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Abstract 

Many knowledge-based systems need to represent 
vague concepts. Although the practical approach 
of representing vague concepts as precise inter- 
vals over numbers is well-accepted in AI, there is 
no systematic method to delimit the boundaries 
of intervals, only ad hoc methods. We present a 
framework to reason precisely with vague concepts 
based on the observation that the vague concepts 
and their interval-boundaries are constrained by 
the underlying domain knowledge. The frame- 
work is comprised of a constraint language to 
represent logical constraints on vague concepts, 
as well as numerical constraints on the interval- 
boundaries; a query language to request informa- 
tion about the interval boundaries; and a compu- 
tational mechanism to answer the queries. A key 
step in answering queries is preprocessing the con- 
straints by extracting the numerical constraints 
from the logical constraints and combining them 
with the given numerical constraints. 

1 Introduction 
The input to an AI system embedded in a real-world 
environment is often numerical whereas the reason- 
ing is done with abstract symbols. Many abstract 
symbols embody vague concepts over continuous nu- 
merical ranges. To quote Davis, “In some respects, 
the concepts of commonsense knowledge are vague,. . . 
Many categories of common sense have no well-marked 
boundary lines; there are clear examples and clear 
nonexamples, but in between lies an uncertain region 
that we cannot categorize, even in principle.” [Davis 
19901. For example, there is no minimum precise body 
temperature that a doctor considers high and there is 
no maximum number of hairs that a person might have 
and still be considered bald. 

The representation of such vagueness poses a prob- 
lem. “From a theoretical point of view, this vague- 
ness is extremely difficult to deal with, and no re- 
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ally satisfactory solutions have been proposed.” [Davis 
19901. Some of the approaches that try to address this 
theoretical difficulty are fuzzy logic [Zadeh 19831 and 
vague predicates [Parikh 19831. However, it is com- 
monly accepted in AI that, though inadequate theoret- 
ically, in practice it is often adequate to assume that 
a vague concept is precise and that there is indeed a 
well-defined boundary. In fact, most system builders 
who encounter the vagueness problem [Hayes-Roth et 
al. 1989; Shahar, Tu & Musen 19921 adopt a similar 
approach of representing a vague concept as an inter- 
val over the range of numbers. This practical approach 
is illustrated by an example from [Davis 19901: “Sup- 
pose that “bald” did refer to some specific number of 
hairs on the head, only we do not know which num- 
ber. We know that a man with twenty thousand hairs 
on his head is not bald, and that a man with three 
hairs on his head is bald, but somewhere in between 
we are doubtful.” This precise representation of the 
vague concept bald is still useful for reasoning. 

Despite the pervasiveness of the vagueness problem, 
and the pervasiveness of the practical approach of rep- 
resenting vague concepts as intervals, there has been 
no effort in AI to provide a systematic account of this 
practical approach. We propose a framework for rep- 
resenting and reasoning with vague concepts as inter- 
vals that has the advantages of (1) improving our un- 
derstanding of the issues involved in the practical ap- 
proach, and (2) replacing the ad hoc approach used by 
system designers to delimit the interval-boundaries. 

The framework is based on the observation that 
vague concepts and their interval-boundaries (also re- 
ferred to as thresholds) are constrained by the under- 
lying domain knowledge that must be used to reason 
about the thresholds. We motivate the components of 
the framework by extending Davis’ baldness example. 

Example 1: “Anyone with 3 or fewer hairs is bald 
and anyone with 20000 or more hairs is not bald” 
“All old people are bald” (note that “old” itself is a 
vague concept that we will assume has a well-defined 
boundary) 
“Anyone who is 50 years or younger is not old whereas 
anyone over 80 is old” 
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“All presidents of companies are old” 
“Tom’s age is 70 years, he has 500 hairs and is the 
president of a company” 
“Jim’s age is 75 years and he has 800 hairs” 
“Sam’s age is 45 and he has 650 hairs” 

Is Tom bald? Logical reasoning tells us that since 
Tom is president of a company, he is old and therefore 
bald. Note that here we used only the logical relations 
between the concepts president, old and bald, where old 
and bald are vague concepts but president is not. 

Is Jim bald? We can reason that since Tom is old, 
the oldness threshold’ can be at most 70. Since Jim’s 
age is 75 which is over the oldness threshold, he must 
be old and therefore bald. Note that here we needed 
numerical reasoning with Tom and Jim’s ages and old- 
ness threshold, as well as logical reasoning that since 
Jim is old he must be bald. 

We can ask if the baldness threshold is necessarily 
more than 800? Since Jim is bald and has 800 hairs, 
the baldness threshold must be at least 800. There- 
fore, the answer to the query is yes and hence anyone 
with less than 800 hairs is bald. Here we needed nu- 
merical reasoning about Jim’s hairs and the baldness 
threshold. 

Is Sam bald? Since anyone with less than 800 hairs 
is bald, and Sam has only 650 hairs, he must be bald. 
Here we needed numerical reasoning with number of 
hairs on Sam’s head and the baldness threshold. 

As illustrated by this example, we need to represent 
both logical relations between symbolic concepts and 
numerical relations on thresholds. Also, logical as well 
as numerical reasoning is required to answer the inter- 
esting queries. Hence, the proposed framework facil- 
itates this representation and supports queries about 
the thresholds. 
Framework: The framework is comprised of three 
main parts - a constraint language to express do- 
main knowledge, a query language to query the domain 
knowledge and a computational mechanism to answer 
the queries. 

The first part of the framework is a constraint Zun- 
guuge that captures the domain knowledge. The lan- 
guage enables the expression of logical constraints on 
the vague concepts as well as numerical constraints on 
the thresholds of these copcepts. Explicit representa- 
tion of the thresholds is important to represent the nu- 
merical constraints and as we shall see, to ask queries. 

The second part of the framework is a query language 
that extracts relevant information about the thresholds 
implied by the domain knowledge. In particular, the 
queries enable us to delimit the thresholds based on 
the information provided in the domain knowledge2. 

‘By oldness threshold we mean that age such that ev- 
eryone of higher age is old whereas everyone of lower age is 
not old. The baldness threshold is defined analogously. 

2Note that it is not necessary to assign specific values 
to the thresholds to answer any queries, although this as- 

This is exactly what a system designer needs to define 
intervals for a vague concept that are consistent with 
the domain knowledge. For example, the answer to the 
query “what is the minimum permissible value for the 
baldness threshold?” provides the designer with useful 
information to define the interval for bald. 

The third part of the framework is a computational 
mechanism to answer the queries in the query lan- 
guage using the domain knowledge expressed in the 
constraint language. 

In Sections 2 and 3, we introduce particular con- 
straint and query languages. In Section 4, we de- 
scribe a computational mechanism to answer queries 
for these languages. It includes a sound and com- 
plete algorithm, a discussion of the complexity, and ex- 
perimental results illustrating the applicability of the 
framework. Our experiments were carried out in the 
domain of medical diagnosis where numerical measure- 
ments of parameters such as blood pressure and heart 
rate are abstracted to vague concepts such as high and 
low blood pressure and used for the diagnosis of the 
patient’s condition. In this paper, for the sake of clar- 
ity and understanding, we stick to the more everyday 
example of bald people. 

2 Constraint Language 
To express the domain knowledge, the constraint lan- 
guage must have an explicit representation of thresh- 
olds, a language to express numerical constraints and a 
language to express the logical constraints. We present 
such a language here, chosen for its familiarity as well 
as to strike a tradeoff between expressivity and effi- 
ciency of answering queries. 

The vague predicates in the logical language are dis- 
tinguished from the other predicates. We refer to the 
vague predicates, which must all be unary, as intervul- 
predicates and to all other predicates as nonintervul- 
predicates. The set of interval-predicates is denoted 
by ZP, and the set of noninterval-predicates by n/z?. 
With every P E ZP we associate two threshold terms 
P- and P+, called the Zower and upper thresholds of 
P, respectively. The set of all threshold terms is de- 
noted by 7- (7 = {P-, P+ 1 P E ZP}). The interval- 
predicates will be interpreted in a special way to reflect 
our intuition about the vague predicates: P will be in- 
terpreted as the interval [P-,P+] over 9, the set of 
real numbers. We will refer to this interpretation as 
the predicate-us-intervuZ assumption. 

1. Numerical Constraints: The language of numer- 
ical constraints is that of linear arithmetic inequali- 
ties where the threshold terms in T are the variables 
of the inequalities. A numerical constraint must be 
reducible to the form (alzl + . . . +a,~,) rel b, where 
a1 )...) un,b E 92, Xl,.. .,z, E 7-, and rel E {s,>, 
<, >, =}. We denote the set of numerical constraints 
by NC. 

signment is made much easier in our framework. 

Nonmonotonic Logic 427 



2. Logical Constraints: These are definite Horn 
clauses without function symbols (also called Dat- 
alog sentences in the deductive database literature 
[Ullman 19881). The predicates of these logical 
constraints are interval-predicates ZP as well as 
noninterval-predicates NZP. We denote the set of 
logical constraints by LC. 

The constraints in Example 1 are represented in the 
language as follows. We extend the example to include 
another constraint that all rich VPs become presidents 
of companies. 
Example 2: 

ZP = {bald, old, rich} 

N-ZP = (age, hairs, pres, money, was-VP) 

NC = (bald- = 0, 3 5 bald+ 5 20000, old+ = 00, 
50 5 old- 5 80, 0.1 5 rich- 5 1, rich+ = 00 > 
u {P-<P+jPEZP} 

The unit for bald is number of hairs, for old is age in 
years, and for rich is money in millions of dollars.- 
LC = {pres(x) t was-VP(z) A money(x, y) A rich(y) 

bald(z) t old(y) A uge(z, y) A huirs(z, z) 
Old(Y) +- Pr44 A W(X,Y) 
age (Tom, 70)) hairs (Tom, 500)) was- VP(Tom), 
money(Tom, 6), uge(Jim, 75), huirs(Jim, 800) 
uge(Sam, 45), huirs(Sam, 650)) q  

There are other languages that combine quantitative 
and qualitative constraints. For instance, Williams’ 
qualitative algebra [Williams 19881 expresses opera- 
tions on reals and signs of reals, but is not concerned 
with logical constraints. Similarly, [Meiri 19911 and 
[Kautz & Ladkin 19911 present frameworks for express- 
ing and processing both quantitative and qualitative 
temporal constraints. Their language limits the con- 
straints, whether numerical or logical, to be binary 
whereas our language does not. On the other hand, 
their language can express disjunctive relations be- 
tween intervals which our language does not. 

Most closely related to our language are languages 
for constraint logic programming (CLP) in the style of 
Lassez et al. [Jaffar & Lassez 19871. CLP considers 
general Horn theories, as opposed to our limited Dat- 
alog theories. However, CLP does not allow numerical 
constraints in the head of a clause. In our language 
the interval-predicates can occur in the head which, 
if represented in CLP, would correspond to numerical 
constraints occurring in the head. 

3 Query Language 
The purpose of the query language is to enable a user 
to extract information about the thresholds that is im- 
plied by the domain constraints. It is a useful tool for 
a system designer to find the threshold values allowed 
by the constraints. The kind of queries supported are 
informally described below. Here Pih, . . . , P”,h E ‘T, 
al >“‘> a, E !R, rell,.. . ,reZn E {<,>,<,>,=), and 
i E (l,...,n). 

Is it necessarily the case that (Pih rell al) A. . . A 
(Pk’ reZn a,) ? 
Is it possibly the case that (Pih rell ai) A.. . A 
(Pk’ rel, a,) ? 

What is the minimum value that Pih can take? 
What is the maximum value that Pi” can take? 
Many queries may be derived using the above prim- 

itives. For example, the query “P(a) ?” can be cast as 
“Is it necessarily the case that (P- < a) A (P+ 2 a) ?“. 
If the answer is yes then P(a) is true, otherwise it is 
unknown. If the answer to “Is it possibly the case that 
(P- 5 a) A (P+ 1 a) ?” is no then P(a) is false, other- 
wise it is unknown. 

In addition, it is possible to request a specific as- 
signment of values to the thresholds that satisfies the 
constraints. For Example 2, assigning the value 2000 
to the baldness threshold is consistent with the given 
constraints. We will indicate briefly in Section 4.3 how 
this assignment is made. This procedure is particu- 
larly useful for a system designer who assigns specific 
numbers to the thresholds in the design stage of the 
system. 

4 Computational Mechanism for 
Answering Queries 

The final component of our framework is the compu- 
tational mechanism responsible for answering queries 
on constraints. A key step in answering queries is 
preprocessing the constraints by extracting the nu- 
merical constraints from the logical constraints and 
combining them with the given numerical constraints. 
The preprocessing is a two-step procedure: first, using 
the predicate-as-interval assumption, the procedure 
extracts the numerical information on the interval- 
predicates from the logical constraints LC. This de- 
rived information is in the form of disjunctions of nu- 
merical constraints. Next, the procedure combines 
these disjunctive constraints with the given numeri- 
cal constraints NC. We describe the procedure to ex- 
tract numerical information from LC in Section 4.1. In 
Section 4.2 we prove that the procedure is sound and 
complete and also discuss the complexity issues. In 
Section 4.3 we describe how to combine the numerical 
information from LC with NC. 

4.1 Extracting Numerical Informat ion 
from Logical Constraints 

The algorithm Symb-to-Numeric described in this sec- 
tion takes as input the logical constraints LC and 
the sets of interval and noninterval-predicates ZP 
and n/zp, and returns a set of numerical constraints 
quantJIC. This process of conversion from logical to 
numerical constraints preserves the information about 
the thresholds of interval-predicates but discards the 
information on the noninterval-predicates. A formal 
discussion is deferred to Section 4.2. 
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Function Symb_to-Numeric( LC, ZIP, nfip) : quantJ/C 
s + 0; 
for every clause c E LC such that head(c) E ZP do 

S, t Expand(c, LC, 27, NZP); 
stsus,; /* S has no JI&TP predicates */ 

endfor 
quant JlC t 0; 
for every clause c E S do 

quantJIC t quant-LC U Convert-LC-to-NC(c); 
return(quant-LC) 

endfunction 

Figure 1: Numerical Information from Logical Con- 
straints 

The algorithm Symb-to-Numeric is described in 
Figure 1. Starting with all those clauses in LC that 
have interval-predicates at the head, we expand their 
bodies using other clauses in LC until all noninterval- 
predicates are eliminated from the body. Expand is 
very similar to SLD resolution [Lloyd 19871 but with 
two differences: (1) only noninterval-predicates are 
expanded (2) all possible expansions are computed. 
Thus, each clause in set S of Figure 1 has only interval- 
predicates. Using the predicate-as-interval assump- 
tion, we convert the resultant clauses to numerical con- 
straints as described by function Convert-LC-to-NC 
in Figure 2. This function works by fragmenting 
each clause into subclauses such that each subclause 
has at most one variable and no two subclauses have 
the same variable 3. For example, the clause P(a) t 

$1; R$x) A S(b) is a disjunction of three subclauses: 
a t Q(x) A R(x)” and “t S(b)“. In general, 

each s;bclause thus obtained will be one of the six 
basic types described in Figure 2. Each type of sub- 
clause is converted to numerical constraint by using 
the predicate-as-interval assumption, and by interpret- 
ing the connectives 1, V, A as complement, union and 
intersection of intervals, respectively. 

An application of the algorithm on Example 2 is il- 
luminating: 
Example 3: The first step in the procedure is to lo- 
cate clauses with interval-predicates at the head in LC 
and expand them until all noninterval-predicates are 
eliminated. Here there are two such clauses with old 
and bald at the head. On expansion, we obtain set S: 
bald(500) t old@) old(m) t rich(6) 
bald(800) t old(75) bald(650) t old(M) 

On applying the function Convert-LC-to-NC, each of 
these clauses fragments into subclauses of the first two 
types: “P(a)” and “t P(a)“. On conversion we obtain 
the set quunt_L@: 
quuntJ/C = 
{(bald- < 500 5 bald+) V (70 < old-) v (old+ < 70) 

3Note that this is always possible because all interval- 
predicates are unary. 

4Note that each of the 4 clauses obtained here will ac- 
tually split into 2 clauses. 

fin$$bot; Convert-LC-toiVC(lc) : nc 
. 

h-sub&uses t MakeSubclauses( /* Every 
subclause of lc with a constant or the same variable */ 
for every subclause subcl E lc-subclauses do 

Case subcl of: /* a is a constant */ 
“P(a)“: subcl’ t (P- 2 a < P+) 
“t P(a)“: subcl’ t (a < P-) v (a > P+) 
L’P(x)“: subcl’ t (P- = -CO) A (P+ = +CO) 
(‘t P( 2)” : subcl’ t t’- > f’+ 
((t PI(,), . . . ) P,(x)“: 

subcl’ t vrcl $Y1 (P; > Pj’) 
“P(z) t Q&T), . . . , Q&$‘: 

subcl’ t (vyzIP- < Q;) A (vrEIP+ 2 Q’) ; 
nc t nc V subcl’ 

endfor 
return( nc) 

endfunct ion 

Figure 2: Conversion from Logical to Linear Arith- 
metic Constraint 

(old- < 70 5 old+) V (6 < rich-) V (rich+ < 6) 
(bald- 5 800 5 bald+) v (75 < old-) v (old+ < 75) 
(bald- 5 650 5 bald+) v (45 < old-) v (old+ < 45)) 

4.2 Formal results on conservation of 
numerical informat ion 

We establish formally that no numerical informa- 
tion is lost in the conversion performed by algorithm 
Symb-to-Numeric. We begin by defining the mod- 
els of LC that are faithful to the predicate-as-interval 
assumption; we call these the standard models. Specif- 
ically, in all standard models it4 = (0, p) over a do- 
main D, the interpretation function 1-1 will have to map 
interval-predicates to intervals over the reals. In the 
following, !R denotes the set of real numbers. 

Definition 1: Given a set of logical constraints LC, 
the set of interval-predicates ZP, and the set of thresh- 
old terms 7, a standard model of LC w.r. t. ZP is a 
model M = (D, p-I> such that M k LC, and for ev- 
ery P E ZP there exist P- , P+ E 7- and it is the case 
that p(P-),p(P+) E ?R and p(P) = {x 1 p(P-) 5 x 5 
/4p+>, x E w 

efinition 2 : Given LC, ZP and ‘T as above, a 
numerical submodel of LC w.r.t. ZP is a model 
M = (R, p) such that there is some standard model 
Al’ = (DJ.4’) of LC w.r.t. ZP, and ,!L is the restriction 
of $ to terms in 7. 

The following theorem establishes that the algorithm 
symb-to-numeric is sound and complete w.r.t. the nu- 
merical information (complete proof in [Goyal 19931). 
Theorem 4 : (Soundness and Completeness) The 
class of numerical submodels of LC w.r.t. ZP is iden- 
tical to the class of models of quunt.LC. 

Proof: (Sketch for Completeness) An arbitrary model 
M of quunt-LC is extended to a standard model M’ of 
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LC such that its numerical submodel is exactly M. M’ 
is constructed by first building a dependency graph of 
predicates in LC and then by defining the interpreta- 
tion of the predicates in A&P in the topological order 
of the graph. The intuition is that when a clause in 
LC is used to build the interpretation of the predi- 
cate in the head from the predicates in the body, the 
body predicates would have been already interpreted 
because of the order of interpretation. The equivalence 
of the numerical submodel of M’ and the model M is 
proved through mathematical induction on the topo- 
logical order of predicates. I 

In the worst case, the space and time complexity 
of computing quant_LC is exponential in the size of 
LC. This is not surprising, since in the worst case, 
quantJ/C is of exponential size. However, we have 
identified syntactic restrictions on the constraint lan- 
guage for which we can avoid such exponential blowup. 
In practice, the performance of the algorithm has been 
found to be quite acceptable for the following reasons. 
First, we observe that the algorithm is exponential ,only 
in the size of the non-ground constraints. Typically, 
the number of non-ground constraints is small com- 
pared to the number of ground literals. Second, this 
algorithm is invoked only once for all the queries on a 
given set of constraints; hence, the cost is amortized 
over all the queries. Thus, the overall performance of 
the system is not severely affected despite the appar- 
ent intractability. A more detailed discussion of the 
complexity issues may be found in [Goyal 19931. 

4.3 Combining with Numerical 
Constraints 

The constraints in the set quantJIC, obtained by con- 
verting the logical constraints to numerical constraints, 
are disjunctive. These constraints must be combined 
with the set of given numerical constraints NC to an- 
swer the queries. In principle, we can convert the set 
quant-LC to disjunctive normal form (DNF) and add 
the constraints NC to each disjunct. The disjunction 
thus obtained is referred to as output-c. However, 
in practice, we leave quant-LC in its conjunctive nor- 
mal form to save space, and generate the disjuncts of 
output-c one by one through backtracking. Further- 
more, to make the process more efficient, we first re- 
duce the size of the set quantJIC using the constraints 
NC. We elaborate on these below and also discuss how 
existing methods are applicable to answer queries on a 
single disjunct of output.C. 
Pruning quant.JC: We have developed a procedure 
that uses the constraints in NC to reduce the size 
of the set quantJ/C significantly. This procedure, 
called reduce, uses the upper and lower bounds of all 
thresholds implied by the constraints in NC to prune 
quant-LC in two ways. First, if a disjunct of a con- 
straint in quantJIC is already satisfied by the bounds, 
then that constraint can be deleted from quant_LC. In 

Example 3, the lower and upper bounds for old- are 
50 and 80 respectively, hence (old- > 45) is already 
satisfied. Second, if a disjunct is inconsistent with the 
bounds, then that disjunct can be deleted. For in- 
stance, (old- > 82) is inconsistent with the bounds for 
old-. 

The experimental results confirm that the procedure 
reduce reduces the size of quant_LC significantly. In 
Example 3, quant_LC has 8 constraints with 3 dis- 
juncts each that should give rise to 3* disjuncts (in 
DNF) in the worst case. Applying procedure reduce 
eliminates all but 1 disjunct, that is: 

output-C = NC U {(old- 5 70), (bald’ 2 SOO)} 

When the procedure was applied to the medical diag- 
nosis domain, in the first application quant-LC had 12 
constraints with 3 disjuncts each, giving rise to 312 dis- 
juncts in the worst case. Procedure reduce eliminated 
all but 2 disjuncts. In a second medical application, 
quant-LC had 416 constraints with 2 or 3 disjuncts 
per constraint that would have given rise to at least 
2416 disjuncts. Procedure reduce eliminated all but 
2592 disjuncts. 
Generating disjuncts of output-C: Once the set 
quant-LX has been pruned, queries are answered by 
generating the remaining disjuncts of output-c one 
at a time through backtracking. We avoid generat- 
ing redundant disjuncts in output-C by recognizing 
the presence of common disjuncts in the constraints 
of quant-.LC. For instance, in the second medical ap- 
plication, only 184 disjuncts had to be generated out 
of the 2592 that were possible. 

In practice, most queries do not require backtracking 
even over all possible distinct disjuncts that are gen- 
erated. For instance, a query whether a constraint is 
possibly true or not, has to find any one disjunct over 
which the constraint is satisfied. Furthermore, even for 
queries where all disjuncts have to be checked, an ap- 
proximate answer can be obtained by computing only 
on a few disjuncts. For instance, a query to find the 
minimum value of a threshold can return the minimum 
over only a few disjuncts. This approximate answer 
is still useful since it supplies a lower bound on the 
threshold, even though not the tightest lower bound. 
Thus, this procedure gives a useful approximate an- 
swer any time that an answer is required, and the ap- 
proximation gets closer to the optimal as the allowed 
time increases. The experimental results on answering 
queries are available in [Goyal 19931. 

We can even assign a specific value to the thresholds 
using heuristic criteria. For Example 3, the baldness 
threshold (bald+) could be 10400 which is halfway be- 
tween its bounds of 800 and 20000, and satisfies all 
the given constraints. When a large amount of ground 
data is available, clustering techniques are utilized to 
assign a specific value. 
Answering for each disjunct: We have discussed 
previously how the set quant_LC is pruned a priori to 
eliminate redundant disjuncts and how the disjuncts 
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of output-C are generated. Each disjunct thus gen- 
erated is a set of linear arithmetic constraints. We 
now discuss how any query is answered on a single 
disjunct. The queries for maximum and minimum val- 
ues of thresholds (queries 3 and 4 in Section 3) re- 
quire the computation of lower and upper bounds of 
thresholds. Queries for checking a constraint for con- 
sistency (queries 1 and 2 in Section 3) require a con- 
sistency check on a set of constraints. Thus, any exist- 
ing method for computing bounds and checking consis- 
tency of linear arithmetic constraints can be used. If 
NC has only simple order relations or bounded differ- 
ences, we can use an efficient S(n3) procedure (where n 
is the number of variables) from [Davis 19871 or [Meiri 
19911. Sacks’ bounder [Sacks 19901 is applicable but 
more useful for nonlinear constraints. For more gen- 
eral linear constraints, we have to use a linear program- 
ming method that is still tractable 6(n3a5L) (L is size 
of input) [Karma&u 19841. Lassez’s work on canon- 
ical form of generalized linear constraints [Huynh et 
al. 19901 has potential applications, though the advan- 
tage of a canonical form would be offset by the cost of 
maintaining the canonical form because we backtrack 
on disjunctive constraints. 

5 Conclusions 
We have provided a systematic account of the practi- 
cal approach of representing vague concepts as precise 
intervals over numbers. Based on the observation that 
the vague concepts and their interval-boundaries are 
constrained by the underlying domain knowledge, we 
motivated and proposed a framework to reason pre- 
cisely with vague concepts. The framework is com- 
prised of a constraint language to represent the domain 
knowledge; a query language to request information 
about the interval boundaries; and a computational 
mechanism to answer the queries. 

We described the constraint and query languages 
and a computational mechanism to answer queries. A 
key step in answering queries is preprocessing the con- 
straints by extracting the numerical constraints from 
the logical constraints and combining them with the 
given numerical constraints. We proved this algorithm 
to be sound and complete and also discussed the com- 
plexity issues. Some experimental results of applying 
this framework to a medical domain were discussed. 

The main contribution of our work is in providing 
a systematic framework to understand the common 
though ad hoc approach of representing vague predi- 
cates as intervals. This work is particularly applica- 
ble to a knowledge base during its development stage 
where the vague concepts over numbers need to be de- 
fined precisely. 

Acknowledgements We would like to thank Surajit 
Chaudhuri, Ashish Gupta, Alon Levy, Pandu Nayak, 
Moshe Tennenholtz, Becky Thomas and the anony- 
mous reviewers. 

References 
Davis, E. 1987. Constraint Propagation with Interval 
Labels. Artificial Intelligence 32(3):281-331. 
Davis, E. 1990. Representations of Commonsense 
Knowledge. Morgan Kaufmann Publishers, 19-20. 
Goyal, N. 1993. A Framework for Reasoning Precisely 
with Vague Concepts. Ph.D. diss. (in preparation), 
Dept. of Computer Science, Stanford University. 
Hayes-Roth, B.; Washington, R.; Hewett, R.; 
Hewett, M.; and Seiver, A. 1989. Intelligent Monitor- 
ing and Control. In Proc. of Eleventh International 
Joint Conference on Artificial Intelligence, 43-249. 
Huynh, T.; Joskowicz, L.; Lassez, C.; and 
Lassez, J-L. 1990. Reasoning about Linear Con- 
straints using Parametric Queries. In Proc. of Tenth 
FST TCS, Bangalore, India. 
Jaffar, J.; and Lassez, J-L. 1987. Constraint Logic 
Programming. In Proc. of 14th A CM Symposium on 
Principles of Programming languages, 111-119. 
Karma&r, N. 1984. A New Polynomial-Time Al- 
gorithm for Linear Programming. Combinatorics 
4:373-395. 
Kautz, H.A.; and Ladkin, P.B. 1991. Integrating Met- 
ric and Qualitative Temporal Reasoning. In Proc. of 
Ninth National Conference on Artificial Intelligence, 
241-246. 
Lloyd, J.W. 1987. Foundations of Logic Programming, 
2nd. ed.. Springer-Verlag. 
Meiri, I. 1991. Combining Qualitative and Quantita- 
tive Constraints in Temporal Reasoning. In Proc. of 
Ninth National Conference on Artificial Intelligence, 
260-267. 
Parikh, R. 1983. The problem of Vague Predicates. 
In Cohen and Wartofsky (eds.), Language, Logic, and 
Method. Reidel Publishers, 241-261. 
Sacks, E. 1990. Hierarchical Reasoning about In- 
equalities. In Readings in Qualitative Reasoning about 
Physical Systems, eds. D.S. Weld and J. de Kleer. 
Morgan Kaufmann Publishers, 344-350. 
Shahar, Y.; Tu, S.W.; and Musen, M.A. 1992. Knowl- 
edge Acquisition for Temporal-Abstraction Mecha- 
nisms. Knowledge Acquisition 4:217-236. 
Ullman, J.D. 1988. Principles of Database and 
Knowledge-Base Systems, Vol. 1. Computer Science 
Press. 
Williams, B.C. 1988. MINIMA: A Symbolic Approach 
to Qualitative Algebraic Reasoning. In Proc. of Sev- 
enth National Conference on Artificial Intelligence, 
264-269. 
Zadeh, L.A. 1983. Commonsense and Fuzzy Logic. In 
The Knowledge Frontier: Essays in the Representa- 
tion of Knowledge, eds. N. Cercone and G. McCalla. 
New York: Springer-Verlag, 103-136. 

Nonmonotonic Logic 431 


