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Abstract 

This paper presents Bidirectional Chart Genera- 
tion (BCG) algorithm as an uniform control mech- 
anism for sentence generation and text planning. 
It is an extension of Semantic Hea.d Driven Gen- 
eration algorithm [Shieber e2 al., 19891 in that re- 
computation of partial structures and backtrack- 
ing are avoided by using a chart ta.ble. These 
properties enable to handle a large scale grammar 
including text planning and to implement the al- 
gorithm in parallel programming languages. 
Other merits of the algorithm are to deal with 
multiple contexts and to keep every partial struc- 
ture in the chart. It becomes easier for the gener- 
ator to find a recovery strategy when user cannot 
understand the generated text. 

Introduction 
As opposed to traditional naive top-down or bottom- 
up mechanism [Wedekind, 19SS][va.n Noord, 19891, the 
Semantic-Head-Driven (SHD) algorithm[Shieber e2 al., 
19891 combines both top-down and bottom-up deriva- 
tions effectively. However, a straightforwazd imple- 
mentation of the algorithm causes intensive backtrack- 
ing when the scale of the grammar is large. 

Bidirectional Chart Generation (BCG) a.lgorithm 
avoids the inefficiency of backtracking by using a chart 
table. Like Chart Parsing algorithm[ICay, 19SO], BCG 
algorithm can be implemented as a. no-backtracking 
program in both parallel and sequentia,l programming 
languages. 

The algorithm is used in our explanation system 
not only for surface sentence generation but also for 
RST[Mann and Thompson, 19S’7] based text planning. 
As pointed out in [Moore and Paris, 19S9], a generation 
facility must be able to determine what portion of text 
failed to achieve its purpose when follow-up question 
(user’s feedback) arises. BCG algorithm deals with 
multiple contexts just like ATMS[de Kleer, 19861 and 

*Current affiliation is NTT (Nippon Telegraph and Tele- 
phone) corporation. 

keeps every partial structure in a chart. It is easier for 
the generator to infer why the explanation fails and to 
find a recovery strategy. 

After reviewing SHD algorithm, we present BCG al- 
gorithm comparing with Bottom-up Chart Parsing al- 
gorithm. Then, we show an implementation of the 
algorithm in a parallel logic programming language 
GHC[Ueda, 1986]l. Finally, we discuss the applica- 
tion of BCG algorithm to answering user’s follow-up 
questions in a RST based text planning. 

Semantic- ead-Driven Algorithm 

(1) s/Sem --> pp/ga(Sbj),pp/wo(Obj), 
#v(Sbj, Ob j > /Sem. 

(2) s/Sem -->pp/wo(Obj) ,pp/ga(Sbj) , 
#v(Sbj, Obj>/Sem. 

(3) pp/Sem --> np/NP,#p(NP)/Sem. 
(4) v(Sbj, Obj)/call(Sbj ,Obj) --> fn%X] . 
(5) rip/t --> C?ii?RI . 
(6) rip/h --> cz5-1. 
(7) p(NP)/ga(NP) --> Cfll . 
(8) p(NP)/wo(NP) --> [%I . 

Figure 1: Sample Grammar 

We give a brief outline of SHD algorithm based on 
the sample Japanese grammar shown in Figure 1. A 
nonterminal symbol is written in the form of cate- 
gory/semantics. semantic-head (marked by # in the 
gra.mma.r rules) has a.n important role in the algorithm. 

semantic-head When the semantics of a right-hand- 
side element in a rule is identica.1 to that of the left- 
hand-side, then the right-hand-side element is called 
the semantic head of the rule. 

Grammar rules are divided into two types: Cha.in rules 
that have a semantic-head and non-chain rules’ that 
do not. In the sample grammar, (1) through (3) are 

‘It is straightforward to transform it into a concurrent 
prograrn in Prolog. 

‘we consider only lexical rules as non-chain rules for a 
while. 
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chain rules and (4) through (8) are non-chain rules. 
The algorithm proceeds bidirectionally, applying chain 
rules bottom-up and non-chain rules top-down. Those 
operations3 are defined as follows: 

Top-down operation A syntactic tree is traversed 
top-down using non-chain rules. A node that is 
about to expand is called the goal. Select a rule 
whose left-hand-side semantics is unifiable with that 
of the goal and make a node (called pivot) corre- 

I 

spending to the category of the left-hand-side. Then 
apply bottom-up operation from the pivot. 

Bottom-up operation A syntactic tree is traversed 
bottom-up using chain rules. Select a rule whose 
semantic head is unifiable with the pivot, and then 
make other categories of the right-hand side as new 
goals. When all these goals are-constituted applying 
operations recursively, the parent node at the left- 
hand side is introduced. If the parent node is not 
unifiable with the goa.1, then a.pply the bottlom-up 
operation, regarding the parent node as a new pivot. 

ppka(t) 

n 

(6) (8) 

Figure 2: Generation Process 
We show a sample generation process starting from 

semantic representation call( t ,h) (Figure 2). First, a 
pivot v(t,h)/ca.ll(t,l ) ._ ’ t d 1 is m ro uceh by applying top- 
down operation with rule(4). Two bottom-up opera- 
tions using rules (1) and (2) are applica.ble to the pivot. 
Assume that the rule (1) is selected. The new goa.ls 
PP/@W and PP/ (1) wo I are introduced from the right- 
hand side of the rule. Top-down operation introduces 
new pivots p(t)/ga(t) a.nd p(h)/wo(h) wit#h rules 
and (S). Going on the same process, a sentence [A B 

7) 
[5, 

7F, lE?-, 73, @ar] * g is enerated as shown in Figure 2. 
Another sentence [ET, 2, A@, @, @&I is generated 
as well a.pplying rule (2) by backtra.cking. This kind of 
backtracking causes serious inefficiency when the scale 
of grammar is large. 

As discussed above, SHD algorithm consists of two 
parts, the top-down operation and the bottom-up oper- 

to 
3Top-down operation is augmen 
handle general non-chain rules. 

ted afterwards in order 

ation. Because the bottom-up operation resembles the 
basic operation of left-corner parsing algorithm, con- 
sidering the similarity between left-corner categories 
and semantic heads, SHD algorithm can be realized in 
the same way as Bottom-up Chart Parsing algorithm. 
In the next section, we present BCG algorithm, which 
avoids the inefficiency caused by ba.cktracking. 

CG Algorithm 
Basic Algorithm 
Bottom-up Chart Parsing algorithm [Kay, 1980] con- 
sists of the following three procedures. 

Procedure-l: Let zui be i-th word. For all rules of 
the form b + [w;] create new inactive edges between 
TJ and w whose term is b provided that u and w are 
the (i - 1)-th and i-th vertices. 

Procedure-2: Let ei be an inactive edge of category 
u incident from vertex v to vertex w. For all rules of 
the form b -t cl, c2 . . . c,, in the grammar such that 
Cl = a, introduce a new edge e, with the term [a 
[?]c2 * . . [?]cJb, incident from w to tu, provided that 
there is no such edge in the chart already. 

Procedure-3: Let e, and ei be adjacent active and 
inactive edges. e, is incident from vertex v and ei 
is incident to vertex ZU. Let [?]a be the first open 
box in e,. If ei is of category cy, create a new edge 
between w and 2u whose term is that of e, with the 
first open box replaced by the term of ei. 

Procedure-l looks up lexical rules at the first stage of 
the algorithm. Procedure-2 predicts phrase structures 
by ma.king use of the left-corner category. Procedure-3 
fills up a prediction. On the other hand, SHD algo- 
rithm discussed in the previous section makes use of se- 
mantic head in order to predict new goals and the pre- 
diction is filled by recursive top-down operations. BCG 
algorithm is realized from Bottom-up Chart Parsing 
algorithm by identifying a semantic-head with a left- 
corner category. But important differences remain to 
be considered between generation and parsing as fol- 
lows: 

1. In parsing, all initial inactive edges are introduced 
at the first place by Procedure-l. This process cor- 
responds to introducing pivots from semantic repre- 
sentation in the case of generation. This means that 
inactive edges must be built dynamically. 

2. If Procedure-2 predicts two distinct goal sequences 
from one pivot by using two different rules, it hap- 
pens that the pivot has two distinct adjacents be- 
cause different goals may introduce different pivots. 

The first point demands a dynamic process of intro- 
ducing pivots. Once a goal is produced, its semantic 
representation is used to introduce a new pivot. The 
second point says that adjacent edges in BCG cannot 
be placed in a linear sequence. We introduce forward 
links to indicate the adjacency relation of edges; that 
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is, when Procedure-l introduces an inactive edge ei ac- active edge2 and inactive edge10 by Procedure-3. 
cording to an active edge e,, it puts a pointer f;-om the 
tail of e, to the head of ei. Two edges are adjacent 
in generation if there exists a forward link from one to 
the other. In addition, we must take account of the 
case where the required pivot has already been intro- 
duced before. In such a ca.se, we reuse the previously 
produced pivot by simply a.dding a. new forward link 
going to it. Therefore, it occurs that more than one 
forward link is put to one edge. 

Although ‘-inactive edge p(h) Two(h) - is introduced 
from goal pp/wo(h) of active edge12 and rule(8) by 
Procedure-l, it is the same as inactive edge5. Then 
forward link E is put from the tail of activeedgel2 to 
the head of inactive edge5 instead of generating a new 
inactive edge. At the end of the process, inactive edges 
14 a.nd 15 a.re produced, each of which corresponds to 
a sentence4. They are generated with no backtracking. 

BCG algorithm becomes as follows. Procedure-l re- 
alizes the vdynamic introduction of pivots. Procedure-2 
and Procedure-3 are straightforward auglllellt,a.t,ions of 
the bottom-up chart parsing algorithm except for the 
use of forward links. 

14 

Procedure-l: Let e, be an active edge of ca.tegory 
[al **a [?]cj . *. [?]~.,~]b incident from vertex 11. to 21. 
Let [?]cj be the first open box in e, and S’e??lj be 
its semantics. For a.11 rules of the form b/Seln --> 
Cwordl such that Sem and Selnj are unifiable, cre- 
ate new inactive edges between vertex w and vertex 
w’ whose term is b/SelTz and put, a. forward link from 
vertex 21 to vertex w. If the same inactive edge ever 
exists from vertex z to vertex 9 put a. forward link 
from vertex w to vertex x instea.d. 

Procedure-2 Let ei be an inactive edge of category 
a incident from vertex w to vertex w. For a.11 rules of 
the form b --> cl , . . . , #ch , . . . ,cn in the gram- 
mar such that Senzh and Sem are unifiable, intro- 
duce a new active edge e, with the term [[?]ci . . . a 
. . . [?]cn]D, incident from 21 to w, provided that, there 
is no such edge in the chart a.lrea.dy. Seln and Sent,, 
are semantics of a. and ch. 

. . . . . . . . I Inactive edge 

Active edge 
- Fomnrdhk 

Figure 3: Graph Representation of the Chart 

Procedure-3: Let e, be an active edge with the term 
[al * * * [?]Cj * * * [?]CJb incident from vertex u to ver- 
tex v and ei be an ina.ctive edge with the term CI 
incident from vertex w to vertex x. Let [?]cj be the 
first open box in e,. If a forward link exists from 
vertex v to vertex w such that Cj = a., create a. new 
edge between u and x whose term is [al . . . a [‘?]cj+l 
. . - [?]c,]b. 

General Non-Chain Rule 

We show in this section how general non-chain rules 
are handled in BCG a.lgorithm, though we ha.ve con- 
sidered only lexical rules as non-chain rules. General 
non-chain rules are necessary for handling a large scale 
grammar, particularly for text planning. Consider the 
following non-chain rule which describes a Japanese 
relative clause: 

An example starting from semantic representation 
call(t,h) is explained in the rest of this section. 
The chart constructed in the process is shown in 
Figure 3 and in Table 1. The first inactive edge 
v (t , h) /call (t , h) is introduced from rule( 4) by 
Procedure-l and the process proceeds as shown in 
Figure 3. The inactive edge4 p(t)/ga(t> is pro- 
duced from the goal pp/ga( t > of active edge2 and 
rule( 7) by Procedure- 1. Then the forward link A 
is put from the tail of active edge2 to the head of 
inactive edge4. Inactive edge5 p(h) /wo (h) is pro- 
duced in the same wa.y from active edge3. After 
the inactive edge10 pp(t>/ga(t> and 11 pp(h)/wo(h) 
are generated, which ha.ve the sa.me 1lea.d as inac- 
tive edge4 and 5, active edge12 [pp/ga(t) [?]pp/wo(h) 
v(t,h)/call(t,h)] s/call(t,h) is introduced from 

np/ind(X, CRIRstr]) --> 
s-rel (X> /R, 
np/i.ndo[ ,Rstr) . 

First, we extend the top-down operation defined be- 
fore: 

top-down operation A syntactic tree is traversed 
top-down using non-chain rules. A node that is 
about to expand is called the goal. Select a non- 
chain rule whose left-hand-side semantic represen- 
tation is unifia.ble with tha.t of the goal and make 
a node called pivot corresponding to the category 

4Note that the order of edges in the chart doesn’t mean 
the surface word order. It is shown explicitly by difference 
lists as discussed in the next section. 
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Edge Term Procedure Rule 

1 v(t,h)/call(t,h) 1 ( 1 

2 [[?]pp/ga(t),[?]pp/no(h),v(t,h)/call(t,h)]s/call(t,h) 2 3 [[?]pp/wo(h),[?]pp/ga(t),v(t,h)/call(t,h)]s/call(t,h) 2 iilj 
4 p(t)/ga(t) 1 5 p(h)/wo(h) 1 $1 

6 [[?]np/t,p(t)/ga(t)]pp/ga(t) 2 7 [[?]np/h,p(h)/wo(h)]pp/wo(h) 2 $1 
8 rip/t 1 
9 rip/h 1 
10 pp/ga(t) 3 
11 pp/wo(h) 3 
12 [pp/ga(t),[?]pp/wo(h),v(t,h)/call(t,h)]s/call(t,h) 3 
13 [pp/wo(h),[?]pp/ga(t),v(t,h)/call(t,h)]s/call(t,h) 3 
14 s/calJ(t,h) 3 
15 s/call(t,h) 3 

Ta.ble 1: Table Representation of the Chart 

of the left-hand-side. In addition, make cate- 
gories of right-hand side as uew goals and ap- 
ply top-down operation to them recursively. 
If the pivot is not unifiable with the goal, then apply 
bottom-up operation from the pivot. 

The bold-face part is supplementary to the origina. 
top-down operation. It expands the categories at right- 
hand side after unifying the goa, with left-hand side. 
Note that this pa.rt is ahnost same a,s top-down deriva,- 
tion of a syntactic tree. The procedure for the genera.1 
non-chain rules is formalized in the sa.me wa.y a.s Top- 
down Chart Parsing algorithm [Kay, 1980]. The defi- 
nition of the operation is the following Procedure-l’. 

Procedure-l’ Let e, be a.n active edge with the term 
[al * * - [?]Cj * * * cn]d incident from vertex u. to V. Let 
[?]cj be the first open box in e, and Sen?.j be its 
semantic representation. For every rule of the form 
b/Sem --> cl,. . . ,c, such that Se172jujzdSem are 
unifiable, create a new active edge with the term 
[[?]q . *. [?]cra]b looping at vertex UI, a.nd put a for- 
ward link from v to 20. If the same inactive edge ever 
exists from y, simply put a. forward link from v to y 
instead. 

Implelllelltation 

Previous sections show tha.t BCG a.lgorithm is formal- 
ized in the similar way to Chart Parsing algorithm. 
PAX parsing system[Matsumoto, 1986] is an imple- 
mentation of Bottom-up Chart Parsing algorithm in a. 
parallel logic programming langua,ge GHC5. We show 
in this section a GHC implementation of BCG algo- 
rithm in the similar way to PAX system. The imple- 
mented system consists of the following two parts. 

1. The program translated from grammar rules. 

5A GHC clause can be understood just like a Prolog 
clause if the commit operator ‘1’ is repla.ced by ‘!‘. 

2. The meta-process that introduces inactive edges dy- 
namically. It absorbs the difference between parsing 
and generation. 

Basic Transformation of Grammar Rules 
In our implementation, each terminal and non-terminal 
symbol is realized as a parallel process that communi- 
cate with each other for building up larger structures. 
The communica.tion channel is called a stream. Let us 
take the following grammar rule. 

s/Sem --> 
pp/ga(Sbj), 
pp/wo(Obj), 
#v(Sbj,Obj)/Sem. 

Three non-terminal symbols at right-hand-side are re- 
alized as parallel processes and each of them receives a 
stream from the left and passes an output stream to the 
right. For tra.nsforma.tion, the following modification is 
done to the grammar rule: Identifiers standing for inte- 
mediate positions in a grammar rule are inserted in the 
rule and the semantic head of the rule is moved to the 
top of the right-hand-side to be a.ssocia.ted with left- 
corner pa.rsing. Moreover, in order to keep the surface 
order information, difference lists representing words 
are added to each symbol. The example rule results in 
the following form: 

s(SO-S3)/Sem --> 
v(Sbj, Obj, S2-S3)/Sem, 
idl, 
pp(SO-Sl)/ga(Sbj), 
id2, 
pp(Sl-S2)/wo(Obj). 

By translating this rule into following GHC clauses, we 
can achieve SHD generation in parallel. The behavior 
of the grammar rule is depicted in Figure 4. 
First, v(Sbj ,Obj ,S2-S3) is translated into the pro- 
gra.m below. 

v(In,Sbj,Obj,S2-S3,Out) :- true I 
out = [idl(ga(Sbj>,In,Sbj,Obj,S2-S3)]. 
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semantic head 

Figure 4: Behavior of Processes 

When v( Sbj , Obj , S2-S3) is produced, tree traverse 

process (Procedure- 1 of BCG algorithm). 

proceeds to the position of idl. It corresponds to 

Secondly, pp(SO-Sl) is translated as below. 

the Procedure-2 of BCG algorithm that selects a rule 
with a semantic head whose semantic representation 
is unifiable with that of the inactive edge (pivot), 
and introduces a new active edge (goal). The pro- 
cess v(In,Sbj ,Obj ,S2-S3,Out) gene&es idl, which 
corresponds to the active edge. In general, processes 
perform inactive edges and data in streams stands 
for active edges. The first open box of the new ac- 
tive edge is pp(SO-Sl), whose semant,ics ga(Sbj> is 
passed along with id1 and used afterwards in the meta- 

pivot(call(Sbj,Obj),In,Out) :- true i 
v(In,Sbj,Obj,[~~lSOI-S0,Ou-t). 

The pivot process is generated dynamically by the 
meta-process corresponding to the Procedure- 1 of 
BCG algorithm. 

Meta-Process 
The met~process monitors the data in all streams 
and controls the whole generation process. 

meta-proc(Cl,-> :- true I true. 
meta-proc([IdiTaill,Table) :- 

It 
checks the semantic representation in each identifier 
(semantics (Id, Sem)), and generates or reuses an in- 
active edges according to the semantic representation, 
then passes the identifier to the inactive edges. It is 
attained by calling the pivot process described below. 
Here, streams perform forward links of BCG algorithm. 
Forward links are introduced dynamically and a stream 
is realized by an open list to receive identifiers incre- 
mentally. The meta-process, maintains the table that 
consists of pairs like wait (Sem,Str), where Sem is 
the semantic representation of an ever produced inac- 
tive edge and Sty is the tail of its input stream. When 
the meta-process derives Selnj from an identifier and 
is a.bout to produce a pivot process, it checks whether 
Selnj is already registered in the table. The meta- 
process generates a new pivot process only if the pair 
wait (Semj ,Str) is not registered. The following pro- 
gram realizes the task. 

pp([idl(-,In,Sbj,Obj,S2-S3)lTaill,SO-Sl,Out) :- 
true I 
out = Cid2(wo(Obj),In,Obj,SO-Sl,S2-S3) lOutl1, 
pp(Tail,SO-Sl,Outl). 

Because pp(SO-Sl) is to the right of idl, tree tra,- 
verse proceeds to the position of id2 when pp(SO-Sl) 
receives idl. This corresponds to the Procedure-3 of 
BCG algorithm that derives a new active edge from an 
active edge and an inactive edge. The first open box 
of the new active edge is pp(si-~21, the semantics of 
which is wo(Obj > is inserted as the first argument of 
id2. In the same way, pp(Sl-S2) is translated as be- 
low. 
pp([id2(-,In,Obj,SO-Sl,S2-S3)lTaill,Sl-S2,Out~ :- 

true I s(In, SO-S3,0utl), 
pp(Tail,Sl-S2,0ut2),merge(Outl,Out2,Out). 

When pp(Sl-S2)/wo(Obj) is generated, the parent 
node s (SO-S31 /Sem is generated. The fina. definition 
of process pp is the collection of a.11 of such clauses 
each of which corresponds to an occurrence of pp in 
the right-hand-side of gra.mma.r rules. The following 
clauses are necessary to handle exceptional situa.tions: 

semantics(Id,Sem), 
get(wait(Sem,StrTail),Table,Tablel) 1 
StrTail = [IdlNewStrTaill, 
put(wait(Sem,NewStrTail),Tablel,NewTable), 
meta-proc(Tail,NewTable). 

meta-proc(CIdlTaill,Table) :- otherwise I 
semantics(Id,Sem), 
pivot(Sem,CIdlStrTaill,Out), 
put(wait(Sem,StrTail) ,Table,NewTable), 
merge(Out,Tail ,Next), 
meta-proc (Next ,NewTable). 

The second clause of meta-proc corresponds to the case 
of reusing the existing process and the third to the 
case of generating a new process. In the second clause, 
get(wait(Sem,StrTail),Table,Tablel) looks up if 
wait (Sem, StrTail) is previously registered in the ta- 
ble. When the table includes the element, meta,proc 
reuses it by instantiating the top of the open list with 
StrTail. Otherwise meta,proc generates a new pro- 
cess by calling pivot(Sem, CIdlStrTaill ,Out) in the 
third clause, and register the process in the table by 
put(wait(Sem,StrTail),Table,NewTable). 

pp(Cl,-,Out) :- true I Out = Cl. 
pp([-ITail],String,Out):- otherwise I 

pp(Tail,String,Out). 

The pivot, process introducing new processes is de- 
rived by transforming lexical (non-chain) rules as de- 
scribed in the previous section. The transformation of 

Finally, let us take the following non-chain (1exica.l) 
rule. 
v(Sbj, Obj)/call(Sbj,Obj) --> [IF%.%]. 
This rule is translated into the program below, which 
generates a process corresponding to v (Sb j , Ob j > from 
the semantic representation call(Sbj ,Obj). 

genera.1 
tion. 

non-chain rules are described in the next, sec- 
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Transformation of Non-Chain Rules 
Let us consider the following rule. 
np/ind(X,CRIRstr]) --> 

s-rel (Xl /R, 
np/ind(X,Rstr). 

General non-chain rules are treated by Procedure-l’ 
whose central part is the same as Procedure-l . The 
only difference is that Procedure-l’ introduces a new 
active edge, from a semantic representation of a pre- 
dicted goal. The process is also realized by the pivot 
process as below: 
pivot(ind(X,[RIRstrl),In,Out) :- true I 

out = [id3(R,In,X,R,Rstr)l. 

The identifier id3 is inserted just before the leftmost, 
category s-rel(X) for top-down traversal of a syn- 
tactic tree. The pivot process corresponding to the 
semantic representation ind(X , [R 1 Rstr] > generates 
this identifier. This kind of identifier corresponds to 
the active edge of Top-down Chart Parsing algorithm. 
When all categories at right-hand side are constituted, 
then a new process corresponding to np at left-hand 
side is produced. 

Applying BCG Algorithm to 
Based Text Planning 

This section examines the applica.bility of BCG algo- 
rithm to text planning. The depth-first, search st,ra.tegy 
has been used mainly in text planning, in which it is 
difficult, for a. generator to select, the releva.nt operator 
at every choice point. On the other hand, BCG algo- 
rithm deals with more than one candidate in parallel 
until enough information is obtained. 

Moreover, in explanation dia.logue systems, users of- 
ten ask follow-up questions when he or she cannot fully 
understand the explanation. The generator must infer 
why its explanation has failed to achieve the commu- 
nicative goal; an error in user model, ambiguity of the 
meaning and so on. In BCG algorithm, it is easier for 
a generator to find a recovering strategy because all 
partial structures are preserved. 

Plan Language 
Our plan language is based on Rhetorical Structure 
Theory RST)[M 

\ 
a.nn a.nd Thompson, 19871. Explana.- 

tion dia. ogue requests a. p1a.n la.ngua.ge t,o express both 
intentional and rhetorical structures of the text once 
produced to answer follow-up questions. We adopt 
the similar representation of RST t(o Moore’s opera- 
tors [Moore and Paris, 19891, one of which is shown 
below. 
EFFECT:(BMB S H ?x> 
CONSTRAINTS:nil 
NUCLEUS:(INFORM S H ?x> 
SATELLITES:(PERSUADE S H ?x> 

In order to apply BCG algorithm to text planning, 
such operators are represented in DCG rules, where 
CONSTRAINTS are inserted as extra conditions. (1) 
corresponds to the a.bove example. 

(1) bmb/bmb(Speaker,Hearer,X) --> 
inf/inform(Speaker,Hearer,X), 
psd/persuade(Speaker,Hearer,X). 

(2) bmb/bmb(Speaker,Hearer,X) --> 
explain/explain(Speaker,Hearer,X), 
inf/inform(Speaker,Hearer,X). 

Let the speaker’s goal be bmb(Speaker, Hearer, X), 
there are alternative rules (1) and (2) a.pplica.ble to 
this situation. A naive top-down plamrer recom- 
putes inf /inform(Speaker,Hearer ,X> due to back- 
tracking. On the other hand, BCG algorithm proceeds 
in parallel reusing the structures ever constructed. Be- 
cause most rules are applied top-down in text planning, 
the behavior of BCG algorithm, in this case, is almost 
identical to that of Top-down Chart algorithm [Kay, 
19801. 

Answering Follow-up 
BCG algorithm can select, the best recovering strategy 
by comparing multiple contexts when receiving follow- 
up questions. Suppose user model contains concepts 
that the user does not actually know, the generator 
must change the user model and select, the proper strat- 
egy for explaining the concept,. The generator employs 
partial information in the chart particularly incomplete 
active edges, which stand for suspended plans. Let, 
us consider the following plan operators and general 
knowledge. 

% plan operator 
goal/goal(Hearer,do(Hearer,Act)) --> 
recommend/recommend(Speaker,Hearer,Act), 
psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act))). 

psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act))) 
--> Cstep(Act,Goal)), 
motivation/motivation(Act,Goal). 

psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act))) 
--) Cstep(Act,Goal), 
bel(Hearer,benefit(Act,Hearer))), 
inf/inform(benefit(Act,Hearer)). 

motivation/motivation(Act,Goal) --> 
{step(Act,Goal)) 
bel/bel(Hearer,step(Act,Goal)). 

bel/bel(Hearer,step(Act,Goal)) --> 
Cknow(Hearer,Goal)), 
inf/inform(Speaker,Hearer,step(Act,Goal)). 

bel/bel(Hearer,step(Act,Goal)) --> 
inf/inform(Speaker,Hearer,step(Act,Goal)), 
c\+ know(Hearer,Goal)), 
elaboration/elaboration(Goal). 

% general knowledge 
step(insert,optimization). 
know(user,optimization). 

The domain of the dialogue is Prolog programming. 
The system’s goal is goal(user(do(user,insert)), 
t,o recommend the user to insert a ‘!’ before a recur- 
sive call. insert means inserting ! before the recursive 
call a.nd optimization means the ta.il recursion opti- 
mization. The system generates the following texts as 
the first text (Figure 5). 
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(Insert a cut symbol before recursive call. 
It is necessary for tail recursive optimi 
zation.) 

The user cannot understand the explanation and poses 
the follow-up question. 
user: &<<ti)g d-&x/, 

(I don't understand very well.) 

The system accepts the follow-up question and 
searches the suspended active edges. Now, there are 
two suspended active edges (1) and (2): 
(J)[C?linf/inform(benefit(insert,user))l 

psd/persuaded(user,goal(user,do(user,insert))) 
(2)Cinf/info ( rm system,user,step(insert,optimization)) 

C?lelaboration/elaboration(optimization)l 
bel/bel(user,step(insert,optimization) 

Each of the edges is suspended because of the con- 
tradiction to the 
user model; bel(user,benefit(insert,user)) a.nd 
\+ know (user, insert). The genera.tor selects the ac- 
tive edges that require few hypotheses to expand, and 
gives the relaxation to the user model. In this case, the 
generator assumes that \+ know(user, insert) holds 
and produces the following a.dditional explana.tion as 
shown in Figure 5. 

molivalion 
b. Jm =C 

inf 

i 

inf i elaboration i L 
‘“‘“yc”“.” 

,..... .’ l . 
Sm...; Choice Poinr 

Figure 5: The Explanation Tree 

system: *B@$&jLC&J ‘JYf/I'YK/f';, 3 I- 7 7 3S&~:jBffi 
Lb;: I: ?3% L, 5%s%k%m~$Q~~&Tt, 
(Tail recursive optimization saves memory 
by showing compilers that no backtracking 
is necessary.) 

The generator can reproduce the explanation by relax- 
ing the user model according to actual state of user’s 
knowledge. This is the simi1a.r situation to rela.xation 
based parsing of ill-formed inputs in which chart-based 

method is powerful[Mellish, 19891 because it maintains 
all partial structures. 

Concluding Remarks 
We have presented BCG algorithm as a basic con- 
trol mechanism of generation system. In contrast to 
Shieber’s SHD algorithm, BCG algorithm dea.ls with 
multiple contexts at a time. This property resolves two 
problems: First, the efficiency is remarkably improved 
in the case of a large scale grammar. Secondly, the 
comparison between multiple contexts becomes possi- 
ble. Hence, revision like answering follow-up questions 
is performed easier by referring to the contexts in the 
chart. To sum up, we obtain the efficiency and robust- 
ness by adopting the BCG algorithm. 

We are now studying the patterns of the follow- 
up questions and investigating the recovery heuristics 
based on the chart. 
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