
Reasonin recis -ItS
*

Nita Goyal and Yoav Shoham
Robotics Laboratory, Computer Science Department

Stanford University
Stanford, CA 94305

{nita,shoham}@cs.staford.edu

Abstract

Many knowledge-based systems need to represent
vague concepts. Although the practical approach
of representing vague concepts as precise inter-
vals over numbers is well-accepted in AI, there is
no systematic method to delimit the boundaries
of intervals, only ad hoc methods. We present a
framework to reason precisely with vague concepts
based on the observation that the vague concepts
and their interval-boundaries are constrained by
the underlying domain knowledge. The frame-
work is comprised of a constraint language to
represent logical constraints on vague concepts,
as well as numerical constraints on the interval-
boundaries; a query language to request informa-
tion about the interval boundaries; and a compu-
tational mechanism to answer the queries. A key
step in answering queries is preprocessing the con-
straints by extracting the numerical constraints
from the logical constraints and combining them
with the given numerical constraints.

1 Introduction
The input to an AI system embedded in a real-world
environment is often numerical whereas the reason-
ing is done with abstract symbols. Many abstract
symbols embody vague concepts over continuous nu-
merical ranges. To quote Davis, “In some respects,
the concepts of commonsense knowledge are vague,. . .
Many categories of common sense have no well-marked
boundary lines; there are clear examples and clear
nonexamples, but in between lies an uncertain region
that we cannot categorize, even in principle.” [Davis
19901. For example, there is no minimum precise body
temperature that a doctor considers high and there is
no maximum number of hairs that a person might have
and still be considered bald.

The representation of such vagueness poses a prob-
lem. “From a theoretical point of view, this vague-
ness is extremely difficult to deal with, and no re-

*This research has been supported by grant AFOSR-89-
0326.

426 Goyal

ally satisfactory solutions have been proposed.” [Davis
19901. Some of the approaches that try to address this
theoretical difficulty are fuzzy logic [Zadeh 19831 and
vague predicates [Parikh 19831. However, it is com-
monly accepted in AI that, though inadequate theoret-
ically, in practice it is often adequate to assume that
a vague concept is precise and that there is indeed a
well-defined boundary. In fact, most system builders
who encounter the vagueness problem [Hayes-Roth et
al. 1989; Shahar, Tu & Musen 19921 adopt a similar
approach of representing a vague concept as an inter-
val over the range of numbers. This practical approach
is illustrated by an example from [Davis 19901: “Sup-
pose that “bald” did refer to some specific number of
hairs on the head, only we do not know which num-
ber. We know that a man with twenty thousand hairs
on his head is not bald, and that a man with three
hairs on his head is bald, but somewhere in between
we are doubtful.” This precise representation of the
vague concept bald is still useful for reasoning.

Despite the pervasiveness of the vagueness problem,
and the pervasiveness of the practical approach of rep-
resenting vague concepts as intervals, there has been
no effort in AI to provide a systematic account of this
practical approach. We propose a framework for rep-
resenting and reasoning with vague concepts as inter-
vals that has the advantages of (1) improving our un-
derstanding of the issues involved in the practical ap-
proach, and (2) replacing the ad hoc approach used by
system designers to delimit the interval-boundaries.

The framework is based on the observation that
vague concepts and their interval-boundaries (also re-
ferred to as thresholds) are constrained by the under-
lying domain knowledge that must be used to reason
about the thresholds. We motivate the components of
the framework by extending Davis’ baldness example.

Example 1: “Anyone with 3 or fewer hairs is bald
and anyone with 20000 or more hairs is not bald”
“All old people are bald” (note that “old” itself is a
vague concept that we will assume has a well-defined
boundary)
“Anyone who is 50 years or younger is not old whereas
anyone over 80 is old”

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

“All presidents of companies are old”
“Tom’s age is 70 years, he has 500 hairs and is the
president of a company”
“Jim’s age is 75 years and he has 800 hairs”
“Sam’s age is 45 and he has 650 hairs”

Is Tom bald? Logical reasoning tells us that since
Tom is president of a company, he is old and therefore
bald. Note that here we used only the logical relations
between the concepts president, old and bald, where old
and bald are vague concepts but president is not.

Is Jim bald? We can reason that since Tom is old,
the oldness threshold’ can be at most 70. Since Jim’s
age is 75 which is over the oldness threshold, he must
be old and therefore bald. Note that here we needed
numerical reasoning with Tom and Jim’s ages and old-
ness threshold, as well as logical reasoning that since
Jim is old he must be bald.

We can ask if the baldness threshold is necessarily
more than 800? Since Jim is bald and has 800 hairs,
the baldness threshold must be at least 800. There-
fore, the answer to the query is yes and hence anyone
with less than 800 hairs is bald. Here we needed nu-
merical reasoning about Jim’s hairs and the baldness
threshold.

Is Sam bald? Since anyone with less than 800 hairs
is bald, and Sam has only 650 hairs, he must be bald.
Here we needed numerical reasoning with number of
hairs on Sam’s head and the baldness threshold.

As illustrated by this example, we need to represent
both logical relations between symbolic concepts and
numerical relations on thresholds. Also, logical as well
as numerical reasoning is required to answer the inter-
esting queries. Hence, the proposed framework facil-
itates this representation and supports queries about
the thresholds.
Framework: The framework is comprised of three
main parts - a constraint language to express do-
main knowledge, a query language to query the domain
knowledge and a computational mechanism to answer
the queries.

The first part of the framework is a constraint Zun-
guuge that captures the domain knowledge. The lan-
guage enables the expression of logical constraints on
the vague concepts as well as numerical constraints on
the thresholds of these copcepts. Explicit representa-
tion of the thresholds is important to represent the nu-
merical constraints and as we shall see, to ask queries.

The second part of the framework is a query language
that extracts relevant information about the thresholds
implied by the domain knowledge. In particular, the
queries enable us to delimit the thresholds based on
the information provided in the domain knowledge2.

‘By oldness threshold we mean that age such that ev-
eryone of higher age is old whereas everyone of lower age is
not old. The baldness threshold is defined analogously.

2Note that it is not necessary to assign specific values
to the thresholds to answer any queries, although this as-

This is exactly what a system designer needs to define
intervals for a vague concept that are consistent with
the domain knowledge. For example, the answer to the
query “what is the minimum permissible value for the
baldness threshold?” provides the designer with useful
information to define the interval for bald.

The third part of the framework is a computational
mechanism to answer the queries in the query lan-
guage using the domain knowledge expressed in the
constraint language.

In Sections 2 and 3, we introduce particular con-
straint and query languages. In Section 4, we de-
scribe a computational mechanism to answer queries
for these languages. It includes a sound and com-
plete algorithm, a discussion of the complexity, and ex-
perimental results illustrating the applicability of the
framework. Our experiments were carried out in the
domain of medical diagnosis where numerical measure-
ments of parameters such as blood pressure and heart
rate are abstracted to vague concepts such as high and
low blood pressure and used for the diagnosis of the
patient’s condition. In this paper, for the sake of clar-
ity and understanding, we stick to the more everyday
example of bald people.

2 Constraint Language
To express the domain knowledge, the constraint lan-
guage must have an explicit representation of thresh-
olds, a language to express numerical constraints and a
language to express the logical constraints. We present
such a language here, chosen for its familiarity as well
as to strike a tradeoff between expressivity and effi-
ciency of answering queries.

The vague predicates in the logical language are dis-
tinguished from the other predicates. We refer to the
vague predicates, which must all be unary, as intervul-
predicates and to all other predicates as nonintervul-
predicates. The set of interval-predicates is denoted
by ZP, and the set of noninterval-predicates by n/z?.
With every P E ZP we associate two threshold terms
P- and P+, called the Zower and upper thresholds of
P, respectively. The set of all threshold terms is de-
noted by 7- (7 = {P-, P+ 1 P E ZP}). The interval-
predicates will be interpreted in a special way to reflect
our intuition about the vague predicates: P will be in-
terpreted as the interval [P-,P+] over 9, the set of
real numbers. We will refer to this interpretation as
the predicate-us-intervuZ assumption.

1. Numerical Constraints: The language of numer-
ical constraints is that of linear arithmetic inequali-
ties where the threshold terms in T are the variables
of the inequalities. A numerical constraint must be
reducible to the form (alzl + . . . +a,~,) rel b, where
a1)...) un,b E 92, Xl,.. .,z, E 7-, and rel E {s,>,
<, >, =}. We denote the set of numerical constraints
by NC.

signment is made much easier in our framework.

Nonmonotonic Logic 427

2. Logical Constraints: These are definite Horn
clauses without function symbols (also called Dat-
alog sentences in the deductive database literature
[Ullman 19881). The predicates of these logical
constraints are interval-predicates ZP as well as
noninterval-predicates NZP. We denote the set of
logical constraints by LC.

The constraints in Example 1 are represented in the
language as follows. We extend the example to include
another constraint that all rich VPs become presidents
of companies.
Example 2:

ZP = {bald, old, rich}

N-ZP = (age, hairs, pres, money, was-VP)

NC = (bald- = 0, 3 5 bald+ 5 20000, old+ = 00,
50 5 old- 5 80, 0.1 5 rich- 5 1, rich+ = 00 >
u {P-<P+jPEZP}

The unit for bald is number of hairs, for old is age in
years, and for rich is money in millions of dollars.-
LC = {pres(x) t was-VP(z) A money(x, y) A rich(y)

bald(z) t old(y) A uge(z, y) A huirs(z, z)
Old(Y) +- Pr44 A W(X,Y)
age (Tom, 70)) hairs (Tom, 500)) was- VP(Tom),
money(Tom, 6), uge(Jim, 75), huirs(Jim, 800)
uge(Sam, 45), huirs(Sam, 650)) q

There are other languages that combine quantitative
and qualitative constraints. For instance, Williams’
qualitative algebra [Williams 19881 expresses opera-
tions on reals and signs of reals, but is not concerned
with logical constraints. Similarly, [Meiri 19911 and
[Kautz & Ladkin 19911 present frameworks for express-
ing and processing both quantitative and qualitative
temporal constraints. Their language limits the con-
straints, whether numerical or logical, to be binary
whereas our language does not. On the other hand,
their language can express disjunctive relations be-
tween intervals which our language does not.

Most closely related to our language are languages
for constraint logic programming (CLP) in the style of
Lassez et al. [Jaffar & Lassez 19871. CLP considers
general Horn theories, as opposed to our limited Dat-
alog theories. However, CLP does not allow numerical
constraints in the head of a clause. In our language
the interval-predicates can occur in the head which,
if represented in CLP, would correspond to numerical
constraints occurring in the head.

3 Query Language
The purpose of the query language is to enable a user
to extract information about the thresholds that is im-
plied by the domain constraints. It is a useful tool for
a system designer to find the threshold values allowed
by the constraints. The kind of queries supported are
informally described below. Here Pih, . . . , P”,h E ‘T,
al >“‘> a, E !R, rell,.. . ,reZn E {<,>,<,>,=), and
i E (l,...,n).

Is it necessarily the case that (Pih rell al) A. . . A
(Pk’ reZn a,) ?
Is it possibly the case that (Pih rell ai) A.. . A
(Pk’ rel, a,) ?

What is the minimum value that Pih can take?
What is the maximum value that Pi” can take?
Many queries may be derived using the above prim-

itives. For example, the query “P(a) ?” can be cast as
“Is it necessarily the case that (P- < a) A (P+ 2 a) ?“.
If the answer is yes then P(a) is true, otherwise it is
unknown. If the answer to “Is it possibly the case that
(P- 5 a) A (P+ 1 a) ?” is no then P(a) is false, other-
wise it is unknown.

In addition, it is possible to request a specific as-
signment of values to the thresholds that satisfies the
constraints. For Example 2, assigning the value 2000
to the baldness threshold is consistent with the given
constraints. We will indicate briefly in Section 4.3 how
this assignment is made. This procedure is particu-
larly useful for a system designer who assigns specific
numbers to the thresholds in the design stage of the
system.

4 Computational Mechanism for
Answering Queries

The final component of our framework is the compu-
tational mechanism responsible for answering queries
on constraints. A key step in answering queries is
preprocessing the constraints by extracting the nu-
merical constraints from the logical constraints and
combining them with the given numerical constraints.
The preprocessing is a two-step procedure: first, using
the predicate-as-interval assumption, the procedure
extracts the numerical information on the interval-
predicates from the logical constraints LC. This de-
rived information is in the form of disjunctions of nu-
merical constraints. Next, the procedure combines
these disjunctive constraints with the given numeri-
cal constraints NC. We describe the procedure to ex-
tract numerical information from LC in Section 4.1. In
Section 4.2 we prove that the procedure is sound and
complete and also discuss the complexity issues. In
Section 4.3 we describe how to combine the numerical
information from LC with NC.

4.1 Extracting Numerical Informat ion
from Logical Constraints

The algorithm Symb-to-Numeric described in this sec-
tion takes as input the logical constraints LC and
the sets of interval and noninterval-predicates ZP
and n/zp, and returns a set of numerical constraints
quantJIC. This process of conversion from logical to
numerical constraints preserves the information about
the thresholds of interval-predicates but discards the
information on the noninterval-predicates. A formal
discussion is deferred to Section 4.2.

428 Goyal

Function Symb_to-Numeric(LC, ZIP, nfip) : quantJ/C
s + 0;
for every clause c E LC such that head(c) E ZP do

S, t Expand(c, LC, 27, NZP);
stsus,; /* S has no JI&TP predicates */

endfor
quant JlC t 0;
for every clause c E S do

quantJIC t quant-LC U Convert-LC-to-NC(c);
return(quant-LC)

endfunction

Figure 1: Numerical Information from Logical Con-
straints

The algorithm Symb-to-Numeric is described in
Figure 1. Starting with all those clauses in LC that
have interval-predicates at the head, we expand their
bodies using other clauses in LC until all noninterval-
predicates are eliminated from the body. Expand is
very similar to SLD resolution [Lloyd 19871 but with
two differences: (1) only noninterval-predicates are
expanded (2) all possible expansions are computed.
Thus, each clause in set S of Figure 1 has only interval-
predicates. Using the predicate-as-interval assump-
tion, we convert the resultant clauses to numerical con-
straints as described by function Convert-LC-to-NC
in Figure 2. This function works by fragmenting
each clause into subclauses such that each subclause
has at most one variable and no two subclauses have
the same variable 3. For example, the clause P(a) t

$1; R$x) A S(b) is a disjunction of three subclauses:
a t Q(x) A R(x)” and “t S(b)“. In general,

each s;bclause thus obtained will be one of the six
basic types described in Figure 2. Each type of sub-
clause is converted to numerical constraint by using
the predicate-as-interval assumption, and by interpret-
ing the connectives 1, V, A as complement, union and
intersection of intervals, respectively.

An application of the algorithm on Example 2 is il-
luminating:
Example 3: The first step in the procedure is to lo-
cate clauses with interval-predicates at the head in LC
and expand them until all noninterval-predicates are
eliminated. Here there are two such clauses with old
and bald at the head. On expansion, we obtain set S:
bald(500) t old@) old(m) t rich(6)
bald(800) t old(75) bald(650) t old(M)

On applying the function Convert-LC-to-NC, each of
these clauses fragments into subclauses of the first two
types: “P(a)” and “t P(a)“. On conversion we obtain
the set quunt_L@:
quuntJ/C =
{(bald- < 500 5 bald+) V (70 < old-) v (old+ < 70)

3Note that this is always possible because all interval-
predicates are unary.

4Note that each of the 4 clauses obtained here will ac-
tually split into 2 clauses.

fin$$bot; Convert-LC-toiVC(lc) : nc
.

h-sub&uses t MakeSubclauses(/* Every
subclause of lc with a constant or the same variable */
for every subclause subcl E lc-subclauses do

Case subcl of: /* a is a constant */
“P(a)“: subcl’ t (P- 2 a < P+)
“t P(a)“: subcl’ t (a < P-) v (a > P+)
L’P(x)“: subcl’ t (P- = -CO) A (P+ = +CO)
(‘t P(2)” : subcl’ t t’- > f’+
((t PI(,), . . .) P,(x)“:

subcl’ t vrcl $Y1 (P; > Pj’)
“P(z) t Q&T), . . . , Q&$‘:

subcl’ t (vyzIP- < Q;) A (vrEIP+ 2 Q’) ;
nc t nc V subcl’

endfor
return(nc)

endfunct ion

Figure 2: Conversion from Logical to Linear Arith-
metic Constraint

(old- < 70 5 old+) V (6 < rich-) V (rich+ < 6)
(bald- 5 800 5 bald+) v (75 < old-) v (old+ < 75)
(bald- 5 650 5 bald+) v (45 < old-) v (old+ < 45))

4.2 Formal results on conservation of
numerical informat ion

We establish formally that no numerical informa-
tion is lost in the conversion performed by algorithm
Symb-to-Numeric. We begin by defining the mod-
els of LC that are faithful to the predicate-as-interval
assumption; we call these the standard models. Specif-
ically, in all standard models it4 = (0, p) over a do-
main D, the interpretation function 1-1 will have to map
interval-predicates to intervals over the reals. In the
following, !R denotes the set of real numbers.

Definition 1: Given a set of logical constraints LC,
the set of interval-predicates ZP, and the set of thresh-
old terms 7, a standard model of LC w.r. t. ZP is a
model M = (D, p-I> such that M k LC, and for ev-
ery P E ZP there exist P- , P+ E 7- and it is the case
that p(P-),p(P+) E ?R and p(P) = {x 1 p(P-) 5 x 5
/4p+>, x E w

efinition 2 : Given LC, ZP and ‘T as above, a
numerical submodel of LC w.r.t. ZP is a model
M = (R, p) such that there is some standard model
Al’ = (DJ.4’) of LC w.r.t. ZP, and ,!L is the restriction
of $ to terms in 7.

The following theorem establishes that the algorithm
symb-to-numeric is sound and complete w.r.t. the nu-
merical information (complete proof in [Goyal 19931).
Theorem 4 : (Soundness and Completeness) The
class of numerical submodels of LC w.r.t. ZP is iden-
tical to the class of models of quunt.LC.

Proof: (Sketch for Completeness) An arbitrary model
M of quunt-LC is extended to a standard model M’ of

Nonmonotonic Logic 429

LC such that its numerical submodel is exactly M. M’
is constructed by first building a dependency graph of
predicates in LC and then by defining the interpreta-
tion of the predicates in A&P in the topological order
of the graph. The intuition is that when a clause in
LC is used to build the interpretation of the predi-
cate in the head from the predicates in the body, the
body predicates would have been already interpreted
because of the order of interpretation. The equivalence
of the numerical submodel of M’ and the model M is
proved through mathematical induction on the topo-
logical order of predicates. I

In the worst case, the space and time complexity
of computing quant_LC is exponential in the size of
LC. This is not surprising, since in the worst case,
quantJ/C is of exponential size. However, we have
identified syntactic restrictions on the constraint lan-
guage for which we can avoid such exponential blowup.
In practice, the performance of the algorithm has been
found to be quite acceptable for the following reasons.
First, we observe that the algorithm is exponential ,only
in the size of the non-ground constraints. Typically,
the number of non-ground constraints is small com-
pared to the number of ground literals. Second, this
algorithm is invoked only once for all the queries on a
given set of constraints; hence, the cost is amortized
over all the queries. Thus, the overall performance of
the system is not severely affected despite the appar-
ent intractability. A more detailed discussion of the
complexity issues may be found in [Goyal 19931.

4.3 Combining with Numerical
Constraints

The constraints in the set quantJIC, obtained by con-
verting the logical constraints to numerical constraints,
are disjunctive. These constraints must be combined
with the set of given numerical constraints NC to an-
swer the queries. In principle, we can convert the set
quant-LC to disjunctive normal form (DNF) and add
the constraints NC to each disjunct. The disjunction
thus obtained is referred to as output-c. However,
in practice, we leave quant-LC in its conjunctive nor-
mal form to save space, and generate the disjuncts of
output-c one by one through backtracking. Further-
more, to make the process more efficient, we first re-
duce the size of the set quantJIC using the constraints
NC. We elaborate on these below and also discuss how
existing methods are applicable to answer queries on a
single disjunct of output.C.
Pruning quant.JC: We have developed a procedure
that uses the constraints in NC to reduce the size
of the set quantJ/C significantly. This procedure,
called reduce, uses the upper and lower bounds of all
thresholds implied by the constraints in NC to prune
quant-LC in two ways. First, if a disjunct of a con-
straint in quantJIC is already satisfied by the bounds,
then that constraint can be deleted from quant_LC. In

Example 3, the lower and upper bounds for old- are
50 and 80 respectively, hence (old- > 45) is already
satisfied. Second, if a disjunct is inconsistent with the
bounds, then that disjunct can be deleted. For in-
stance, (old- > 82) is inconsistent with the bounds for
old-.

The experimental results confirm that the procedure
reduce reduces the size of quant_LC significantly. In
Example 3, quant_LC has 8 constraints with 3 dis-
juncts each that should give rise to 3* disjuncts (in
DNF) in the worst case. Applying procedure reduce
eliminates all but 1 disjunct, that is:

output-C = NC U {(old- 5 70), (bald’ 2 SOO)}

When the procedure was applied to the medical diag-
nosis domain, in the first application quant-LC had 12
constraints with 3 disjuncts each, giving rise to 312 dis-
juncts in the worst case. Procedure reduce eliminated
all but 2 disjuncts. In a second medical application,
quant-LC had 416 constraints with 2 or 3 disjuncts
per constraint that would have given rise to at least
2416 disjuncts. Procedure reduce eliminated all but
2592 disjuncts.
Generating disjuncts of output-C: Once the set
quant-LX has been pruned, queries are answered by
generating the remaining disjuncts of output-c one
at a time through backtracking. We avoid generat-
ing redundant disjuncts in output-C by recognizing
the presence of common disjuncts in the constraints
of quant-.LC. For instance, in the second medical ap-
plication, only 184 disjuncts had to be generated out
of the 2592 that were possible.

In practice, most queries do not require backtracking
even over all possible distinct disjuncts that are gen-
erated. For instance, a query whether a constraint is
possibly true or not, has to find any one disjunct over
which the constraint is satisfied. Furthermore, even for
queries where all disjuncts have to be checked, an ap-
proximate answer can be obtained by computing only
on a few disjuncts. For instance, a query to find the
minimum value of a threshold can return the minimum
over only a few disjuncts. This approximate answer
is still useful since it supplies a lower bound on the
threshold, even though not the tightest lower bound.
Thus, this procedure gives a useful approximate an-
swer any time that an answer is required, and the ap-
proximation gets closer to the optimal as the allowed
time increases. The experimental results on answering
queries are available in [Goyal 19931.

We can even assign a specific value to the thresholds
using heuristic criteria. For Example 3, the baldness
threshold (bald+) could be 10400 which is halfway be-
tween its bounds of 800 and 20000, and satisfies all
the given constraints. When a large amount of ground
data is available, clustering techniques are utilized to
assign a specific value.
Answering for each disjunct: We have discussed
previously how the set quant_LC is pruned a priori to
eliminate redundant disjuncts and how the disjuncts

430 Goyal

of output-C are generated. Each disjunct thus gen-
erated is a set of linear arithmetic constraints. We
now discuss how any query is answered on a single
disjunct. The queries for maximum and minimum val-
ues of thresholds (queries 3 and 4 in Section 3) re-
quire the computation of lower and upper bounds of
thresholds. Queries for checking a constraint for con-
sistency (queries 1 and 2 in Section 3) require a con-
sistency check on a set of constraints. Thus, any exist-
ing method for computing bounds and checking consis-
tency of linear arithmetic constraints can be used. If
NC has only simple order relations or bounded differ-
ences, we can use an efficient S(n3) procedure (where n
is the number of variables) from [Davis 19871 or [Meiri
19911. Sacks’ bounder [Sacks 19901 is applicable but
more useful for nonlinear constraints. For more gen-
eral linear constraints, we have to use a linear program-
ming method that is still tractable 6(n3a5L) (L is size
of input) [Karma&u 19841. Lassez’s work on canon-
ical form of generalized linear constraints [Huynh et
al. 19901 has potential applications, though the advan-
tage of a canonical form would be offset by the cost of
maintaining the canonical form because we backtrack
on disjunctive constraints.

5 Conclusions
We have provided a systematic account of the practi-
cal approach of representing vague concepts as precise
intervals over numbers. Based on the observation that
the vague concepts and their interval-boundaries are
constrained by the underlying domain knowledge, we
motivated and proposed a framework to reason pre-
cisely with vague concepts. The framework is com-
prised of a constraint language to represent the domain
knowledge; a query language to request information
about the interval boundaries; and a computational
mechanism to answer the queries.

We described the constraint and query languages
and a computational mechanism to answer queries. A
key step in answering queries is preprocessing the con-
straints by extracting the numerical constraints from
the logical constraints and combining them with the
given numerical constraints. We proved this algorithm
to be sound and complete and also discussed the com-
plexity issues. Some experimental results of applying
this framework to a medical domain were discussed.

The main contribution of our work is in providing
a systematic framework to understand the common
though ad hoc approach of representing vague predi-
cates as intervals. This work is particularly applica-
ble to a knowledge base during its development stage
where the vague concepts over numbers need to be de-
fined precisely.

Acknowledgements We would like to thank Surajit
Chaudhuri, Ashish Gupta, Alon Levy, Pandu Nayak,
Moshe Tennenholtz, Becky Thomas and the anony-
mous reviewers.

References
Davis, E. 1987. Constraint Propagation with Interval
Labels. Artificial Intelligence 32(3):281-331.
Davis, E. 1990. Representations of Commonsense
Knowledge. Morgan Kaufmann Publishers, 19-20.
Goyal, N. 1993. A Framework for Reasoning Precisely
with Vague Concepts. Ph.D. diss. (in preparation),
Dept. of Computer Science, Stanford University.
Hayes-Roth, B.; Washington, R.; Hewett, R.;
Hewett, M.; and Seiver, A. 1989. Intelligent Monitor-
ing and Control. In Proc. of Eleventh International
Joint Conference on Artificial Intelligence, 43-249.
Huynh, T.; Joskowicz, L.; Lassez, C.; and
Lassez, J-L. 1990. Reasoning about Linear Con-
straints using Parametric Queries. In Proc. of Tenth
FST TCS, Bangalore, India.
Jaffar, J.; and Lassez, J-L. 1987. Constraint Logic
Programming. In Proc. of 14th A CM Symposium on
Principles of Programming languages, 111-119.
Karma&r, N. 1984. A New Polynomial-Time Al-
gorithm for Linear Programming. Combinatorics
4:373-395.
Kautz, H.A.; and Ladkin, P.B. 1991. Integrating Met-
ric and Qualitative Temporal Reasoning. In Proc. of
Ninth National Conference on Artificial Intelligence,
241-246.
Lloyd, J.W. 1987. Foundations of Logic Programming,
2nd. ed.. Springer-Verlag.
Meiri, I. 1991. Combining Qualitative and Quantita-
tive Constraints in Temporal Reasoning. In Proc. of
Ninth National Conference on Artificial Intelligence,
260-267.
Parikh, R. 1983. The problem of Vague Predicates.
In Cohen and Wartofsky (eds.), Language, Logic, and
Method. Reidel Publishers, 241-261.
Sacks, E. 1990. Hierarchical Reasoning about In-
equalities. In Readings in Qualitative Reasoning about
Physical Systems, eds. D.S. Weld and J. de Kleer.
Morgan Kaufmann Publishers, 344-350.
Shahar, Y.; Tu, S.W.; and Musen, M.A. 1992. Knowl-
edge Acquisition for Temporal-Abstraction Mecha-
nisms. Knowledge Acquisition 4:217-236.
Ullman, J.D. 1988. Principles of Database and
Knowledge-Base Systems, Vol. 1. Computer Science
Press.
Williams, B.C. 1988. MINIMA: A Symbolic Approach
to Qualitative Algebraic Reasoning. In Proc. of Sev-
enth National Conference on Artificial Intelligence,
264-269.
Zadeh, L.A. 1983. Commonsense and Fuzzy Logic. In
The Knowledge Frontier: Essays in the Representa-
tion of Knowledge, eds. N. Cercone and G. McCalla.
New York: Springer-Verlag, 103-136.

Nonmonotonic Logic 431

