number of iterations, order of coefficient perturba-
tion, impurity measure, impurity threshold at which a
node of the tree may be pruned). The results in Table 1
correspond to the trees with the highest classification
accuracies.

The results for the CSADT and ID3 methods are
taken from Heath [Heath, 19921. CSADT is an alter-
native approach to building oblique decision trees that
uses simulated annealing to find good hyperplanes.
These prior results used identical data sets to the ones
used here, although the partitioning into training and
test partitions may have been different. In each case,
though, we cite the best published result for the algo-
rithm used in the comparison.

Star/galaxy discrimination. Two of our data sets
came from a large set of astronomical images collected
by Odewahn et al [Odewahn et al., 19921. In their
study, they used these images to train perceptrons and
back propagation (BP) networks to differentiate be-
tween stars and galaxies. Each image is characterized
by 14 real-valued attributes and one identifier, viz.,
Ustar” or ugalaxy”. The objects in the image were di-
vided by Odewahn et al. into “bright” and “dim” data

Table 2: Effect of parameters on accuracv and DT size
Imp.

l-7

Prune Act. Tree

Iter Meas. Order Thresh. (%I
T-

1 SI R-50 10 96.4
10 SM Best 4 97.0
10 SM seq 10 96.6
20 SM R-50 8 96.8
50 MM Best 6 97.1

100 SI Best 8 96.9
1 MM sea 0 93.7
1 MM seq 2 93.8
1 MM SW 10 92.5
1 MM Best 10 89.2
1 MM R-50 10 92.3

Depth
& Size
3.0,4.9
3.3,4.3
2.3,3.3
3.1,4.3
1.9,2.8
1.9,2.3

6.2,19.6
4.9,14.3
2.9,5.6
3.9,6.7
2.8,5.0

sets based on the image intensity values, where the
“dim” images are inherently more difficult to classify.
The bright set contains 3524 objects and the dim set
contains 4652 objects.

Heath [Heath, 19921 reports the results of applying
the SADT and ID3 algorithms only to the bright im-
ages. We ran OCl on both the bright and dim images,
and our results are shown in Table 1. The table com-
pares our results with those of CSADT, ID3, l-nearest-
neighbor (l-NN), and back propagation on bright im-
ages, and with l-NN [Salzberg, 19921 and back propa-
gation on the dim images.

Classifying irises. The iris dataset has been exten-
sively used both in statistics and for machine learning
studies [Weiss and Kapouleas, 19891. The data con-
sists of 150 examples, where each example is described
by four numerical attributes. There are 50 exam-
ples in each of three different categories. Weiss and
Kapouleas [Weiss and Kapouleas, 19891 obtained ac-
curacies of 96.7% and 96.0% on this data with back
propagation and l-NN, respectively.

Breast cancer diagnosis. A method for classify-
ing using pairs of oblique hyperplanes was described in
[Mangasarian et al., 19901. This was applied to classify
a set of 470 patients with breast cancer, where each ex-
ample is characterized by nine numeric attributes plus
the label, benign or malignant. The results of CSADT
and ID3 are from Heath [Heath, 19921, and those of
l-NN are from Salzberg [Salzberg, 19911.

Table 2 shows how the OCl algorithm’s performance
varies as we adjust the parameters described earlier.
The table summarizes results from different trials us-
ing the cancer data. We ran similar experiments for all
our data sets, but due to space constraints this table is
shown as a representative. The most important param-
eter is the number of iterations; we consistently found
better trees (smaller and more accurate) using 50 or

326 Murthy

more iterations. There was no significant correlation
between pruning thresholds and accuracies, and the
sum minority (SM) impurity measure almost always
produced the smallest (though not always the most
accurate) trees. We did not find any other significant
sources of variation, either in the impurity measure OP

the order of perturbing coefficients.

4 Conclusions
Our experiments seem to support the following conclu-
sions:

The use of multiple iterations; i.e., several differ-
ent initial hyperplanes, substantially improves per-
formance.

The technique of perturbing the entire hyperplane in
the direction of a randomly-chosen vector is a good
means for escaping from local minima.

No impurity measure has an overall better perfor-
mance than the other measures for OCl. The nature
of the data determines which measure performs the
best.

No particular order of coefficient perturbation is su-
perior to all others.

One of OUP immediate next steps in the development
of OCl will be to use the training set to determine the
program parameters (e.g., number of iterations, best
impurity measure for a dataset, and order of perturba-
tion).

The experiments contained here provide an impor-
tant demonstration of the usefulness of oblique decision
trees as classifiers. The OCl algorithm produces re-
markably small, accurate trees, and its computational
requirements are quite modest. The small size of the
trees makes them more useful as descriptions of the do-
mains, and their accuracy provides a strong argument
for their use as classifiers. At the very least, oblique de-
cision trees should be used in conjunction with other
methods to enhance the tools currently available for
many classification problems.

Acknowledgements
Thanks to David Heath for helpful comments.
S. Murthy and S. Salzberg were supported in part
by the National Science Foundation under Grant IRI-
9116843.

References
Breiman, L.; Friedman, J.H.; Olshen, R.A.; and
Stone, C.J. 1984. Classification and Regression Dees.
Wadsworth International Group.
Fayyad, U. and Irani, K. 1992. The attribute speci-
fication problem in decision tree generation. In Pro-
ceedings of AAAI-92, San Jose CA. AAAI Press. 104-
110.

Heath, D.; Kasif, S.; and Salzberg, S. 1992. Learn-
ing oblique decision trees. Technical report, Johns
Hopkins University, Baltimore MD.
Heath, D. 1992. A Geometric .&amework for Ma-
chine Learning. Ph.D. Dissertation, Johns Hopkins
University, Baltimore MD.
Mangasarian, 0.; Setiono, R.; and Wolberg, W. 1990.
Pattern recognition via linear programming: Theory
and application to medical diagnosis. In SIAM Work-
shop on Optimization.

Mingers, J. 1989. An emperical comparison of pruning
methods for decision tree induction. Machine Learn-
ing 4(2):227-243.

Odewahn, S.C.; Stockwell, E.B.; Pennington, R.L.;
Humphreys, R.M.; and Zumach, W.A. 1992. Au-
tomated stargalaxy descrimination with neural net-
works. Astronomical Journal 103(1):318-331.
Quinlan, J.R. and Rives& R.L. 1989. Inferring deci-
sion trees using the minimum description length prin-
ciple. Information and Computation 80:227-248.

Quinlan, J.R. 1986. Induction of decision trees. 1Ma-
chine Learning 1(1):81-106.
Quinlan, J.R. 1992. C4.5 Programs for Machine
Learning. Morgan Kaufmann.
Salzberg, S. 1991. Distance metrics for instance-based
learning. In Methodologies for Intelligent Systems:
6th International Symposium, ISMIS ‘91. 399-408.

Salzberg, S. 1992. Combining learning and search to
create good classifiers. Technical Report JHU-92/12,
Johns Hopkins University, Baltimore MD.
Utgoff, P.E. and Brodley, C.E. 1991. Linear machine
decision trees. Technical Report 10, University of
Massachusetts, Amherst MA.
Weiss, S. and Kapouleas, I. 1989. An emperical corn-
parison of pattern recognition, neural nets, and ma-
chine learning classification methods. In Proceedings
of Eleventh IJCAI, Detroit MI. Morgan Kaufmann.

Machine Learning 327

