
Bidirectional C art Generation
Natural Language xts

Masahiko HarunoO* Yasuharu Dent Fuji Matsumoto$ Makoto Nagao’
ODepartment o f Electrical Engineering, Kyoto University

t ATR Interpreting Telecommunication Research Laboratories
SAdvanced Institute of Science and Technology, Nara

e-mail: haruno@kuee.kyot+u.ac.jp

Abstract

This paper presents Bidirectional Chart Genera-
tion (BCG) algorithm as an uniform control mech-
anism for sentence generation and text planning.
It is an extension of Semantic Hea.d Driven Gen-
eration algorithm [Shieber e2 al., 19891 in that re-
computation of partial structures and backtrack-
ing are avoided by using a chart ta.ble. These
properties enable to handle a large scale grammar
including text planning and to implement the al-
gorithm in parallel programming languages.
Other merits of the algorithm are to deal with
multiple contexts and to keep every partial struc-
ture in the chart. It becomes easier for the gener-
ator to find a recovery strategy when user cannot
understand the generated text.

Introduction
As opposed to traditional naive top-down or bottom-
up mechanism [Wedekind, 19SS][va.n Noord, 19891, the
Semantic-Head-Driven (SHD) algorithm[Shieber e2 al.,
19891 combines both top-down and bottom-up deriva-
tions effectively. However, a straightforwazd imple-
mentation of the algorithm causes intensive backtrack-
ing when the scale of the grammar is large.

Bidirectional Chart Generation (BCG) a.lgorithm
avoids the inefficiency of backtracking by using a chart
table. Like Chart Parsing algorithm[ICay, 19SO], BCG
algorithm can be implemented as a. no-backtracking
program in both parallel and sequentia,l programming
languages.

The algorithm is used in our explanation system
not only for surface sentence generation but also for
RST[Mann and Thompson, 19S’7] based text planning.
As pointed out in [Moore and Paris, 19S9], a generation
facility must be able to determine what portion of text
failed to achieve its purpose when follow-up question
(user’s feedback) arises. BCG algorithm deals with
multiple contexts just like ATMS[de Kleer, 19861 and

*Current affiliation is NTT (Nippon Telegraph and Tele-
phone) corporation.

keeps every partial structure in a chart. It is easier for
the generator to infer why the explanation fails and to
find a recovery strategy.

After reviewing SHD algorithm, we present BCG al-
gorithm comparing with Bottom-up Chart Parsing al-
gorithm. Then, we show an implementation of the
algorithm in a parallel logic programming language
GHC[Ueda, 1986]l. Finally, we discuss the applica-
tion of BCG algorithm to answering user’s follow-up
questions in a RST based text planning.

Semantic- ead-Driven Algorithm

(1) s/Sem --> pp/ga(Sbj),pp/wo(Obj),
#v(Sbj, Ob j > /Sem.

(2) s/Sem -->pp/wo(Obj) ,pp/ga(Sbj) ,
#v(Sbj, Obj>/Sem.

(3) pp/Sem --> np/NP,#p(NP)/Sem.
(4) v(Sbj, Obj)/call(Sbj ,Obj) --> fn%X] .
(5) rip/t --> C?ii?RI .
(6) rip/h --> cz5-1.
(7) p(NP)/ga(NP) --> Cfll .
(8) p(NP)/wo(NP) --> [%I .

Figure 1: Sample Grammar

We give a brief outline of SHD algorithm based on
the sample Japanese grammar shown in Figure 1. A
nonterminal symbol is written in the form of cate-
gory/semantics. semantic-head (marked by # in the
gra.mma.r rules) has a.n important role in the algorithm.

semantic-head When the semantics of a right-hand-
side element in a rule is identica.1 to that of the left-
hand-side, then the right-hand-side element is called
the semantic head of the rule.

Grammar rules are divided into two types: Cha.in rules
that have a semantic-head and non-chain rules’ that
do not. In the sample grammar, (1) through (3) are

‘It is straightforward to transform it into a concurrent
prograrn in Prolog.

‘we consider only lexical rules as non-chain rules for a
while.

350 Harm0

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

chain rules and (4) through (8) are non-chain rules.
The algorithm proceeds bidirectionally, applying chain
rules bottom-up and non-chain rules top-down. Those
operations3 are defined as follows:

Top-down operation A syntactic tree is traversed
top-down using non-chain rules. A node that is
about to expand is called the goal. Select a rule
whose left-hand-side semantics is unifiable with that
of the goal and make a node (called pivot) corre-

I

spending to the category of the left-hand-side. Then
apply bottom-up operation from the pivot.

Bottom-up operation A syntactic tree is traversed
bottom-up using chain rules. Select a rule whose
semantic head is unifiable with the pivot, and then
make other categories of the right-hand side as new
goals. When all these goals are-constituted applying
operations recursively, the parent node at the left-
hand side is introduced. If the parent node is not
unifiable with the goa.1, then a.pply the bottlom-up
operation, regarding the parent node as a new pivot.

ppka(t)

n

(6) (8)

Figure 2: Generation Process
We show a sample generation process starting from

semantic representation call(t ,h) (Figure 2). First, a
pivot v(t,h)/ca.ll(t,l) ._ ’ t d 1 is m ro uceh by applying top-
down operation with rule(4). Two bottom-up opera-
tions using rules (1) and (2) are applica.ble to the pivot.
Assume that the rule (1) is selected. The new goa.ls
PP/@W and PP/ (1) wo I are introduced from the right-
hand side of the rule. Top-down operation introduces
new pivots p(t)/ga(t) a.nd p(h)/wo(h) wit#h rules
and (S). Going on the same process, a sentence [A B

7)
[5,

7F, lE?-, 73, @ar] * g is enerated as shown in Figure 2.
Another sentence [ET, 2, A@, @, @&I is generated
as well a.pplying rule (2) by backtra.cking. This kind of
backtracking causes serious inefficiency when the scale
of grammar is large.

As discussed above, SHD algorithm consists of two
parts, the top-down operation and the bottom-up oper-

to
3Top-down operation is augmen
handle general non-chain rules.

ted afterwards in order

ation. Because the bottom-up operation resembles the
basic operation of left-corner parsing algorithm, con-
sidering the similarity between left-corner categories
and semantic heads, SHD algorithm can be realized in
the same way as Bottom-up Chart Parsing algorithm.
In the next section, we present BCG algorithm, which
avoids the inefficiency caused by ba.cktracking.

CG Algorithm
Basic Algorithm
Bottom-up Chart Parsing algorithm [Kay, 1980] con-
sists of the following three procedures.

Procedure-l: Let zui be i-th word. For all rules of
the form b + [w;] create new inactive edges between
TJ and w whose term is b provided that u and w are
the (i - 1)-th and i-th vertices.

Procedure-2: Let ei be an inactive edge of category
u incident from vertex v to vertex w. For all rules of
the form b -t cl, c2 . . . c,, in the grammar such that
Cl = a, introduce a new edge e, with the term [a
[?]c2 * . . [?]cJb, incident from w to tu, provided that
there is no such edge in the chart already.

Procedure-3: Let e, and ei be adjacent active and
inactive edges. e, is incident from vertex v and ei
is incident to vertex ZU. Let [?]a be the first open
box in e,. If ei is of category cy, create a new edge
between w and 2u whose term is that of e, with the
first open box replaced by the term of ei.

Procedure-l looks up lexical rules at the first stage of
the algorithm. Procedure-2 predicts phrase structures
by ma.king use of the left-corner category. Procedure-3
fills up a prediction. On the other hand, SHD algo-
rithm discussed in the previous section makes use of se-
mantic head in order to predict new goals and the pre-
diction is filled by recursive top-down operations. BCG
algorithm is realized from Bottom-up Chart Parsing
algorithm by identifying a semantic-head with a left-
corner category. But important differences remain to
be considered between generation and parsing as fol-
lows:

1. In parsing, all initial inactive edges are introduced
at the first place by Procedure-l. This process cor-
responds to introducing pivots from semantic repre-
sentation in the case of generation. This means that
inactive edges must be built dynamically.

2. If Procedure-2 predicts two distinct goal sequences
from one pivot by using two different rules, it hap-
pens that the pivot has two distinct adjacents be-
cause different goals may introduce different pivots.

The first point demands a dynamic process of intro-
ducing pivots. Once a goal is produced, its semantic
representation is used to introduce a new pivot. The
second point says that adjacent edges in BCG cannot
be placed in a linear sequence. We introduce forward
links to indicate the adjacency relation of edges; that

Natural Language Generation 351

is, when Procedure-l introduces an inactive edge ei ac- active edge2 and inactive edge10 by Procedure-3.
cording to an active edge e,, it puts a pointer f;-om the
tail of e, to the head of ei. Two edges are adjacent
in generation if there exists a forward link from one to
the other. In addition, we must take account of the
case where the required pivot has already been intro-
duced before. In such a ca.se, we reuse the previously
produced pivot by simply a.dding a. new forward link
going to it. Therefore, it occurs that more than one
forward link is put to one edge.

Although ‘-inactive edge p(h) Two(h) - is introduced
from goal pp/wo(h) of active edge12 and rule(8) by
Procedure-l, it is the same as inactive edge5. Then
forward link E is put from the tail of activeedgel2 to
the head of inactive edge5 instead of generating a new
inactive edge. At the end of the process, inactive edges
14 a.nd 15 a.re produced, each of which corresponds to
a sentence4. They are generated with no backtracking.

BCG algorithm becomes as follows. Procedure-l re-
alizes the vdynamic introduction of pivots. Procedure-2
and Procedure-3 are straightforward auglllellt,a.t,ions of
the bottom-up chart parsing algorithm except for the
use of forward links.

14

Procedure-l: Let e, be an active edge of ca.tegory
[al **a [?]cj . *. [?]~.,~]b incident from vertex 11. to 21.
Let [?]cj be the first open box in e, and S’e??lj be
its semantics. For a.11 rules of the form b/Seln -->
Cwordl such that Sem and Selnj are unifiable, cre-
ate new inactive edges between vertex w and vertex
w’ whose term is b/SelTz and put, a. forward link from
vertex 21 to vertex w. If the same inactive edge ever
exists from vertex z to vertex 9 put a. forward link
from vertex w to vertex x instea.d.

Procedure-2 Let ei be an inactive edge of category
a incident from vertex w to vertex w. For a.11 rules of
the form b --> cl , . . . , #ch , . . . ,cn in the gram-
mar such that Senzh and Sem are unifiable, intro-
duce a new active edge e, with the term [[?]ci . . . a
. . . [?]cn]D, incident from 21 to w, provided that, there
is no such edge in the chart a.lrea.dy. Seln and Sent,,
are semantics of a. and ch.

. I Inactive edge

Active edge
- Fomnrdhk

Figure 3: Graph Representation of the Chart

Procedure-3: Let e, be an active edge with the term
[al * * * [?]Cj * * * [?]CJb incident from vertex u to ver-
tex v and ei be an ina.ctive edge with the term CI
incident from vertex w to vertex x. Let [?]cj be the
first open box in e,. If a forward link exists from
vertex v to vertex w such that Cj = a., create a. new
edge between u and x whose term is [al . . . a [‘?]cj+l
. . - [?]c,]b.

General Non-Chain Rule

We show in this section how general non-chain rules
are handled in BCG a.lgorithm, though we ha.ve con-
sidered only lexical rules as non-chain rules. General
non-chain rules are necessary for handling a large scale
grammar, particularly for text planning. Consider the
following non-chain rule which describes a Japanese
relative clause:

An example starting from semantic representation
call(t,h) is explained in the rest of this section.
The chart constructed in the process is shown in
Figure 3 and in Table 1. The first inactive edge
v (t , h) /call (t , h) is introduced from rule(4) by
Procedure-l and the process proceeds as shown in
Figure 3. The inactive edge4 p(t)/ga(t> is pro-
duced from the goal pp/ga(t > of active edge2 and
rule(7) by Procedure- 1. Then the forward link A
is put from the tail of active edge2 to the head of
inactive edge4. Inactive edge5 p(h) /wo (h) is pro-
duced in the same wa.y from active edge3. After
the inactive edge10 pp(t>/ga(t> and 11 pp(h)/wo(h)
are generated, which ha.ve the sa.me 1lea.d as inac-
tive edge4 and 5, active edge12 [pp/ga(t) [?]pp/wo(h)
v(t,h)/call(t,h)] s/call(t,h) is introduced from

np/ind(X, CRIRstr]) -->
s-rel (X> /R,
np/i.ndo[,Rstr) .

First, we extend the top-down operation defined be-
fore:

top-down operation A syntactic tree is traversed
top-down using non-chain rules. A node that is
about to expand is called the goal. Select a non-
chain rule whose left-hand-side semantic represen-
tation is unifia.ble with tha.t of the goal and make
a node called pivot corresponding to the category

4Note that the order of edges in the chart doesn’t mean
the surface word order. It is shown explicitly by difference
lists as discussed in the next section.

352 Harm0

Edge Term Procedure Rule

1 v(t,h)/call(t,h) 1 (1

2 [[?]pp/ga(t),[?]pp/no(h),v(t,h)/call(t,h)]s/call(t,h) 2 3 [[?]pp/wo(h),[?]pp/ga(t),v(t,h)/call(t,h)]s/call(t,h) 2 iilj
4 p(t)/ga(t) 1 5 p(h)/wo(h) 1 $1

6 [[?]np/t,p(t)/ga(t)]pp/ga(t) 2 7 [[?]np/h,p(h)/wo(h)]pp/wo(h) 2 $1
8 rip/t 1
9 rip/h 1
10 pp/ga(t) 3
11 pp/wo(h) 3
12 [pp/ga(t),[?]pp/wo(h),v(t,h)/call(t,h)]s/call(t,h) 3
13 [pp/wo(h),[?]pp/ga(t),v(t,h)/call(t,h)]s/call(t,h) 3
14 s/calJ(t,h) 3
15 s/call(t,h) 3

Ta.ble 1: Table Representation of the Chart

of the left-hand-side. In addition, make cate-
gories of right-hand side as uew goals and ap-
ply top-down operation to them recursively.
If the pivot is not unifiable with the goal, then apply
bottom-up operation from the pivot.

The bold-face part is supplementary to the origina.
top-down operation. It expands the categories at right-
hand side after unifying the goa, with left-hand side.
Note that this pa.rt is ahnost same a,s top-down deriva,-
tion of a syntactic tree. The procedure for the genera.1
non-chain rules is formalized in the sa.me wa.y a.s Top-
down Chart Parsing algorithm [Kay, 1980]. The defi-
nition of the operation is the following Procedure-l’.

Procedure-l’ Let e, be a.n active edge with the term
[al * * - [?]Cj * * * cn]d incident from vertex u. to V. Let
[?]cj be the first open box in e, and Sen?.j be its
semantic representation. For every rule of the form
b/Sem --> cl,. . . ,c, such that Se172jujzdSem are
unifiable, create a new active edge with the term
[[?]q . *. [?]cra]b looping at vertex UI, a.nd put a for-
ward link from v to 20. If the same inactive edge ever
exists from y, simply put a. forward link from v to y
instead.

Implelllelltation

Previous sections show tha.t BCG a.lgorithm is formal-
ized in the similar way to Chart Parsing algorithm.
PAX parsing system[Matsumoto, 1986] is an imple-
mentation of Bottom-up Chart Parsing algorithm in a.
parallel logic programming langua,ge GHC5. We show
in this section a GHC implementation of BCG algo-
rithm in the similar way to PAX system. The imple-
mented system consists of the following two parts.

1. The program translated from grammar rules.

5A GHC clause can be understood just like a Prolog
clause if the commit operator ‘1’ is repla.ced by ‘!‘.

2. The meta-process that introduces inactive edges dy-
namically. It absorbs the difference between parsing
and generation.

Basic Transformation of Grammar Rules
In our implementation, each terminal and non-terminal
symbol is realized as a parallel process that communi-
cate with each other for building up larger structures.
The communica.tion channel is called a stream. Let us
take the following grammar rule.

s/Sem -->
pp/ga(Sbj),
pp/wo(Obj),
#v(Sbj,Obj)/Sem.

Three non-terminal symbols at right-hand-side are re-
alized as parallel processes and each of them receives a
stream from the left and passes an output stream to the
right. For tra.nsforma.tion, the following modification is
done to the grammar rule: Identifiers standing for inte-
mediate positions in a grammar rule are inserted in the
rule and the semantic head of the rule is moved to the
top of the right-hand-side to be a.ssocia.ted with left-
corner pa.rsing. Moreover, in order to keep the surface
order information, difference lists representing words
are added to each symbol. The example rule results in
the following form:

s(SO-S3)/Sem -->
v(Sbj, Obj, S2-S3)/Sem,
idl,
pp(SO-Sl)/ga(Sbj),
id2,
pp(Sl-S2)/wo(Obj).

By translating this rule into following GHC clauses, we
can achieve SHD generation in parallel. The behavior
of the grammar rule is depicted in Figure 4.
First, v(Sbj ,Obj ,S2-S3) is translated into the pro-
gra.m below.

v(In,Sbj,Obj,S2-S3,Out) :- true I
out = [idl(ga(Sbj>,In,Sbj,Obj,S2-S3)].

ral Language Generation 353

semantic head

Figure 4: Behavior of Processes

When v(Sbj , Obj , S2-S3) is produced, tree traverse

process (Procedure- 1 of BCG algorithm).

proceeds to the position of idl. It corresponds to

Secondly, pp(SO-Sl) is translated as below.

the Procedure-2 of BCG algorithm that selects a rule
with a semantic head whose semantic representation
is unifiable with that of the inactive edge (pivot),
and introduces a new active edge (goal). The pro-
cess v(In,Sbj ,Obj ,S2-S3,Out) gene&es idl, which
corresponds to the active edge. In general, processes
perform inactive edges and data in streams stands
for active edges. The first open box of the new ac-
tive edge is pp(SO-Sl), whose semant,ics ga(Sbj> is
passed along with id1 and used afterwards in the meta-

pivot(call(Sbj,Obj),In,Out) :- true i
v(In,Sbj,Obj,[~~lSOI-S0,Ou-t).

The pivot process is generated dynamically by the
meta-process corresponding to the Procedure- 1 of
BCG algorithm.

Meta-Process
The met~process monitors the data in all streams
and controls the whole generation process.

meta-proc(Cl,-> :- true I true.
meta-proc([IdiTaill,Table) :-

It
checks the semantic representation in each identifier
(semantics (Id, Sem)), and generates or reuses an in-
active edges according to the semantic representation,
then passes the identifier to the inactive edges. It is
attained by calling the pivot process described below.
Here, streams perform forward links of BCG algorithm.
Forward links are introduced dynamically and a stream
is realized by an open list to receive identifiers incre-
mentally. The meta-process, maintains the table that
consists of pairs like wait (Sem,Str), where Sem is
the semantic representation of an ever produced inac-
tive edge and Sty is the tail of its input stream. When
the meta-process derives Selnj from an identifier and
is a.bout to produce a pivot process, it checks whether
Selnj is already registered in the table. The meta-
process generates a new pivot process only if the pair
wait (Semj ,Str) is not registered. The following pro-
gram realizes the task.

pp([idl(-,In,Sbj,Obj,S2-S3)lTaill,SO-Sl,Out) :-
true I
out = Cid2(wo(Obj),In,Obj,SO-Sl,S2-S3) lOutl1,
pp(Tail,SO-Sl,Outl).

Because pp(SO-Sl) is to the right of idl, tree tra,-
verse proceeds to the position of id2 when pp(SO-Sl)
receives idl. This corresponds to the Procedure-3 of
BCG algorithm that derives a new active edge from an
active edge and an inactive edge. The first open box
of the new active edge is pp(si-~21, the semantics of
which is wo(Obj > is inserted as the first argument of
id2. In the same way, pp(Sl-S2) is translated as be-
low.
pp([id2(-,In,Obj,SO-Sl,S2-S3)lTaill,Sl-S2,Out~ :-

true I s(In, SO-S3,0utl),
pp(Tail,Sl-S2,0ut2),merge(Outl,Out2,Out).

When pp(Sl-S2)/wo(Obj) is generated, the parent
node s (SO-S31 /Sem is generated. The fina. definition
of process pp is the collection of a.11 of such clauses
each of which corresponds to an occurrence of pp in
the right-hand-side of gra.mma.r rules. The following
clauses are necessary to handle exceptional situa.tions:

semantics(Id,Sem),
get(wait(Sem,StrTail),Table,Tablel) 1
StrTail = [IdlNewStrTaill,
put(wait(Sem,NewStrTail),Tablel,NewTable),
meta-proc(Tail,NewTable).

meta-proc(CIdlTaill,Table) :- otherwise I
semantics(Id,Sem),
pivot(Sem,CIdlStrTaill,Out),
put(wait(Sem,StrTail) ,Table,NewTable),
merge(Out,Tail ,Next),
meta-proc (Next ,NewTable).

The second clause of meta-proc corresponds to the case
of reusing the existing process and the third to the
case of generating a new process. In the second clause,
get(wait(Sem,StrTail),Table,Tablel) looks up if
wait (Sem, StrTail) is previously registered in the ta-
ble. When the table includes the element, meta,proc
reuses it by instantiating the top of the open list with
StrTail. Otherwise meta,proc generates a new pro-
cess by calling pivot(Sem, CIdlStrTaill ,Out) in the
third clause, and register the process in the table by
put(wait(Sem,StrTail),Table,NewTable).

pp(Cl,-,Out) :- true I Out = Cl.
pp([-ITail],String,Out):- otherwise I

pp(Tail,String,Out).

The pivot, process introducing new processes is de-
rived by transforming lexical (non-chain) rules as de-
scribed in the previous section. The transformation of

Finally, let us take the following non-chain (1exica.l)
rule.
v(Sbj, Obj)/call(Sbj,Obj) --> [IF%.%].
This rule is translated into the program below, which
generates a process corresponding to v (Sb j , Ob j > from
the semantic representation call(Sbj ,Obj).

genera.1
tion.

non-chain rules are described in the next, sec-

354 Haruno

Transformation of Non-Chain Rules
Let us consider the following rule.
np/ind(X,CRIRstr]) -->

s-rel (Xl /R,
np/ind(X,Rstr).

General non-chain rules are treated by Procedure-l’
whose central part is the same as Procedure-l . The
only difference is that Procedure-l’ introduces a new
active edge, from a semantic representation of a pre-
dicted goal. The process is also realized by the pivot
process as below:
pivot(ind(X,[RIRstrl),In,Out) :- true I

out = [id3(R,In,X,R,Rstr)l.

The identifier id3 is inserted just before the leftmost,
category s-rel(X) for top-down traversal of a syn-
tactic tree. The pivot process corresponding to the
semantic representation ind(X , [R 1 Rstr] > generates
this identifier. This kind of identifier corresponds to
the active edge of Top-down Chart Parsing algorithm.
When all categories at right-hand side are constituted,
then a new process corresponding to np at left-hand
side is produced.

Applying BCG Algorithm to
Based Text Planning

This section examines the applica.bility of BCG algo-
rithm to text planning. The depth-first, search st,ra.tegy
has been used mainly in text planning, in which it is
difficult, for a. generator to select, the releva.nt operator
at every choice point. On the other hand, BCG algo-
rithm deals with more than one candidate in parallel
until enough information is obtained.

Moreover, in explanation dia.logue systems, users of-
ten ask follow-up questions when he or she cannot fully
understand the explanation. The generator must infer
why its explanation has failed to achieve the commu-
nicative goal; an error in user model, ambiguity of the
meaning and so on. In BCG algorithm, it is easier for
a generator to find a recovering strategy because all
partial structures are preserved.

Plan Language
Our plan language is based on Rhetorical Structure
Theory RST)[M

\
a.nn a.nd Thompson, 19871. Explana.-

tion dia. ogue requests a. p1a.n la.ngua.ge t,o express both
intentional and rhetorical structures of the text once
produced to answer follow-up questions. We adopt
the similar representation of RST t(o Moore’s opera-
tors [Moore and Paris, 19891, one of which is shown
below.
EFFECT:(BMB S H ?x>
CONSTRAINTS:nil
NUCLEUS:(INFORM S H ?x>
SATELLITES:(PERSUADE S H ?x>

In order to apply BCG algorithm to text planning,
such operators are represented in DCG rules, where
CONSTRAINTS are inserted as extra conditions. (1)
corresponds to the a.bove example.

(1) bmb/bmb(Speaker,Hearer,X) -->
inf/inform(Speaker,Hearer,X),
psd/persuade(Speaker,Hearer,X).

(2) bmb/bmb(Speaker,Hearer,X) -->
explain/explain(Speaker,Hearer,X),
inf/inform(Speaker,Hearer,X).

Let the speaker’s goal be bmb(Speaker, Hearer, X),
there are alternative rules (1) and (2) a.pplica.ble to
this situation. A naive top-down plamrer recom-
putes inf /inform(Speaker,Hearer ,X> due to back-
tracking. On the other hand, BCG algorithm proceeds
in parallel reusing the structures ever constructed. Be-
cause most rules are applied top-down in text planning,
the behavior of BCG algorithm, in this case, is almost
identical to that of Top-down Chart algorithm [Kay,
19801.

Answering Follow-up
BCG algorithm can select, the best recovering strategy
by comparing multiple contexts when receiving follow-
up questions. Suppose user model contains concepts
that the user does not actually know, the generator
must change the user model and select, the proper strat-
egy for explaining the concept,. The generator employs
partial information in the chart particularly incomplete
active edges, which stand for suspended plans. Let,
us consider the following plan operators and general
knowledge.

% plan operator
goal/goal(Hearer,do(Hearer,Act)) -->
recommend/recommend(Speaker,Hearer,Act),
psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act))).

psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act)))
--> Cstep(Act,Goal)),
motivation/motivation(Act,Goal).

psd/persuaded(Hearer,goal(Hearer,do(Hearer,Act)))
--) Cstep(Act,Goal),
bel(Hearer,benefit(Act,Hearer))),
inf/inform(benefit(Act,Hearer)).

motivation/motivation(Act,Goal) -->
{step(Act,Goal))
bel/bel(Hearer,step(Act,Goal)).

bel/bel(Hearer,step(Act,Goal)) -->
Cknow(Hearer,Goal)),
inf/inform(Speaker,Hearer,step(Act,Goal)).

bel/bel(Hearer,step(Act,Goal)) -->
inf/inform(Speaker,Hearer,step(Act,Goal)),
c\+ know(Hearer,Goal)),
elaboration/elaboration(Goal).

% general knowledge
step(insert,optimization).
know(user,optimization).

The domain of the dialogue is Prolog programming.
The system’s goal is goal(user(do(user,insert)),
t,o recommend the user to insert a ‘!’ before a recur-
sive call. insert means inserting ! before the recursive
call a.nd optimization means the ta.il recursion opti-
mization. The system generates the following texts as
the first text (Figure 5).

Nahsal Language Generation 355

(Insert a cut symbol before recursive call.
It is necessary for tail recursive optimi
zation.)

The user cannot understand the explanation and poses
the follow-up question.
user: &<<ti)g d-&x/,

(I don't understand very well.)

The system accepts the follow-up question and
searches the suspended active edges. Now, there are
two suspended active edges (1) and (2):
(J)[C?linf/inform(benefit(insert,user))l

psd/persuaded(user,goal(user,do(user,insert)))
(2)Cinf/info (rm system,user,step(insert,optimization))

C?lelaboration/elaboration(optimization)l
bel/bel(user,step(insert,optimization)

Each of the edges is suspended because of the con-
tradiction to the
user model; bel(user,benefit(insert,user)) a.nd
\+ know (user, insert). The genera.tor selects the ac-
tive edges that require few hypotheses to expand, and
gives the relaxation to the user model. In this case, the
generator assumes that \+ know(user, insert) holds
and produces the following a.dditional explana.tion as
shown in Figure 5.

molivalion
b. Jm =C

inf

i

inf i elaboration i L
‘“‘“yc”“.”

,..... .’ l .
Sm...; Choice Poinr

Figure 5: The Explanation Tree

system: *B@$&jLC&J ‘JYf/I'YK/f';, 3 I- 7 7 3S&~:jBffi
Lb;: I: ?3% L, 5%s%k%m~$Q~~&Tt,
(Tail recursive optimization saves memory
by showing compilers that no backtracking
is necessary.)

The generator can reproduce the explanation by relax-
ing the user model according to actual state of user’s
knowledge. This is the simi1a.r situation to rela.xation
based parsing of ill-formed inputs in which chart-based

method is powerful[Mellish, 19891 because it maintains
all partial structures.

Concluding Remarks
We have presented BCG algorithm as a basic con-
trol mechanism of generation system. In contrast to
Shieber’s SHD algorithm, BCG algorithm dea.ls with
multiple contexts at a time. This property resolves two
problems: First, the efficiency is remarkably improved
in the case of a large scale grammar. Secondly, the
comparison between multiple contexts becomes possi-
ble. Hence, revision like answering follow-up questions
is performed easier by referring to the contexts in the
chart. To sum up, we obtain the efficiency and robust-
ness by adopting the BCG algorithm.

We are now studying the patterns of the follow-
up questions and investigating the recovery heuristics
based on the chart.

References
Johan de Kleer. An assumption-based TMS. Artificial
Intelligence, 28:127-162, 1986.
Martin 1ca.y. Algorithm schemata and data structure
in syntactic processing. Technical Report CLS-80-12,
Xerox PARC, 1980.
W. C. Mann and S. A. Thompson. Rhetorica. struc-
ture theory: Description and construction of text
structures. In Natural Language Generation, chap-
ter 7, pages 85-96. Martinus Nijhoff Publishers, 1987.
Yuji Matsumoto. A parallel parsing system for nat-
ural language analysis. In Proc. 3rd ICLP, Lec-
ture Notes in Computer Science 225, pages 396409.
Springer-Verlag, 1986.
Chris Mellish. Some chart-based techniques for pars-
ing ill-formed input. In Proc. 27th A CL, pages 102-
109, 1989.
Johanna Moore and Cecile Paris. Planning text for
advisory dialogues. In Proc. 27th ACL, pages 203-
211, 1989.
S. M. Shieber, van Noord, R. C. Moore, and F. C. N.
Pereira. A semantic-head-driven generation algorithm
for unification-based formalisms. In Proc. 27th ACL,
pages 7-17, 1989.
I< Ueda. Guarded Horn Clauses. In E. Wada, editor,
Logic Programming ‘85, Lecture Notes in Computer
Science 221, pages 168-179. Springer-Verlag, 1986.
van Noord. BUG: A directed bottom-up genera-
tor for unification-based formalisms. Working Pa-
per 4, Katholieke Universiteit Leuven Stiching Taal-
technologie Utrecht, the Netherlands, 1989.
J Wedekind. Generation as structure driven deriva-
tion. In Proc. 11th COLING, pages 732-737, 1988.

356 Haruno

