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Abstract 

Multi-method planning is an approach to using 
a set of different planning methods to simultane- 
ously achieve planner completeness, planning time 
efficiency, and plan length reduction. Although it 
has been shown that coordinating a set of meth- 
ods in a coarse-grained, problem-by-problem man- 
ner has the potential for approaching this ideal, 
such an approach can waste a significant amount 
of time in trying methods that ultimately prove in- 
adequate. This paper investigates an approach to 
reducing this wasted effort by refining the gran- 
ularity at which methods are switched. The ex- 
perimental results show that the fine-grained ap- 
proach can improve the planning time significantly 
compared with coarse-grained and single-method 
approaches. 

Introduction 

The ability to find a low execution-cost plan efficiently 
over a wide domain of applicability is the core of 
domain-independent planning systems. The key issue 
here is how to construct a single planning method, or 
how to coordinate a set of different planning methods, 
that has sufficient scope and efficiency. Our approach 
to this issue begins with the observation that no sin- 
gle method will satisfy both sufficiency and efficiency, 
with the implication therefore that a coordinated set 
of planning methods will be needed. 

We have constructed a system that can utilize six dif- 
ferent planning methods, based on the notion of bias 
in planning. A planning bias is any constraint over the 
space of plans considered that determines which por- 
tion of the entire plan space can be the output of the 
planning.’ The six planning methods used vary along 
two independent bias dimensions: goal-protection and 

*This work was sponsored by the Defense Advanced Re- 
search Projects Agency (DOD) and the Office of Naval Re- 
search under contract number N00014-89-K-0155. 

1 The specification here assumes that the plan space con- 
tains only totally-ordered sequences of operators, but it 

goal-flexibility. The goal-protection dimension deter- 
mines whether or not a protection bias is used, that 
eliminates plans in which an operator undoes an ini- 
tial goal conjunct that is either true a priori or es- 
tablished by an earlier operator in the sequence. The 
goal-flexibility dimension determines the degree of flex- 
ibility the planner has in using new subgoals. Two 
biases, directness and linearity, are used along this di- 
mension. Directness eliminates plans in which opera- 
tors are used to achieve preconditions of other oper- 
ators, rather than just top-level goal conjuncts. Lin- 
earity eliminates plans in which operators for different 
goal conjuncts are interleaved. The 3x2 methods arise 
from the cross-product of these two dimensions: (di- 
rectness, linearity, or nonlinearity) x (protection, or 
no-protection).2 

These single-method planners are implemented in 
the context of the Soar architecture (Laird, Newell, & 
Rosenbloom, 1987). Plans in Soar are represented as 
sets of control rules that jointly specify which operators 
should be executed at each point in time (Rosenbloom, 
Lee, & Unruh, 1990). Planning time for these methods 
is measured in terms of decisions, the basic behavioral 
cycle in Soar. This measure is not quite identical to 
the more traditional measure of number of planning 
operators executed, but should still correlate with it 
relatively closely. 

The six implemented methods have previously been 
compared empirically in terms of planner complete- 
ness, planning time, and plan length over a test set 
of 100 randomly generated 3- and 4-conjunct problems 
in the blocks-world domain. The predominant result 
obtained so far from the experiments with these meth- 
ods is that planning time and plan length are both 
inversely correlated with the applicability of the plan- 

does not rule out a search strategy that incrementally spec- 
ifies an element of the plan space by refining a partially- 
ordered plan structure. 

2The term “nonlinearity” in this context implies that it 
is allowable to interleave operators in service of different 
goal conjuncts. It does not necessarily mean that either 
partial-order or least-commitment planning are being used. 
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ning method; that is, the more restricted the method, 
the less time it takes to solve the problems that it can 
solve, and the shorter are the plans generated. The 
most restricted method (the method with directness 
and protection) could solve 68 of them, in an aver- 
age of 16.3 decisions each, producing plans contain- 
ing an average of 1.8 operators (Lee & Rosenbloom, 
1992). The least restricted method (nonlinear planning 
without goal protection) could solve all 100 problems; 
however, planning time and plan length averaged over 
the same 68 problems solvable by the most restricted 
method were considerably worse - an average of 39.0 
decisions to produce plans containing on average 3.3 
operators. 

This trade-off between completeness and efficiency 
implies that the planning system would be best served 
if it could always opt for the most restricted method 
adequate for its current situation. In a first step 
towards this ideal, we have begun exploring multi- 
method planners that start by trying highly restricted 
methods, and then successively relax the restrictions 
until a method is found that is sufficient for the prob- 
lem. The intuition behind this is based on iterative 
deepening (Korf, 1985) - if the proportion of prob- 
lems solvable at a particular level of restriction is large 
enough, and the ratio of costs for successive levels is 
large enough, there should be a net gain. Over the set 
of 100 blocks-world problems, this has yielded broadly 
applicable multi-method planners (actually, complete 
for the blocks-world) that on average generat#e shorter 
plans than are produced by corresponding (complete) 
single-method planners, with marginally lower plan- 
ning times (from 39.9 to 52.5 decisions for single- 
method planners versus from 33.4 to 42.2 decisions for 
multi-method planners). 

However these results do not necessarily mean that, 
for all situations, there exists a multi-method plan- 
ner which outperforms the most efficient single-method 
planner. In fact, the performance of these planners de- 
pends on the biases used in the multi-method planners 
and the problem set used in the experiments. For ex- 
ample, if the problems are so complex that most of 
the problems are solvable only by the least restricted 
method, the performance loss by trying inappropriate 
earlier methods in multi-method planners might be rel- 
atively considerable. On the other hand, if the prob- 
lems are so trivial that it takes only a few decisions for 
the least restricted method to solve the problems, the 
slight performance gain by using more restricted meth- 
ods in multi-method planners might be overridden by 
the complexity of the meta-level processing required to 
coordinate the sequence of primitive planners. 

These results suggest that multi-method planning is 
a promising approach, but that further work is neces- 
sary to establish whether robust gains are possible over 
a wide range of domains. The work reported here is 

one step in this direction, in which we investigate re- 
ducing the wasted effort in multi-method planners by 
refining the granularity at which the individual plan- 
ning methods can be switched. This approach has been 
implemented, and initial experiments in two domains 
show significant gains in planning time with respect 
to both single-method and the earlier, coarser-grained, 
multi-method planners. 

Fine-grained ulti-method 

The approach to multi-method planning described so 
far starts with a restricted method and switches to a 
less restricted method whenever the current method 
fails. This switch is always made on a problem-by- 
problem basis. However, this is not the only granular- 
ity at which methods could be switched. The family 
of multi-method planning systems can be viewed on a 
granularity spectrum. While in coarse-grained multi- 
method planners, methods are switched for a whole 
problem when no solution can be found for the prob- 
lem within the current method, in fine-grained multi- 
method planners, methods can be switched at any 
point during a problem at which a new set of subgoals 
is formulated, and the switch only occurs for that set 
of subgoals (and not for the entire problem). At this 
finer level of granularity it is conceivable that the plan- 
ner could use a highly-restricted and efficient method 
over much of a problem, but fall back on a nonlinear 
method without protection for those critical subregions 
where there are tricky interactions. 

With this flexibility of method switching, fine- 
grained multi-method planning can potentially out- 
perform both coarse-grained multi-method planning 
and single-method planning. Compared with coarse- 
grained multi-method planning, it can save the effort 
of backtracking when the current method can not find 
a solution or the current partial plan violates the bi- 
ases used in the current method. Moreover, it can 
save the extra effort of using a less restricted method 
on later parts of the problem, just because one early 
part requires it. As compared with single-method plan- 
ning, a fine-grained multi-method planner can utilize 
biases which would cause incompleteness in a single- 
method planner - such as directness or protection in 
the blocks-world domain - while still remaining com- 
plete. The result is that a fine-grained multi-method 
planner can potentially be more efficient than a single- 
method planner that has the same coverage of solvable 
problems. 

One way to construct an efficient multi-method plan- 
ner is to order the single method planners accord- 
ing to increasing coverage and decreasing efficiency, 
an approach called monotonic multi-method planning. 
In this paper, we focus on a special type of mono- 
tonic multi-method planner, called a strongly mono- 
tonic multi-method planner, which is based on the de- 
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II Decisions 
Planner 

MI (directness, protection) 
MS (linearity, protection) 
Ma (protection) 
A& (directness) 
MS (linearity) 
s3 

A A2 A5 

12.50 - - 
13.00 18.90 - 
13.21 26.91 - 
14.48 - - 
14.81 24.47 24.84 
16.23 40.85 40.96 

Table 1: The performance of the six single-method planners for the three problem sets defined by the scopes of the 
planners. 

liberate selection and relaxation of effective biases. In 
the next section, we provide a formal definition of a 
monotonic multi-method planner, and define a crite- 
rion for selecting effective biases from experiments with 
single-method planners. 

Selecting Effective Biases 

Let Mki(hi E (1, . . . . 6)) be a single-method planner, 
as defined in Section 1. A fine-grained multi-method 
planner that consists of a sequence of n different single- 
method planners is denoted as Mkl-kZ+...+k,, , and the 
corresponding coarse-grained multi-method planner is 
denoted as Mkl+Mka--)...--fMkR. Let A be a sam- 
ple set of problems, and let Aki C A be the subset of 
A which are solvable in principle by Mki. The func- 
tions s( MI,; , A,) and I( Mki, A,) represent respectively 
the average cost that Mk; requires to succeed and the 
average length of plans generated by Mki, for the prob- 
lems in A, C Aki. Let i%fk,, be a null planner which 
cannot solve any problems; that is, Ako = 4. 

A multi-method planner which consists of &!k, , Mk,, 
“‘f Mk,,, is called monotonic if the following three 
conditions hold for each pair of Mk,-l and Mk,, for 
2 5 i 5 n: (1) Aki-1 & As, 9 (2) s(Mk,-, y Ak,-,> 5 
+fk,, Ak+), for j h i, and (3) l(Mk,.el, Ak,-1) 5 

‘(Mki, Akjwl), for j 5 i. 3 The straightforward way 
to build monotonic multi-method planners is to run 
each of the individual methods on a set of training 
problems, and then from the resulting data to gener- 
ate all method sequences for which monotonicity holds. 
The approach we have taken here is to generate only 
a subset of this full set; in particular, we have focused 
only on multi-method planners in which later methods 
embody subsets of the biases incorporated into earlier 
methods, and in which the biases themselves are all 
positive. 

Let Bk,; be the set of biases used in Mk;. A bias 
b is called positive in a problem set A and a method 

3This is a slight redefinition of monotonicity from (Lee 
& Rosenbloom, 1992) with a minor correction. 
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set {Mk,}, if for each pair of Mk, and MkY in {Mk,} 
such that Bk, = Bk, i- {b}, s(Mk=, Ak,) L s(Mky, Ak,) 

and /(Mk=, Akj) 5 /(Mk,, AkJ), for every j 5 2. A 
multi-method planner which consists of Mkl, Mk,, . .., 
Mk,, is called strongly monotonic if Bk,-i > Bk,, for 

2 5 i 5 n, and Bk,-l - Bk, consists of positive biases 
only, for 2 5 i < 72. From this definition, if a multi- 
method planner% strongly monotonic, it is monotonic, 
while the reverse is not necessarily true. 

To generate a strongly monotonic multi-method 
planner, it is necessary to determine which biases are 
positive in the domain. Table 1 illustrates the aver- 
age number of decisions, s(Mk, , AkJ), and average plan 
lengths, /(Mk*, Ak,> for the six single-method planners 
and the problem sets defined by the scope of these plan- 
ners over a training set of 30 randomly generated 3- 
and 4-conjunct problems in the blocks-world domain. 
In this domain, Ad is the same as A1 because if a prob- 
lem is not solvable with protection, it also is not solv- 
able with directness. Ag is the same as A6 because 
both it15 and Ms are complete in this domain, though 
MS may not be able to generate an optimal solution. 
A2 and A3 are different sets in principle, because prob- 
lems such as Sussman’s anomaly cannot be solved by 
a linear planner with protection (M2) but can be by 
a nonlinear planner with protection (MS). However, 
among the 30 problems, these “anomaly” problems did 
not occur, yielding A2 = A3 for this set of problems. 
The results imply that directness and protection are 
positive in this domain, while linearity is not, since 
I(A4541) > @46,Al) and l(M5,A2) > i(M6,A2). If 
we use linearity as an independent bias - so that one 
set of multi-method planners is generated using it and 
one set without it - and vary directness and protec- 
tion within the individual multi-method planners, we 
get a set of 10 strongly monotonic multi-method plan- 
ners (four three-method planners and six two-method 
planners). 



Decisions Plan length 
Planner 4 A2 A3 A5 AI A2 A3 A5 

M5 22.21 29.41 29.48 29.22 3.00 3.78 3.83 3.82 
& 33.40 47.12 48.06 47.93 2.90 3.88 4.07 4.14 
Average 38.58 3.98 
Ml+Mz--fMg 13.26 24.69 25.07 26.13 1.82 2.48 2.54 2.58 
M1+h4’a+h16 13.26 26.34 26.55 28.91 1.82 2.52 2.54 2.59 
MpMq-)Ms 13.26 26.16 26.41 26.79 1.82 2.85 2.92 2.94 
h!f1+Mq--+hd6 13.26 36.78 37.40 37.30 1.82 2.91 2.99 3.02 
Ml--f& 13.26 25.68 25.86 26.04 1.82 2.96 3.02 3.03 
Ml+& 13.26 31.54 31.85 31.77 1.82 2.89 2.94 2.97 
Mz--tMs 19.54 27.89 28.18 29.34 1.85 2.43 2.49 2.58 
M3 + h& 21.22 28.46 28.41 30.67 2.00 2.52 2.52 2.57 
&-fM5 16.85 27.81 27.95 28.38 1.82 2.83 2.88 2.93 
Ma-fM6 16.85 33.33 33.59 34.47 1.82 2.83 2.85 2.95 
Average 29.98 2.82 
M l-+2-+5 8.63 12.87 13.00 13.01 1.82 2.80 2.84 2.90 
M l-+3--6 8.63 13.38 13.43 13.56 1.82 2.53 2.53 2.59 
Ml-4-5 8.63 13.19 13.29 13.25 1.82 3.25 3.32 3.34 
M 1+4-6 8.63 13.48 13.73 13.63 1.82 2.87 2.96 2.97 
M 1-5 8.63 12.21 12.36 12.51 1.82 2.63 2.73 2.81 
Ml-6 8.63 13.22 13.27 13.23 1.82 2.68 2.69 2.73 
M 2-5 19.19 23.75 23.76 23.80 2.56 3.07 3.11 3.16 
M 3-6 16.62 23.45 23.56 24.22 2.03 2.56 2.57 2.71 
M 4+5 13.57 17.24 17.30 17.38 2.44 3.71 3.77 3.77 
M 4+6 14.10 19.28 19.58 19.83 2.41 3.33 3.43 3.46 
Average 16.44 3.04 

Table 2: Single-method and coarse-grained multi-method vs. fine-grained multi-method planning in the blocks- 
world domain. 

xperirnental esults 

Table 2 compares the strongly monotonic fine-grained 
multi-method planners with the corresponding coarse- 
grained multi-method planners and (complete) single- 
method planners over a test set of 100 randomly gener- 
ated 3- and 4-conjunct blocks-world problems (this test 
set is disjoint from the 30-problem training set used in 
developing the multi-method planners). Z-tests on this 
data reveal that fine-grained multi-method planners 
take significantly less planning time than both single- 
method planners (r=5.35, p<.Ol) and coarse-grained 
multi-method planners (a=6.72, p<.Ol), This likely 
stems from fine-grain multi-method planners prefer- 
ring to search within the more efficient spaces defined 
by the biases - thus tending to outperform single- 
method planners - but being able to recover from 
bias failure without throwing away everything already 
done for a problem (thus tending to outperform coarse- 
grained multi-method planners). 

Fine-grained multi-method planners also generate 
significantly shorter plans than single-method planners 

(~3.42, p<.Ol). They generate slightly longer plans 
than coarse-grained multi-method planners; however, 
no significance is found at a 5% level (z=I .77). These 
results likely arise because, whenever possible, both 
types of multi-method planners use the more restrictive 
methods that yield shorter plan lengths, while there 
may be little difference between the methods that ul- 
timately succeed for the two types of multi-method 
planners. 

Table 3 illustrates the performance of these three 
types of planners over a test set of 100 randomly gener- 
ated 5-conjunct problems in the machine shop schedul- 
ing domain (Minton, 1988). In this domain, no pre- 
condition subgoals are required because there is no 
operator which achieves any of the unmet precondi- 
tions. Thus both directness and linearity are irrelevant. 
However, there are strong interactions among the op- 
erators, so protection violations are still relevant. In 
consequence, the entire table of six planners reduces 
to only two distinct planners for this domain: with or 
without protection. 
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Decisions Plan length 
Planner Al A4 Al A4 

Mdfdb 31.47 33.97 4.13 4.47 
Ml+M4, MeM5, MS-MS 26.17 35.91 2.43 3.58 
Ml -4, M2-5, M3--6 18.71 19.07 2.87 3.29 

Table 3: Single-method and coarse-grained multi-method vs. fine-grained multi-method planning in the scheduling 
domain. 

Blocks-world domain 
I 

Scheduling domain 
1 1 

Decisions Decisions 

Figure 1: Performance of single-method planners (+), 
coarse-grained multi-method planners (o), and fine- 
grained multi-method planners (*) in the blocks-world 
domain. 

As with the blocks-world domain, the z-tests in 
the scheduling domain indicate that fine-grained plan- 
ners dominate both single-method planners (~=10.91, 
p<.Ol) and coarse-grained planners (%=8.95, p<.Ol) 
in terms of planning time. Fine-grained planners 
also generate significantly shorter plans than do the 
single-method planners (2=6.49, p<.Ol). They gen- 
erate slightly shorter plans than coarse-grained multi- 
method planners; however, no significance is found at 
a 5% level (x=1.28). 

Figures 1 and 2 plot the average number of decisions 
versus the average plan lengths for the data in Tables 2 
and 3. These figures graphically illustrate how the 
coarse-grained approach primarily reduces plan length 
in comparison to the single-method approach, and how 
the fine-grained approach primarily improves efficiency 
in comparison to the coarse-grained approach. 

Related Work 

The basic approach of bias relaxation in multi-method 
planning is similar to the shift of bias for inductive con- 

Figure 2: Performance of single-method planners (+), 
coarse-grained multi-method planners (o), and fine- 
grained multi-method planners (*) in the scheduling 
domain. 

cept learning (Russell & Grosof, 1987; Utgoff, 1986). 
In the planning literature, this approach is closely re- 
lated to an ordering modification which is a control 
strategy to prefer exploring some plans before oth- 
ers (Gratch & DeJong, 1990). Bhatnagar & Mostow 
(1990) described a relaxation mechanism for over- 
general censors in FAILSAFE-:!. Wowever, there are a 
number of differences, such as the type of constraints 
used, the granularity at which censors are relaxed, and 
the way censors are relaxed. Steppingstone (Ruby & 
Kibler, 1991) tries constrained search first, and moves 
on to unconstrained search, if the constrained search 
reaches an impasse (within the boundary of ordered 
subgoals) and the knowledge stored in memory cannot 
resolve the impasse. 

This approach is also related to the traditional 
partial-order planning, where heuristics are used to 
guide the search over the space of partially or- 
dered plans without violating planner completeness 
(McAllester & Rosenblitt, 1991; Barrett & Weld, 1993; 
Chapman, 1987). F or example, using directness in fine- 
grained multi-method planners is similar to preferring 
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the nodes which reduce the size of t,he set of open 
conditions when a new step is added. Relaxing bias 
in fine-grained multi-method planners only when it is 
necessary is similar to the least-commitment approach 
which adds ordering constraints only if a threat to a 
causal link is detected. 

Conclusion 

In this paper, we have provided a way to select a set 
of positive biases for multi-method planning and inves- 
tigated the effect of refining the granularity at which 
individual planning methods could be switched. The 
experimental results obtained so far in the blocks-world 
and machine-shop-scheduling domains imply that (1) 
fine-grained multi-method planners can be significantly 
more efficient than single-method planners in terms of 
planning time and plan length, and (2) fine-grained 
multi-method planners can be significantly more ef- 
ficient than coarse-grained multi-method planners in 
terms of planning time. 

Another way to enhance the multi-method planning 
framework would be to extend the set of biases avail- 
able to include ones that limit the size of the goal hier- 
archy (to reduce the search space), limit the length of 
plans generated (to shorten execution time), and lead 
to learning more effective rules (to increase transfer) 

The bias selection approach used here is based on 
preprocessing a set of training examples in order to 

(Etzioni, 1990). Investigations of these topics are in 

develop fixed sequences of biases (and methods). A 
more dynamic, run-time approach would be to learn, 

progress. 

while doing, which biases (and methods) to use for 
which classes of problems. If such learned information 
can transfer to the later problems, much of the effort 
wasted in trying inappropriate methods, as well as the 
effort for preprocessing, may be reduced (as demon- 
strated in (Rosenbloom, Lee, & Unruh, 1993)). 
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