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Abstract 

Many reported discovery systems build discrete 
models of hidden structure, properties, or pro- 
cesses in the diverse fields of biology, chemistry, 
and physics. We show that the search spaces un- 
derlying many well-known systems are remarkably 
similar when re-interpreted as search in matrix 
spaces. A small number of matrix types are used 
to represent the input data and output models. 
Most of the constraints can be represented as ma- 
trix constraints; most notably, conservation laws 
and their analogues can be represented as matrix 
equations. Typically, one or more matrix dimen- 
sions grow as these systems consider more complex 
models after simpler models fail, and we introduce 
a notation to express this. The novel framework of 
matrix-space search serves to unify previous sys- 
tems and suggests how at least two of them can be 
integrated. Our analysis constitutes an advance 
toward a generalized account of model-building in 
science. 

Introduction 
The discovery of models of atomic and molecular struc- 
ture, of chemical processes, and of genetic transmission 
are celebrated events in the history of science. Far from 
being isolated historical instances, discovery of hidden 
structure in the form of discrete models is a universal 
and current task across the natural sciences. 

Several discovery systems reported in the AI liter- 
ature discover models of discrete, hidden structure. 
These systems include DALTON [Langley et al., 19871, 
GELL-MANN [Fischer and Zytkow, 19901, MECHEM 
[Valdes, 1992; 1993 (in press)], MENDEL [Fischer and 
Zytkow, 19921, BR-3/PAULI [Kocabas, 1991; Valdes, 
accepted], STAHL [Zytkow and Simon, 1986] and its 
descendents STAHLp [Rose and Langley, 19861 and RE- 
VOLVER [Rose, 19891. Of these, DALTON, MECHEM, 
and STAHL perform in chemistry, GELL-MANN and 
BR-3/PAULI in physics, and MENDEL in biology. 

Despite the diversity of scientific domains that these 
systems treat, there lurk striking similarities in the rep- 

resentation of models, problem-solving methods, and 
domain knowledge used in model construction. Some 
of these similarities were pointed out elsewhere [Fis- 
cher and Zytkow, 19921. These similarities may even- 
tually allow us to develop a unified discovery system 
able to search for many types of discrete models. As 
a prerequisite, we should study existing systems that 
have already demonstrated a degree of competence on 
historical or current science. An important theoretical 
task of comparative analysis, which is relatively scarce 
in the AI literature, is to identify a unitary core among 
these systems. Without this, progress is limited to the 
accumulation of special-purpose programs. 

The purpose of this paper is to identify a com- 
mon representation of discrete models and a systematic 
analysis of the search spaces and domain constraints 
using the language of matrices. Our analysis intro- 
duces a small set of matrix types that represent the 
input data, the output models, and the spaces to be 
searched by the discovery system. Models are proposed 
by assigning numeric values to entries in a matrix, most 
assignments being ruled out by the domain constraints. 
The matrix representation enables the use of power- 
ful methods of matrix algebra and combinatorial algo- 
rithms to improve the search for discrete models. 

We also introduce a new notation to express how dis- 
covery systems carry out the search for models by pos- 
tulating new entities, processes, and properties. This 
notation is used later to show how two specific systems 
that were developed separately can be integrated. 

Systems 
In this section we will m-interpret six discovery systems 
and show that they have a surprising degree of similar- 
ity. Three types of matrices used in these systems will 
be highlighted: a reaction matrix R, a structure ma- 
trix S, and a property matrix P, defining them in the 
context of each system. We use the language of matri- 
ces and matrix algebra to describe the constraints in 
these systems. We also show how each system system- 
atically changes the sizes of some few matrices in the 
course of performing its task. 

The emphasis in this paper is on the spaces searched 
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Figure 1: Reaction Matrix in DALTON 

by the systems, and not on the detailed ways each sys- 
tem carries out its search, which varies across systems 
and sometimes even within systems, since several of 
the programs possess more than one internal search 
space. One view of problem-solving in science is that 
it typically proceeds over several spaces which can be 
quite heterogeneous. Initially proposed by Lea and 
Simon [Lea and Simon, 19741, this idea has been ex- 
panded and applied in the discovery system FAHREN- 
HEIT [Zytkow, 19871, while Klahr and Dunbar [Klahr 
and Dunbar, 19881 have investigated it as a psycholog- 
ical model. 

Some comments on notation follow. Matrices will be 
represented as tables with two intersecting perpendic- 
ular line segments, one to mark the rows, the other the 
columns. Additional marks are used to show whether 
a matrix dimension grows, shrinks, or is static: an out- 
going (ingoing) arrow means that the dimension grows 
(shrinks), and a cap means that it is static during prob- 
lem solving. We will see that most of the systems pro- 
gressively enlarge their matrix models when smaller 
models prove inadequate. 

DALTON 
DALTON’s task is to find structural models of chemical 
reactions and substances in terms of atoms [Langley et 
al., 19871. For example, given the following data: 

1. two volumes of hydrogen and one volume of oxygen 
react to form two volumes of water; 

2. three volumes of hydrogen and one volume of nitro- 
gen react to form two volumes of ammonia; 

3. hydrogen, oxygen, and nitrogen are elementary sub- 
stances; 

4. water consists of hydrogen and oxygen, and ammo- 
nia consists of hydrogen and nitrogen; 

DALTON uses its bias for simplicity, conservation laws, 
and the Gay-Lussac law to report correctly that (1) two 
hydrogen molecules react with one of oxygen to form 
two water molecules, while three hydrogen molecules 
combine with one nitrogen molecule to form two am- 
monia molecules, and that (2) hydrogen, oxygen and 
nitrogen are diatomic, water is Hz0 and ammonia is 
NHs. 

In making these inferences, DALTON can be inter- 
preted as filling in two matrices. The first matrix de- 
scribes inputs and outputs for each reaction; the ex- 
ample discussed in [Langley et al., 19871 has the initial 

S N 0 HI1 
hydrogen 0 0 [> 0] 
nitrogen [>0] 0 0 - 

oxygen 

1 

PO1 
ammonia &I A 

water 0 &I [>Ol 
Figure 2: Struyure Matrix in DALTON 

form shown in Figure 1. The bracketed constraints 
represent conventional matrix depictions of reactions 
[Aris and Mah, 19631: the reactants have negative en- 
tries, and the products have positive entries. All non- 
participating substances have zero entries. In this pa- 
per, we will always denote such a reaction matrix by 
72 r Xs, where r is the number of reactions, and s is the 
number of chemical substances. 

A second, structure matrix in DALTON (Figure 2) 
represents the structure of the chemical substances in 
terms of atomic elements. Initially, some of the en- 
tries are zero to indicate that certain substances do 
not contain certain atoms. The remaining entries in 
the matrix are constrained to positive integers. We 
denote this structure matrix as SSxe, where s as be- 
fore is the number of substances, and e is the number 
of chemical elements involved. 

The sizes of the 72 and S matrices are fixed, as in- 
dicated in the figures by a “double cap” notation that 
prevents the matrix from changing size. DALTON does 
not conjecture new reactions, substances, nor chemical 
elements, so it never enlarges the two matrices which 
it receives as input. 

DALTON’s task is to fill in the reaction matrix and 
the structure matrix completely with integer entries, 
subject to the constraints stated above, a criterion of 
simplicity of entries, and a conservation law on atoms, 
which is expressed in matrix algebra as follows: 

72 rxs x &xe = or,, (1) 
This equation implies that each of r reactions must 
conserve the atoms of all e elements: the product R x S 
gives the zero matrix 0 of dimensions r x e. Conser- 
vation means that the net production of atoms of each 
element is zero for each reaction. Simplicity has a role 
in choosing the magnitudes of the entries (integers of 
smaller magnitude are simpler). Equation 1 is the stan- 
dard way to express linear conservation conditions in 
sciences such as chemistry. 

In our example, DALTON outputs the two matri- 
ces in Figure 3 (the output matrix R is shown trans- 
posed to fit on the page). The matrix R quantifies 
the qualitative reaction matrix input to DALTON, e.g., 
three hydrogen molecules enter into the ammonia re- 
action. The output matrix S specifies the elementary 
constituents of each substance. For example, a value 
of 2 for the matrix entry (hydrogen, H) in S means 
that hydrogen molecules include two atoms of hydro- 
gen. Since all other entries in the hydrogen row are 
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RT water ammonia 
reaction reaction 

hydrogen -2 -3 11 
nitrogen 0 -1 
oxygen -1 0 

ammonia 0 2 
water 2 0 - - 

S N 0 H 
hydrogen 0 0 2 rl 
nitrogen 2 0 0 
oxygen 

1 

0 2 0 
ammonia 1 0 3 

water 0 1 2 

Figure 3: Ou&t of DALTON 

S quark1 . . . quark, 
particle1 

. 

. I . 
particle, !L 

72 property1 . . . property, 
quark1 II 

. . . 
quark, 

Figure 4: Matrix Structure of GELL-MANN 

zero, the hydrogen molecule is diatomic, i.e., has struc- 
ture H2. 

GELL-MANN 
GELL-MANN’s task is to propose quark models that 
account for the known property values of the particles 
in elementary-particle families [Fischer and Zytkow, 
19901. The models constructed by GELL-MANN are 
filled-in pairs of matrices shown in Figure 4. The 
structural S matrix is analogous to the S matrix in 
DALTON: s particles (or “substances”) will contain e 
quarks (or “elements”). The second matrix in GELL- 
MANN is a property matrix P which assigns values of 
p properties to e quarks. The domain constraints on 
the S matrix are: - 
e The matrix entries are non-negative integers. 
e The sum of entries over each row equals k, which is 

the number of quarks contained in each particle. 
o The number of L-combinations of the set of e quarks 

(with infinite repetition number), which by a the- 
orem in elementary combinatorics [Brualdi, 1981] 
equals C(e - 1+ k, k), satisfies s 5 C(e - I+ k, k) 5 
3s, where s is the number of input particles. 

Contrary to DALTON, GELL-MANN enlarges the num- 
ber of columns in the first matrix (and perforce the 

Figure 5: Matrix Structure of MECHEM 

number of rows in the second) if it cannot find an 
acceptable model for the current number of quarks. 
Adding another column corresponds to postulating 
one more quark. During its search for an acceptable 
model, GELL-MANN also increments the value of 1, 
the number of quarks per particle. Each k leads to 
C(e - I+ k, k) possible quark combinations, each rep- 
resented by one row in the expanded S matrix. The 
number of input particles is constant, and equals S. 

The quark models proposed by GELL-MANN must 
also be consistent with the observed property values of 
the particles. For example, since a proton has a charge 
of 1, the sum of charges for quarks which constitute 
the proton must be also 1. This constraint is called 
an “additivity law” in [Fischer and Zytkow, 19901, and 
is analogous to laws of conservation. Whereas conser- 
vation in DALTON (and generally) is expressed by a 
constraint of the form R x S = 0, additivity in GELL- 
MANN is expressed as S, Xe x Pexp = P’, xP. The 
matrix P’ contains property values of particles, which 
are constants given as input to the system. Matrices 
P and P’ both contain property values: the first for 
hidden objects postulated in the model, the second for 
observable objects given in the input. 

Those rows in GELL-MANN’s S matrix correspond- 
ing to particles input to the program are tested using 
the additivity law. However, GELL-MANN also pre- 
dicts unseen particles by taking advantage of those 
quark combinations (numbering C(e - 1 + k, k) - s) 
that were not used to model the known particles. In 
these cases, the properties of these new particles are 
predicted by simply pre-multiplying the matrix P by 
these C(e - 1+ k, k) - s rows. 

MEC 
MECHEM’s task is to discover the simplest pathway 
able to explain all the experimental evidence about 
an aggregate chemical reaction [Valdes, 1992; 1993 (in 
press)]. MECHEM searches the space of two matrices 
shown in Figure 5. Some constraints on the R matrix 
are: 
1. matrix entries admit only integer values, 
2. For each row, the sum of the negative integers is -1 

or -2. The sum of the positive integers is 1 or 2 
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[Each reaction has at most two reactants and two 
products]. 

3. Each column contains at least one nonzero entry [All 
substances must occur somewhere in the reaction]. 

4. For each column corresponding to observed or con- 
jectured products, the top-most nonzero entry is 
positive [Each product must be formed before it can 
be consumed]. 

The fourth constraint is used to define a canonical 
order on reactions in the service of search efficiency 
[Valdes, 19911; t i is not derived from chemical theory. 

New rows and columns can be added in the R ma- 
trix as the program fails with simpler hypotheses, so 
we see that MECHEM has two dimensions of expansion 
that guide its search in this matrix space. MECHEM 
prefers adding new reactions (by incrementing T) over 
incrementing the number of conjectured substances, so 
usually the matrix is growing vertically. Three sys- 
tems considered in this paper (MECHEM, MENDEL, 
and GELL-MANN) enlarge matrices along two dimen- 
sions . 

In the S matrix, the molecular formulas for the start- 
ing materials and observed products are known; the 
program determines the formulas, or matrix entries, 
for the conjectured substances. This task is common 
to all systems which fill in entries in the S matrix. As in 
DALTON, the conservation conditions can be expressed 
as the equation RrXs x Ssxe = O,,,, in which S is a 
structure matrix that contains the molecular formula 
(involving e chemical elements) of each substance, and 
0 ,.Xe is the zero matrix. 

In addition to conservation of the elements, 
MECHEM incorporates other chemical constraints that 
arise from properties of substances, such as free energy 
or oxidation number. These constraints can be inter- 
preted as an equation 72,., x PsxP = ZTxP, in which 
the constraint on the entries of the p columns of 2 vary 
according to the property. For example, in certain ox- 
idation reactions, the oxidation number should never 
decrease across a reaction, so all the entries under the 
oxidation-number column of 2 would be non-negative. 

The above are not the only search spaces in 
MECHEM. For example, to perform its task at a mod- 
ern level of competence, molecular structures must be 
inferred for the conjectured substances, not only for- 
mulas. The space of molecular structures can also be 
represented as a matrix, similar to the search space in 
DENDRAL [Lindsay et al., 19801. 

MENDEL 

MENDEL’s task is to devise genetic explanations for 
observed inheritance patterns (or “reactions”) among 
phenotypes [Fischer and Zytkow, 19921. Each pheno- 
type is explained by one or more genotypes. MENDEL 
searches the pair of matrices 7t and S in Figure 6, 
in analogy to the matrix R in DALTON, MECHEM, 

S gene1 . . . gene, 
genotype1 

. . 
genotype, i 

Figure 6: Matrix Structure of MENDEL 

and STAHL, and in analogy to S in DALTON, GELL- 
MANN, and MECHEM. The domain constraints on S 
are identical to GELL-MANN’s: 

o The matrix entries admit only non-negative integers. 
e The sum of entries over each row equals k, which is 

the number of genes making UP a genotype. 

d The number s def C(e-l+k, k) of possible genotypes 
having k genes (analogous to the constraint in GELL- 
MANN) satisfies the constraint f 5 C(e - 1+ k, k) 5 
3f, where f is the fixed number of input phenotypes. 

MENDEL enlarges the number of columns in S if it 
cannot find explanations of genetic reactions within a 
specific number of genes. Adding one more column to 
the matrix corresponds to postulating one more gene. 
MENDEL, like GELL-MANN, carries out a subordinate 
search by varying the values of the parameter k, which 
together with the number e of genes leads to postu- 
lating C(e - 1 + k, k) g enotypes; these determine the 
number of rows in the S matrix and columns in the R 
matrix. MENDEL’s search for gene combinations into 
genotypes is similar to GELL-MANN and DALTON, al- 
though several genotypes may be needed to explain 
one phenotype and several genotype reactions may be 
needed to explain one phenotype reaction. 

The relative number of reactions between genotypes 
which look identical at the phenotype level is accept- 
able when it is approximately equal to the observed 
inheritance statistics that govern mating between phe- 
notypes. Rather than using a predefined conservation 
principle, MENDEL searches for the right conserva- 
tion/combination principle for genetic reactions, and 
finds out that one gene per parent is preserved in each 
offspring. 

Since the same genotype can occur on both sides 
of a genetic reaction, and the occurrences should not 
cancel out, the entries in the R matrix need to be pairs 
(nr, nP), where n, is the number of reactants and nP 
is the number of products of a particular genotype. 

%3/PAULH 

PAULI’s goal [Valdes, accepted], like its predecessor 
BR-3 [Kocabas, 19911, is to postulate a small number of 
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z particle1 . . . particle, 
good reactions II 

bad reactions 1. - 
p qP1 *** QPP) 

particle1 

. 
particle, 1 - 

Figure 7: Matrix Structure of BR-S/PAUL1 

lime 
R 1 

rgt flx.ed rnaa. gria calcined 
air B magnesia, 

RI - + + 
Rs~+ - 0 0 

0 - 
+ 

RI = 
J3.2 

(lime} + {quick lime, fixed air} 
= {quick lime, magnesia alba) 

+ {lime, calcined magnesia} 

Figure 8: Reaction Matrix of STAHL 

quantum properties, together with values for the prop- 
erties for each known elementary particle. New prop- 
erties must explain how certain reactions in physics 
do not occur and how others occur. The (“good”) re- 
actions that occur must conserve each of the postu- 
lated properties, while every (“bad”) disallowed reac- 
tion must disconserve at least one of the properties. 

PAULI’s matrix search space is shown in Figure 7. A 
filled-in R matrix is input to the program. PAUL1 fills 
in the P matrix, and enlarges its number of columns, 
i.e., the number of quantum properties that it postu- 
lates, when simpler models fail. 

The only constraint that applies directly to the 
P matrix is that the quantum properties of parti- 
cle/antiparticle pairs should be of equal magnitude and 
opposite sign. Further constraints on solutions involve 
both conservation and disconservation. Letting g and 
b denote the “good” and “bad” reactions respectively, 
the following matrix equation must be satisfied: 

[ gf,x:] x&p= [ 2;] 

The first matrix is input to the program, the sub- 
matrix 0, xp has only zero entries, and the sub-matrix 
2axp enforces the disconservation: each row of 2 must 
contain a nonzero entry. Like GELL-MANN, BR-3 and 
PAUL1 could predict many unseen good and bad reac- 
tions by combining particles in various ways and test- 
ing whether conservation of all properties holds. 

STAHL 
Unlike other systems, the STAHL program of [Zytkow 
and Simon, 19861 discovers qualitative models rather 
than quantitative ones. Consequently, to describe 
STAHL’s search problem we use qualitative matrix en- 
tries rather than numbers. 

calcined magnesia 

0 
0 
+ 
+ 

Figure 9: Structure Matrix of STAHL 

We use an example from page 128 of [Zytkow and 
Simon, 1986] for illustration. The input to the pro- 
gram consists of qualitative input/output facts about 
chemical reactions shown in Figure 8. A negative en- 
try ‘-’ corresponds to a reactant, a positive entry 
‘+’ corresponds to a reaction product, while any non- 
participating substance receives a zero entry. To rep- 
resent reaction schemes in which the same substance 
occurs both as a reactant and a product, pairs of signs 
can be used, e.g., (-, +). 

STAHL’s task is to discover the elements and the 
make-up of substances in terms of these elements, i.e., 
an S matrix. In the above example, from the first re- 
action STAHL notices that lime consists of quick lime 
and fixed air, and then combining the first and the sec- 
ond, that magnesia alba consists of calcined magnesia 
and fixed air. In effect the S matrix in Figure 9 is cre- 
ated. If two rows in the S matrix have the same entries, 
STAHL concludes that two substances having different 
names are in fact identical. In such a case, one row 
in S (and the column in R) can be deleted to give a 
simpler model; STAHL is the only system in this paper 
that can be viewed to shrink matrices. The columns 
of S can be viewed either as growing and shrinking, or 
as only shrinking from a maximal possible set of ele- 
mentary substances. The number of rows in R grows, 
since STAHL makes “new” reactions from arithmetic 
combinations of known ones. 

STAHL’s R and S matrices satisfy a qualitative con- 
servation principle: each element which occurs in a 
reaction should appear both in its reactants and in its 
products. This can be expressed identically to DAL- 
TON and MECHEM as R,., x SJxe = Cbrxe, where 
matrix multiplication uses qualitative arithmetic fol- 
lowing expected rules, for instance pos x neg = neg, 
pos + pos = pos, pos x 0 = 0. The qualitative arith- 
metic is not associative (e.g., pos + pos + neg could 
equal pos or 0), but the order of production-rule firing 
determines how expressions are simplified. 

Contradictions can arise when the product R x S 
has nonzero entries. Such nonzero entries indicate 
reactions which according to current knowledge (and 
STAHL’s qualitative arithmetic) are unbalanced. 

iscussion 
The six systems examined in this paper propose dis- 
crete underlying models of empirical phenomena across 
a variety of tasks and sciences. All of the systems 
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find models of either the structure or properties of 
substances; this is the main task of DALTON, GELL- 
MANN, MENDEL, BR-3/PAULI, and STAHL. In addi- 
tion, DALTON, MECHEM, and MENDEL find models of 
processes (reactions) in terms of hidden objects. DAL- 
TON takes a set of qualitative reactions and specifies 
them quantitatively, while MECHEM finds a simplest 
set of reactions (a pathway) from scratch. 

All of the systems fill in the entries of one or more 
matrices. All except DALTON enlarge one or more ma- 
trix dimensions, and all including DALTON use con- 
straints expressible as matrix equations of the form 
AB = C or weaker forms of conservation.’ The con- 
cept of simplicity has a strong presence, as reflected es- 
pecially by growth in the matrices, which corresponds 
to entertaining more complex models. 

Three matrix types are observed to recur. The most 
frequent is the reaction matrix R, which appears in all 
of the systems except GELL-MANN. Either the struc- 
ture matrix S or the property matrix P appears in all 
of the systems; all except DALTON and STAHL postu- 
late either new objects or new properties. 

Other discovery systems 
DENDRAL [Lindsay et al., 19801 and TETRAD-II 
[Spirtes et al., 19901 discover models of molecular and 
causal structure, respectively. These models are in the 
form of graphs, which as is well known can always be 
represented as adjacency matrices. However, these two 
systems use different matrix types and different con- 
straints than the ones discussed here, so we have not 
included them in the analysis of this paper. 

AM [Lenat, 19821, GRAFFITI [Fajtlowicz, 19881, and 
BACON [Langley et al., 19871 are other notable discov- 
ery systems that do not seem to fit the present frame- 
work. AM and GRAFFITI find plausible mathematical 
conjectures in elementary number theory and graph 
theory. BACON finds descriptive, empirical laws in 
data. These programs make inductive generalizations 
and introduce new theoretical terms, but do not build 
discrete models of hidden structure. 

What is gained? 
It is always possible to view one thing as another thing. 
A better understanding of a subject is often claimed as 
a virtue of a new viewpoint. However, since “under- 
standing” is a slippery notion, it is more convincing if 
the new viewpoint enables new practical accomplish- 
ments or unifies seemingly unrelated phenomena. This 
section discusses what is gained by the matrix rep- 
resentation of discrete models and the matrix-search 
viewpoint, and culminates by suggesting ways to inte- 
grate separately-developed discovery systems. 

There are several gains from the interpretation and 
notation introduced by this paper. First, they provide 

‘The order of matrix multiplication in AB = C has 
no special significance, since the theorem (AB)T = BTAT 

allows rewriting the former as BTAT = CT. 

a unifying framework that demonstrates a broad sim- 
ilarity of input/output representation, constraint rep- 
resentation, and elements of search. These similarities 
raise the question of whether a more general scheme 
could incorporate these systems as special cases. 

A second benefit from the matrix viewpoint is that 
several constraints can be expressed and satisfied using 
explicit algebraic techniques, such as Gaussian elimina- 
tion or linear programming. MECHEM and PAUL1 do 
use matrix manipulation to satisfy some constraints. 
MECHEM converts pathways to matrices in order to 
solve for the unknown substances by imposing the con- 
servation law of reaction balance. MECHEM also uses 
matrix algebra to test whether a pathway can explain 
observed concentrations data. Finally, MECHEM and 
PAUL1 both use the simplex algorithm of linear pro- 
gramming to implement some constraints, and the sim- 
plex algorithm uses the matrix representation explic- 
itly in the form of tableaus. 

A third benefit is that matrix-based heuristics can 
guide us to find and address other scientific problems 
that resemble the current ones. One should look for 
problems that: 

8 Progressively enlarge classes of objects, structural 
elements, processes, or properties. Mention of sim- 
plicity or Occam’s Razor in this connection is a fa- 
vorable sign. 
Involve integral numbers of combinations of things. 
Involve linear 
tivity laws. 

constraints, e.g., conservation or addi- 

Examples of possible matches are Feynman diagrams 
in particle physics (in which the simplest diagrams are 
called “leading-edge” diagrams), models of ions, and 
models of atomic nuclei. Finally, the next section uses 
the matrix-search viewpoint to demonstrate how an 
integration of GELL-MANN with BR-3/PAULI could be 
carried out. 

ntegrating systems 
The concept of search in matrix spaces can be applied 
to show how the task of GELL-MANN can be integrated 
smoothly with the task of BR-S/PAULI. GELL-MANN’s 
search fills out the two matrices s 1 

particles I 
quarks and 

’ quarz i properties subject to the constraint 

s sxe X Pexp = pi,,- 

Given a reaction matrix 73 1 particles 
reactlons , BR- 

3/PAULI’s search fills out a property matrix 
P” 1 properties 

particles 1 subject to the constraint 

A combined system that carries out the tasks of 
GELL-MANN and BR-3/PAULI simultaneously would 
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fill out the R, S, and P matrices and would need to 
satisfy at least the constraint 

X pexp = 

In the integrated system, four distinct matrix dimen- 
sions can be enlarged: the two from GELL-MANN, one 
from BR-3/PAULI, but also a fourth for the reaction 
dimension; since many new unseen “good” and “bad” 
reactions can be postulated just as GELL-MANN could 
postulate unseen particles and their property values. 
The combined system could accept exactly the 72 in- 
put to BR-3/PAULI as before, and carry out a substan- 
tial theoretical effort by postulating quarks, properties, 
values, and unseen reactions all within a single system. 

Conclusion 
We have shown that the search carried out by a num- 
ber of well-known systems that induce discrete models 
of hidden structure can be represented by sets of ma- 
trices on which constraints are placed. The typical di- 
mensions of the matrices involve reactions (p&esses), 
substances (types of objects), and properties of sub- 
stances. For example, DALTON finds structural mod- 
els of chemical reactions and substances which can be 
described by a reaction matrix R,,, and a structure 
matrix Ssxe. RrX, describes reactions by the number 
of molecules of each substance in input and outnut. 
and Ssxe describes the composition of each substance 
in terms of numbers of atoms of elements. Conserva- 
tion of atoms is expressed by 72 x S = 0. 

The common matrix representation eases compar- 
ing these systems, reveals their underlying commonal- 
ities and sometimes shows how two systems (e.g., BR- 
3/PAULI and GELL-MANN) can be integrated into a 
single one. It also suggests how search algorithms de- 
signed for one system could be applied to-others. 

Hypothesizing new reactions, substances, or proper- 
ties is accomplished by enlarging a matrix along one or - 
more dimensions. The sizes of the matrices provide an * 
(inverse) measure of a model’s simplicity, so that gen- 
erating small matrices first, then successively enlarging 
them as required, assures that simpler hypotheses are . - 
considered first, and that only as many hidden entities 
are introduced as are required to account for the data. 

Representing model-building as search over a small 
matrix set does much to reduce the apparent diversity 
among the various systems, and shows that a few prin- 
ciples are fundamental to the organization and func- 
tioning of most of them. Hence, the representation is 
a significant advance toward a general theory of dis- 
crete model-building in scientific discovery. 
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