
nctions 
s 

Mehran Sahami 

Department of Computer Science 
Stanford University 

Stanford, CA 94305 
sahami@cs.Stanford.EDU 

Abstract 
This paper investigates an algorithm for the construction 
of decisions trees comprised of linear threshold units and 
also presents a novel algorithm for the learning of non- 
linearly separable boolean functions using Madaline- 
style networks which are isomorphic to decision trees. 
The construction of such networks is discussed, and their 
performance in learning is compared with standard Back- 
Propagation on a sample problem in which many 
irrelevant attributes are introduced. Littlestone’s Winnow 
algorithm is also explored within this architecture as a 
means of learning in the presence of many irrelevant 
attributes. The learning ability of this Madaline-style 
architecture on non-optimal (larger than necessary) 
networks is also explored. 

I[ntroduc&ion 
We initially examine a non-incremental algorithm that 
learns binary classification tasks by producing decision 
trees of linear threshold units (LTU trees). This decision 
tree bears some similarity to the decision trees produced by 
ID3 (Quinlan 1983) and Perceptron Trees (Utgoff 1988), 
yet it seems to promise more generality as each node in our 
tree implements a separate linear discriminant function 
while only the leaves of a Perceptron Tree have this 
generality and the remaining nodes in both the Perceptron 
Tree and the trees produced by ID3 perform a test on only 
one feature. Recently, Brodley and Utgoff (1992) have also 
shown that the use of multivariate tests at each node of a 
decision tree often provides greater generalization when 
learning concepts in which there are irrelevant attributes. 

Furthermore, as presented in (Brent 1990), we show how 
such an LTU tree can be transformed into a three-layer 
neural network with two hidden layers and one output layer 
(the input layer is not counted) and can often be trained 
much more quickly than the standard Back-Propagation 
algorithm applied to an entire network (Rumelhart, Hinton, 
& Williams 1986). After examining this transformation, a 
new incremental learning algorithm, based on a Madaline- 
style architecture (Ridgway 1962, Widrow & Winter 1988), 
is presented in which learning is performed using such 
three-layer networks. The effectiveness of this algorithm is 
assessed on a sample non-linearly separable boolean 
function in order to perform comparisons with the LTU 
tree algorithm and a similar network trained using standard 
Back-Propagation. 

Being primarily interested in functions in which many 
irrelevant attributes exist, we also explore the performance 
of the Winnow algorithm (Littlestone 1988, 1991) (which 
has proven effective in learning linearly separable functions 
in the presence of many irrelevant attributes) within the 
Madahne-style learning architecture. We contrast how it 
performs in learning our sample non-linearly separable 
function with the classical fixed increment (Perceptron) 
updating method (Duda & Hart 1973). We also examine 
the effectiveness of such learning procedures in “non- 
optimal” Madaline-style networks, and comment on 
possible future extensions of this learning architecture. 

The LTU Tree Algorit 
The tree building algorithm is non-incremental requiring 
that the set of all training instances, S, be available from 
the outset1 We begin with the root node of the tree and 
produce a hyperplane to separate our training set using any 
means we wish (in our trials, Back-Propagation was 
applied to one node to produce a single separating 
hyperplane) into the sets So and S1, where Si (i = 0, 1) 
indicates the set of instances classified as i by the 
separating hyperplane. If there are instances in So which 
should be classified as 1 (called “incorrect O’s”) we then 
create a left child node and recursively apply the algorithm 
on the left child using So as the training set. Similarly, if 
any instances in Sl should be classified as 0 (“incorrect 
I’s”) we create a right child node and again recursively 
apply our algorithm on the right child using Sl as the 
training set. Thus the algorithm normally terminates when 
all of the instances in the original training set, S, are 
correctly classified by our tree. 

The classification procedure using the completed tree 
requires us to simply begin at the root node and determine 
whether the given instance is classified as a 0 or 1 by the 
hyperplane stored there. A classification of 0 means we 
follow the left branch, otherwise we follow the right, and 
recursively apply this procedure with the hyperplane stored 
at the appropriate child node. The classification given at a 
leaf node in the tree is the final output of the classification 
procedure. Note that the leaves in this decision tree do not 

lNotation and naming conventions in the description of the 
LTU tree algorithm are from Brent (1990). 

Machine Learning 335 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



classify all instances into one labeling, rather the 
classification for the instance is the result of applying the 
linear discriminator stored in the leaf node. 

For our experiments, certain (reasonable) limiting 
assumptions were placed on the building of such LTU trees 
in order to prevent needlessly complex trees, thereby 
helping to improve generalization and reduce the 
algorithm’s execution time. These included setting a 
maximum tree depth of 10 layers and tolerating a certain 
percentage of error in each individual node. This toleration 
condition was set after some empirical observations which 
indicated that given some number of similarly classified 
instances in a node, n, a certain percentage of erroneous 
classifications, E, would be acceptable (thus precluding 
further branching for that particular classification from the 
node). These values are as follows: 

eifnI25thenE=25% 
*ifn>25&n5100thenE=12% 
0 else E = 6% 

Initial testing was performed within this LTU tree 
architecture using a variety of methods for learning the 
linear discriminant at each node of the tree (Sahami 1993). 
Wishing to minimize the number of erroneous 
classifications made at each node in the tree, Back- 
Propagation appeared to be the most promising of these 
weight updating procedures. While this heuristic of 
minimizing errors at each node can occasionally produce 
larger than optimal trees2, it generally produces trees of 
optimal or near-optimal size, and was shown to produce the 
smallest trees on a number of sample functions when 
compared with other weight updating procedures. Since we 
are only allowed to store one hyperplane at each node (and 
not an entire network, although this might be an 
interesting angle for further research) we apply the Back- 
Propagation algorithm to only one unit at a time. To 
make this unit a linear threshold unit, a threshold is set at 
0.5 after training is completed (this threshold is not used 
during training). Thus the output of the unit trained with 
Back-Propagation is given by: 

OLTUn = 
1 onr0.5 
0 otherwise 

on= l 
1 + e-Nk 

where Nk = i?kiik + ok-1 

where 0, is the actual real valued output of the nth trained 
unit on any instance and OLTU~ is the output of our 
“linear threshold unit.” 8 represents the “bias” weight of 
the unit. 
The updating procedure used in training each node is: 

2An optimal tree would contain the minimum number of linear 
separators (nodes) necessary to successfully classify all 
instances in the training set, S. 

Aw’, = (hte * iik * ok * (1 - a) * (d - ok)) 
1 where ok = - 

1 + esNk’ 
Nk = i&ii& + @k-l 

and &+I = ok + A& 
881, = (hate * & * (1 - a) * (d - ok)) 

Where w is the weight vector being updated and x is a 
given instance vector. We set bate = 1.0 and momentum = 
0.5 in our experiments. 

There are many possible extensions to this LTU tree- 
building algorithm including irrelevant attribute 
elimination (Brodley & Utgoff 1992), producing several 
hyperplanes at each node using different weight updating 
procedures and selecting the hyperplane which causes the 
fewest number of incorrect classifications, using Bayesian 
analysis to determine instance separations (Langley 1992), 
post-processing of the tree to reduce its size, etc. These 
modifications are beyond the scope of this paper however, 
and generally are only fine tunings to the underlying 
learning architecture which is not changed by them. 

Creating Networks From LTU Trees 
The trees which are produced by the LTU tree algorithm 
can be mechanically transformed into three-layer 
connectionist networks that implement the same functions. 
Given an LTU tree, T, with m nodes, we can construct an 
isomorphic network containing the m nodes of the tree in 
the first hidden layer (each fully connected to the set of 
inputs). The second hidden layer consisting of n nodes 
(AND gates), where n is the number of possible distinct 
paths between the root of T and a leaf node (a node without 
two children). And the output layer merely being an OR 
gate connected to all n nodes in the previous layer. The 
connections between the first and second hidden layers are 
constructed by traversing each possible path from the root 
to a leaf in the tree T, and at each node recording which 
branch was followed to get to it. Thus each node in the 
second hidden layer represents a single distinct path through 
T by being connected to those nodes in the first layer 
which correspond to the nodes that were traversed along the 
given path. Since the nodes in the second hidden layer are 
merely AND gates, the inputs coming from the first hidden 
layer must first be inverted if a left branch was traversed in 
T at the node corresponding to a given input from the first 
hidden layer. Two examples are given below. 

As pointed out in (Brent 1990), it is more efficient to do 
classifications using the tree structure than the 
corresponding network since the only computations which 
must be performed are those which lie on a single path 
from the root of the tree to a leaf. Conveniently, when we 
later examine how to incrementally train a network which 
corresponds to an LTU tree, we may then transform the 
trained network into a decision tree to attain this 
computational benefit during classification. 

336 Sahami 



Figure 1 

Figure 2 

Figure 1 shows a two node tree produced by the LTU tree 
algorithm, while Figure 2 shows the corresponding 
network after performing the transformation described 
above. Nodes 1 and 2 in Figure 1 correspond directly to 
nodes 1 and 2 in Figure 2. Node 3 simply has the output 
of node 1 as its input (since there is a path of length 1 in 
the tree from the root to node 1 which is considered a leaf.) 
Node 4 is a conjunct of the inverted output of node 1 (since 
we must follow the left branch from node 1 to reach node 2 
in the tree) and the output of node 2. Node 5 is simply an 
OR gate. 

Figure 3 

Figure 4 

Figure 3 shows a more complex tree produced by the 
LTU tree algorithm, and Figure 4 represents the 
corresponding network. Nodes 1, 2, 3, and 4 in Figure 3 
correspond directly to the same nodes in Figure 4. In 
Figure 4, node 5 represents the path l-2-4 in the tree, with 
the inverted output of node 1, inverted output of node 2 and 
output of node 4 as inputs. Node 6 represents the path l-2 
(as node 2 in the tree is also considered a leaf) with the 
inverted output of node 1 and the output of node 2 as 
inputs. Node 7 corresponds to the path l-3 and has the 
outputs of nodes 1 and 3 as inputs. Again, node 8 is 
simply a disjunction of the outputs of nodes 5,6 and 7. 

Madaline-Style Learning Algorithm 
The updating strategy in this MadaIine-style architecture is 
based upon modifying the weight vectors in the first hidden 
layer of nodes by appropriately strengthening and 
weakening them based on incorrect predictions by the 
network. We also make use of knowing the structure of 
the LTU tree, T, which corresponds to the network we are 
training. When an instance is incorrectly classified as a 0, 
we know that no nodes in the second hidden layer 
corresponding to a leaf in T fired. Thus we look for the 
node corresponding to a leaf node in T which is closest to 
threshold and strengthen it. We also examine any nodes 
corresponding to non-leaf nodes in T that we would know 
exists along the path from the root of T to the given leaf 
node closest to threshold. If these nodes were over 
threshold but the given leaf is down their left child in T, 
then the node in the network corresponding to the particular 
non-leaf node in T is weakened. Similarly if the node 
corresponding to a non-leaf node in T was under threshold, 
but the leaf node is on a path down its right child in T, 
then the node in the network corresponding to the non-leaf 
node in T is strengthened. When an instance is 
misclassified as a 1, we simply find the node in the second 
hidden layer of the network which misfired (there can only 
be one) and weaken all nodes which are inputs to it and 
also correspond to leaf nodes in T. In the case of the 
network in Figure 2, this translates in to the following 
updating procedure: 

On a misclassified 0, determine if node 1 or node 2 is 
closer to threshold: 

0 If node 1 is closer to threshold, then strengthen node 1, 
else strengthen node 2. 

On a misclassified 1, only node 3 or 4 (but not both) 
misfired in this case: 

0 If the output of node 3 is 1,then weaken node I, 
else weaken node 2. 

How nodes are strengthened and weakened is based upon 
what learning method was being used on the Madaline-style 
networks. Both the classical fixed increment (referred to 
simply as Madaline below) and Littlestone’s Winnow 
algorithm (referred to as Mada-winnow) were employed in 
our tests as follows: 

Machine Learning 337 



Algorithm 
Fixed Increment 
(Madahne) 

Updating Method 
Strengthen: 

Gk+l =&+ii 

Weaken: 

Winnow 

(Mada-winnow) 

Strengthen: 

i&+1 = a%+ ‘( I 

Weaken: 

$+1 = p”‘(&) 

Where w is the weight vector (wi is the ith component of 
w) at the node being modified and x is the instance vector 
which was misclassified. Note that a=2.0 and p=O.S 
(Winnow also uses a fixed threshold which was set to 4.0 
in our initial experiments). 

Experimental esults 
In testing the LTU tree algorithm and the corresponding 
network for their abilty to learn, a non-linearly separable 5- 
bit boolean function was used. This function was defined 
aS: 

This function, effectively being the disjunction of two r-of- 
k threshold functions, is not linearly separable, but can be 
optimally learned using two hyperplanes to separate the 
instance space. Thus in testing our various learning 
methods on this function, we compare the LTU tree 
algorithm against training networks configured similarly to 
Figure 2 (as this is the optimal size network to learn the 
given function). In training the networks, we compare 
standard Back-Propagation applied to the entire network 
(using preset fixed weights in the second hidden and output 
layers to simulate the appropriate AND and OR gates) 
against our novel Madaline-style learning method 
(discussed above). Note that our learning procedure is 
effectively only learning the separating hyperplanes in the 
first hidden layer of the network (corresponding to learning 
the nodes of an LTU tree). 

On a technical note, the instance vectors presented to 
both the LTU tree and Back-Propagation applied to an 
entire network include the original boolean vector 
(comprised of l’s and O’s) with the complements of the 
original vector to create a “double length” instance vector 
(as preliminary testing showed that the use of complements 
helped improve learning performance with these 
algorithms.) In the Madaline-style tests, the instance 
vectors presented when using fixed increment updating were 
composed of l’s and -1’s without the addition of 
complements, whereas when using Winnow the instance 

vectors were similar to those with the LTU tree 
(complementary attributes were added). 

The number of instances presented for training, as well 
as the number of dimensions in the input vector were 
varied. Note that only the first 5 bits of the instance vector 
are relevant to its proper classification and the added bits are 
simply random, irrelevant attributes. The dimensions 
given in the graphs below measure the size of the original 
instance vector (not including complementary attributes). 
The graphs below represent 5 test runs on each algorithm 
in each case. Testing is done on an independent., randomly 
generated set of instances, numbering the same as the 
training set. The “% error (average)” refers to the 
percentage of errors made during testing by each algorithm 
over the 5 test runs. The “% error (best)” refers to the 
smallest percentage of errors made during testing over the 5 
test runs. 

We see that, in the average case (Figure 5), when trained 
using 1000 instances (which are each seen only once), the 
Madaline network (using fixed-increment updating) 
outperforms all other algorithms as the number of 
irrelevant attributes is increased. The LTU tree (called BP 
tree here) performs without errors up to 15 dimensions 
(during which time it was consistently producing optimal 
trees of 2 nodes) and quickly begins to degenerate in 
performance as the trees it produces get larger due to poor 
separating hyperplanes being produced at each node. Not 
surprisingly, it is at this same point when using Back- 
Propagation over an entire network also begins to 
degenerate quickly leading us to realize that the network is 
getting too small to properly deal with irrelevant attributes. 
Mada-winnow also performs very erratically, due primarily 
to seeing too few instance vectors to settle into a good 
“solution state.” The best case analysis (Figure 6) 
indicates a simple linear increase in the number of errors 
made by Madahne (caused by a linear increase in the sum 
of weights from irrelevant attributes) as opposed to an 
erratic increase indicating that the boolean function was not 
learned. Similarly, Mada-winnow seems to be capable of 
learning the function up to 35 dimensions and quickly 
degenerates indicating that learning is not effectively taking 
place, as opposed to occasional misclassifications caused 
by added irrelevant attribute weights. We find the BP 
network still unable to learn beyond 15 dimensions, while 
the BP tree is still effective up to 30 dimensions. 

When we examine the results of using 3000 training 
instances (each of which is seen once), the effectiveness of 
the Madaline-style architecture becomes much more clear. 
In the average case (Figure 7) we still find the standard BP 
network degenerating after 15 dimensions. However, we 
see extremely low error rates in Madaline all the way 
through, indicating that not only has the target function 
been learned, but the effect of irrelevant attribute weights 
has also been minimized. Moreover, we find that Mada- 
winnow is successful in learning the target function with 
instances up to 35 dimensions in length before its 
predictive accuracy begins to fall. Similarly, the BP tree is 
effective for instances up to 40 dimensions before once 

338 Sahami 



Dimensions 

Figure 5 Figure 6 

Trained usine 3000 rando 

Dimensions Dimensions 

Figure 7 Figure 8 

again tree sizes grow too large as the linear separators at 
each node provide poorer splits. In the best case (Figure 8) 
we see the most striking results as Madaline still continues 
a very low error rate, and Mada-winnow has 0% errors over 
the entire range of dimensions tested! This would indicate 
that by training a number of such Mada-winnow networks 
and using cross-validation techniques to determine which 
has the highest predictive accuracy, we can learn non- 
linearly separable boolean functions with an extremely 
high degree of accuracy even in the presence of many 
irrelevant attributes. This of course does require some 
knowledge as to what network size would provide the best 
results, but initially running the LTU tree algorithm on 
our data set could provide us with good ballpark 
approximations for this. 

Non-Optimal Networks 
Having seen the predictive accuracy of the Madaline-style 
networks in learning when the optimal network size3 was 
known, it is important to get an idea for the accuracy of 
such networks when they are non-optimal. In examining 

3The notion of optimal network size stems from the 
transformation of an optimal LTU tree. 

the effects of using a network that is larger than necessary, 
the network in Figure 4 was used to learn the same 5-bit 
non-linearly separable problem. The updating procedure for 
this network is described below: 

On a misclassified 0, determine if node 2, 3 or 4 is closest 
to threshold: 

0 If node 2 is closest to threshold, then strengthen node 2 
and if node 1 is over threshold then weaken node 1. 

e If node 3 is closest to threshold, then strengthen node 3 
and if node 1 is not over threshold then strengthen node 1. 

0 If node 4 is closest to threshold, then strengthen node 4 
and if node 1 is over threshold then weaken node 1. 

On a misclassified 1, determine if node 5, 6 or 7 misfired: 
0 If the output of node 5 is 1, then weaken node 4. 
0 If the output of node 6 is 1, then weaken node 2. 
e If the output of node 7 is 1, then weaken node 3. 

Now we compare the previous results of Madaline and 
Mada-winnow using the smaller network, denoted (S), 
with the larger network, denoted (IL). Again looking at the 
average of 5 test runs on 1000 training instances (Figure 
9), we see that the performance of both Madaline and Mada- 
winnow are worse when learning using a larger network (as 

Machine Learning 339 



I 
-I- Mada-winnow (L) -+-- Mada-winnow (S) 
- Madaline (L) - Madaline (S) I 

Trained using 1000 randomlv generated instances 

lnomolAomotAo 
Hd e4timmbd-m 

Dimensions 

Figure 9 

Trained using 3000 r: 

10 
8 

6 
4 
2 
0 

m 

Figure 11 Figure 12 

we would expect, since there is greater possibility for 
confusion among which nodes to update). This is also 
seen in the best case graph (Figure 10) where we still see 
the erratic behavior of learning using the Mada-winnow (L) 
algorithm, which cannot properly learn the target function 
even with only a few irrelevant dimensions. The Madaline 
(L) algorithm still holds some promise as it maintains a 
relatively low error rate until about the 30 dimension mark 
before it too begins to quickly degenerate in its predictive 
ability. 

Again the most striking differences are seen when 
examining the graphs of learning runs using 3000 training 
instances. Noting that the “% error” scale on Figures 11 
and 12 is much less than the previous figures (to make the 
graph more readable), we see that in the average case, while 
Mada-winnow (L)‘s behavior is still erratic (caused by the 
way the Winnow algorithm greatly modifies weights 
between each update, leading to instability in the resultant 
weight vector when training ceases), but the error rate stays 
below 10%. Moreover, Madaline (L) only shows a small 
linear decrease in its predictive ability over the entire graph, 
reflecting again that the target function was effectively 
learned and misclassifications are arising from the 
cumulative sum of small irrelevant attribute weights. 
Finally, Figure 12 shows the most impressive results. 

Dimensions 

Figure 10 

domlg generated instances 

Dimensions 

First, Madaline(L) has only a slightly higher error rate that 
Madaline (S). And more impressively, the Mada-winnow 
(L) algorithm is able to maintain 0% error over the entire 
range of irrelevant attributes, reflecting that network size is 
not entirely crucial for effectively learning within this 
paradigm. An examination of the weights in the larger 
network indicated that, in fact, two nodes in the first hidden 
layer contained the appropriate hyperplanes required to learn 
the target function and the other two nodes had somewhat 
random but essentially “unused” weights in terms of 
instance classification. 

It is important to note that the fixed threshold used with 
the Winnow algorithm was dependent on the number of 
irrelevant attributes in the instance vectors presented. This 
reflects a problem inherent in the Winnow algorithm (in 
which threshold choice can have a large impact upon 
learning) and is not a shortcoming of the Madaline-style 
architecture. 

Future Work 
There is still a great deal of work that needs to be done in 
examining and extending both the LTU tree and the 
Madaline-style learning algorithms. In terms of the LTU 
tree, new methods for finding better separating hyperplanes 
as well as the incorporation of post-learning pruning 

340 Sahami 



techniques would be very helpful in determining proper 
network size both for Madaline-style and standard neural 
networks. As for the Madaline-style networks, clearly 
more work needs to be done in examining larger networks 
and learning more complex functions. Another interesting 
problem arises in looking at methods to prune the network 
during training to produce better classifications. Also 
theoretical measures are needed for the number of training 
instances to present for adequate learning. 

Acknowledgments 
The author is grateful to Prof. Nils Nilsson, without 
whose ideas, guidance, help and support, this work would 
never have been done. Additional thanks go to Prof. 
Nilsson for reading and commenting on an earlier draft of 
this paper. Dr. Pat Langley also provided a sounding board 
for ideas for extending research dealing with LTU trees. 

References 
Brent, R. P. 1990. Fast training algorithms for multi-layer 
neural nets. Numerical Analysis Project Manuscript NA- 
90-03, Dept. of Computer Science, Stanford Univ. 

Brodley, C. E., and Utgoff, P. E. 1992. Multivariate 
Versus Univariate Decision Trees. COINS Technical 
Report 92-8, Dept. of Computer Science, Univ. of Mass. 

Duda, R. O., and Hart, P. E. 1973. Pattern Classification 
and Scene Analysis. New York: John Wiley & Sons. 

Langley, P. 1992. Induction of Recursive Bayesian 
Classifiers. Forthcoming. 

Littlestone, N. 1988. Learning quickly when irrelevant 
attributes abound: a new linear-threshold algorithm. 
Machine Learning 2~285-318. 

Littlestone, N. 1991. Redundant noisy attributes, attribute 
errors, and linear-threshold learning using Winnow. In 
Proceedings of the Fourth Annual Workshop of 
Computational Learning Theory, 147- 156. San Mateo, 
CA: Morgan Kaufmann Publishers, Inc. 

Nilsson, N. J. 1965. Learning machines. New York: 
McGraw-Hill. 

Quinlan, J. R. 1986. Induction of decision trees. Machine 
Learning 1:81-106. 

Ridgway, W. C., 1962. An Adaptive Logic System with 
Generalizing Properties. Stanford Electronics Laboratories 
Technical Report 1556-1, prepared under Air Force 
Contract AF 33(616)-7726, Stanford Univ. 

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 
1986. Learning internal representations by error 
propagation. Parallel Distributed Processing, Vol. 1, eds. 

D. E. Rumelhart and J. L. McClelland, 318-62. 
Cambridge, MA: MIT Press. 

Rumelhart, D. E. and McClelland, J. L. eds. 1986. Parallel 
Distributed Processing, Vol. 1. Cambridge, MA: MIT 
Press. 

Sahami, M. 1993. An Experimental Study of Learning 
Non-Linearly Separable Boolean Functions With Trees of 
Linear Threshold Units. Forthcoming. 

Utgoff, P. E. 1988. Perceptron Trees: A Case Study in 
Hybrid Concept Representation. In AAAI-88 Proceedings 
of the Seventh National Conference on Artificial 
Intelligence, 601-6. San Mateo, CA: Morgan Kaufmann. 

Widrow, B., and Winter, R. G. 1988. Neural Nets for 
Adaptive Filtering and Adaptive Pattern Recognition. IEEE 
Computer, March:25-39. 

Winston, P. 1992. Artificial Intelligence, third edition. 
Reading, MA: Addison-Wesley. 

Machine Learning 341 


