
avid E, Smith 

Rockwell International 
444 High St. 

Palo Alto, California 94301 
de2smith@rpal.rockwell.com 

Abstract 
An important aspect of partial-order planning is the 
resolution of threats between actions and causal links in a 
plan. We present a technique for automatically deciding 
which threats should be resolved during planning, and which 
should be delayed until planning is otherwise complete. In 
particular we show that many potential threats can be 
provably delayed until the end; that is, if the planner can find 
a plan for the goal while ignoring these threats, there is a 
guarantee that the partial ordering in the resulting plan can 
be extended to eliminate the threats. 

Our technique involves: 1) construction of an operator 
graph that captures the interaction between operators 
relevant to a given goal, 2) decomposition of this graph into 
groups of related threats, and 3) postponement of threats 
with certain properties. 

1 Introduction 
In (McAllester & Rosenblitt 1991), the authors present a 
simple elegant algorithm for systematic partial-order 
planning (SNLP). Much recent planning work (Barrett & 
Weld 1993, Collins & Prior 1992, Kambhampati 1992, 
Penberthy & Weld 1992, Peot & Smith 1992) has been 
based upon this algorithm. 

In the SNLP algorithm, when threats arise between steps 
and causal links in a partial plan, those threats are resolved 
before attempting to satisfy any remaining open conditions 
in the partial plan. In (Peot & Smith 1993) we investigate 
several other strategies for resolving threats. Although 
some of these strategies work much better than the SNLP 
strategy, they are all fixed, dumb strategies. In practice, we 
know that some threats that occur during planning are easy 
to resolve, while others are difficult to resolve. What we 
would like is a smarter threat-selection strategy that can 
recognize and delay resolution of the easy threats in order 
to concentrate effort on the difficult ones. 

In this paper, we present techniques for automatically 
deciding whether threats should be resolved during partial- 
order planning, or delayed until planning is otherwise 
complete. In particular, we show that certain threats can be 
provably delayed until the end; that is, if the planner can 
find a plan for the goal while ignoring these threats, there is 

Department of Engineering Economic Systems 
Stanford University 

Stanford, California 94305 
peot@rpal.rockwell.com 

a guarantee that the partial ordering in the resulting plan 
can be extended to eliminate the threats. 

In Section 2, we construct operator graphs that capture 
the interaction between operators relevant to a goal and set 
of initial conditions. In Section 3, we develop theorems and 
decomposition rules that use the operator graph to decide 
when threats can be postponed. In Section 4 we discuss our 
experience with these techniques and related work. 

For purposes of this paper, we adopt a simple STRIPS 
model of action, and assume the SNLP model of planning. 
Many of the results and ideas can be applied to other 
causal-link planners such as (Kambhampati 1993, Tate 
1977). Full proofs of the theorems appear in (Smith & Peot 
1993). 

2 Operator graphs 
Following (McAllester & Rosenblitt 1991), we define 
special Start and Finish operators for a problem: 

Definition 1: The Start operator for a problem is defined 
as the operator having no preconditions, and having all of 
the initial conditions as effects. The Finish operator for a 
problem is defined as the operator having no effects, and 
having all of the goal clauses as preconditions. 

Given these operators we construct an operator graph 
for a problem recursively, according to the following rules: 

Definition 2: An operator graph for a problem is a directed 
bipartite graph consisting of precondition nodes and opera- 
tor nodes such that: 

1. There is an operator node for the Finish operator. 

2. If an operator node is in the graph, there is a pre- 
condition node in the graph for each precondition 
of the operator and a directed edge from the pre- 
condition node to the operator node. 

3. If a precondition node is in the graph, there is an 
operator node in the graph for every operator with 
an effect that unifies with the precondition and 
there is a directed edge from the operator node to 
the precondition node. 

500 Smith 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



To illustrate, consider the simple set of operators below 
capitalized, (relations, operator names, and constants are 

variables are lower case): 

Shape(x) 
Prec’s: 
Effects: 

Drill(x) 
Prec’s: 
Effects: 

BOW, y) 
Prec’s: 
Effects: 

Glue(x, y) 
Prec’s: 

Effects: 

Object(x), 1 Fastened(x, z) 
Shaped(x), 1 Drilled(x) 

Object(x), - Fastened(x, z) 
Drilled(x) 

Drilled(x), Drilled(y) 
Fastened(x, y) 

Object(x), 1 Fastened(x, z), 
Object(y), 1 Fastened(y, z) 
Fastened(x, y) 

Suppose that the goal is 

Shaped(x) A Shaped(y) A Fastened (x , y) , 

and the initial conditions are: 

Object(A) ,Fastened(A, z) 
Object(B) 7Fastened(B, z) 

The operator graph for this problem is shown in Figure 
1. Note that each operator appears at most once in the 

Shaped(x) 

Shaped (Y ), \ 

Figure 1: Operator graph for simple machine shop problem. 
Fastened and Object have been abbreviated for clarity. Circled 
arcs represent a bundle of arcs. 

graph; but a clause such as Object(x) may appear more 
than once, if it appears more than once as a precondition. 
Note that the graph can also contain cycles. If the Bolt 
operator had an effect Drilled (z) there would be directed 
edges from Bolt(x, y) to both Drilled(x) and Drilled(y), 
forming loops with the directed edges from Drilled(x) and 
Drilled(y) to Bolt(x,y). In this paper we will only 
consider acyclic operator graphs. The basic results and 
techniques also apply to cyclic graphs, but the definitions 

and theorems are more complicated. The full theory is 
given in (Smith & Peot 1993). 

The operator graph tells us what operators are relevant 
to the goal, and also tells us something about the topology 
of partial plans that will be generated for the problem. In 
this example, it tells us that if the Bolt operation appears in 
the plan, at least one Drill operation will precede it in the 
plan. The operator graph has an implicit an&or structure to 
it. Predecessors of an operator node are ands, since all 
preconditions of the operator must be achieved. 
Predecessors of a precondition node are ors, since they 
correspond to different possible operators that could be 
used to achieve the precondition. 

ove, the Glue and Bolt operators are used 
for only one purpose, while the Dri II and Shape operators 
are used for more than one purpose. This information is 
important for our analysis of operator threats. We therefore 
introduce the following notion: 

efinition 3: The use count of a node in the graph is 
defined as the number of directed paths from the node to 
Finish. 

The use count of an operator is an upper bound on the 
number of times the operator could appear in a partial plan. 
It can be infinite for graphs with cycles. 

2.2 Threats 
So far, operator graphs only tell us which subgoals and 

operators may be useful for a problem. 

efinition 4: Let 0 be an operator node, and P be a precon- 
dition node in an operator graph. If some effect of Ounifies 
with the negation of P we say that 0 threatens P and denote 
this by OOP. 

The threats for our example are shown in Figure 2. 

Figure 2: Operator graph with threats (heavy lines). 

Plan Generation 501 



2.3 Eliminating Threats 
Not all threats in the operator graph are important. Some of 
them will never actually occur during planning. In 
particular, consider the threat from Start to 
Fastened (x , y) . The initial conditions operator always 
hrecedes all other operators in a plan. As a result, there is 
no possibility that Start can ever clobber an effect 
produced by another operator. Therefore we can eliminate 
these threats from the graph. 

Theorem 1: Threats emanating from Start can be elimi- 
nated. 

A related class of threats are those between operators 
and preconditions that are successors of each other. 
Consider the threat from Glue(x, y) to its precondition 
--,Fastened(x, z). This says that gluing clobbers its 
precondition. This is not a problem since the clobbering 
follows the consumption of the precondition. As a result, 
this threat can be eliminated. Similar arguments can be 
made for the threat from Bolt (x, y) to the 
7Fastened (x, z) precondition of Dri I I (x) . 

Note that our arguments rely on the fact that Glue and 
Bolt will only appear once in the final plan. If Glue(x) y) 
appeared more than once, there is a distinct possibility that 
one gluing operation might clobber the precondition of 
another gluing operation. As a result, we can only eliminate 
such threats when the use count of the operator is 1. 

Theorem 2: Threats from an operator to any predecessor or 
successor in the graph can be eliminated if the threatening 
operator has use count 1. 

A third source of superfluous threats are disjunctive 
branches in the operator graph. In our example, there are 
two different ways of achieving the subgoal 
Fastened (x, y) : bolting and gluing. Only one of these two 
alternatives will appear in any given plan. As a result, we 
can ignore threats that go from one branch to the other. This 
means that the edges from Bolt (x, y) to the --,Fastened 
preconditions of Glue(x) y), and from Glue(x) y) to the 
,Fastened (x , z) precondition of Drill(x) can be 
eliminated. 

As with Theorem 2, we need to consider use count. 
Suppose that there was a second subgoal of the form 
Fastened(x, y). The planner might choose Bolt (x, y) for 
one of these subgoals, and Glue (x, y) for the other. In this 
case, a threat between Bolt (x, y) and the ,Fastened (x, y) 
precondition of Glue (x, y) could occur. 

Theorem 3: If a threat is between two disjunctive branches 
in the operator graph, and the threatening operator has use 
count 1, the threat can be eliminated. 

To decide if a threat is between two disjunctive branches 
we need to look at the nearest common ancestor of the 
threatening operator and precondition. For the threat 

between Bolt (x, y) and the --,Fastened (x, y) precondition 
of GWx, y>, the nearest common ancestor is 
Fa&ened(x, y). Since this is a precondition node, the 
threat is between disjunctive branches. 

After applying Theorems 1, 2, and 3, there are only four 
remaining threats, as shown in Figure 3. These are the only 
possible threats that can actually arise during planning. 

Figure 3: Threats 
been applied. 

remaining after the elimination theorems have 

In Figure 3, consider the threats Shape(x) o Drilled(x) 
and Shape(x) 0 Drilled(y). These threats tell us that 
allowing Shape operations to occur between Drill and Bolt 
operations may cause problems. However, in considering 
the graph, we can see that there is an easy solution. If we 
add the ordering constraint that Shape operations must 
occur before Dri II operations, both threats are eliminated. 

We could have the planner automatically add these 
constraints every time Shape or Drill operations were 
added to a partial plan. Although this strategy would work, 
it is more restrictive than necessary. In our example, if two 
different objects, A and B are used for x and y, there would 
be two different Shape operations, and two different Dri I I 
operations in the final plan. To get rid of the threats it would 
only be necessary that Shape(A) precede Dri I I (A) and 
Shape(B) precede Drill (B). The other potential threats go 
away by virtue of the different variable bindings for x and 
Y- 

To avoid this over-commitment, it is better to postpone 
the threats between Shape(x) and Drilled(x). No matter 
what plan is generated, we can always eliminate this threat 
later by imposing the necessary ordering constraints 
between Shape and Drill operations. 

The argument made above relies on two things: 

1. There are ordering constraints that will resolve the 
threats, 

2. The other potential threats do not interfere with 
these ordering constraints. 

502 Smith 



The first part of this argument is straightforward; in our 
case, demoting Shape before Drill did the trick, since it 
prevents Shape from occurring between Drill and Bolt . 
The second part of the argument is tougher. It requires 
showing that none of the possible resolutions of the 
remaining threats will prevent the ordering of Shape 
operations before Drill operations. To show this, we need to 
consider all possible ways that the planner might choose to 
resolve the remaining set of threats. 

First consider the threat Bolt (x, y) 0 7Fastened(x, y). 
Since Bolt cannot come before Start, demotion is not 
possible for this threat. However, promotion is possible, 
since Shape < Bolt is consistent with the operator graph. 
We therefore need to consider the possibility that this 
constraint might be added to the operator graph. 
(Separation is not possible in this case. Even if it were, 
separation adds no ordering constraints to the graph, and 
therefore does not concern us.) 

Next consider the threat Glue (x , y ) 0 ,Fastened (x , y ) . 
As before, demotion is not possible since Glue cannot 
come before Start. However, promotion is possible, since 
Shape < Glue is consistent with both the operator graph, 
and with the constraint Shape < Bolt . 

Since the addition of Shape < Glue and Shape < Bolt 
do not interfere with Shape < Drill , condition (2) is also 
satisfied. 

The general form of this argument is summarized in the 
following theorem: 

Theorem 4: Let T be the set of threats in an operator graph, 
and let P be a subset of those threats. The threats in P can 
be postponed if there is a set of ordering constraints that 
resolves the threats in P for every possible resolution of the 
remaining threats in T - P . 

Proof Sketch: Suppose that SNLP ignores all threats corre- 
sponding to the threats P in the operator graph. Consider a 
final plan F produced by SNLP. Let R be the set of threats 
that were resolved in the construction of F. The threats in R 
are instances of the threats T-P in the operator graph. Thus 
there is some resolution of threats in T-P that corresponds 
to the resolution of R in the plan. By our hypothesis, there 
is some set of ordering constraints in the operator graph 
that resolves the threats in P, for each possible resolution of 
T-P. These ordering constraints will therefore resolve any 
instances of P ignored during the construction of F. As a 
result, there is an extension of the partial ordering of F that 
will resolve all of the postponed threats. Since F was an 
arbitrary plan, the theorem follows. 

Corollary 5: Let T be the set of threats in an operator 
graph. The (entire) set of threats T can be postponed if there 
is a set of ordering constraints that resolves the threats in T. 

In the machine shop example, we could use Corollary 5 
to postpone the entire set of threats at once, since the three 
ordering constraints Shape < Drill , Shape < Glue, and 
Shape < Bolt resolve all four of the threats. In general, 
however, this corollary cannot be applied as frequently as 
Theorem 4. The reason is that this corollary requires the 
resolution of all threats by ordering constraints. There may 
be some threats that can only be resolved by separation 
during planning or that cannot be resolved. In these cases 
Corollary 5 cannot be applied, but Theorem 4 may still 
allow us to postpone some subset of the threats. As an 
example, consider the operator graph shown in Figure 4. 

Figure 4: Operator 
be postponed. 

graph where only two of the three threats can 

In this example, the two threats 2 o E and 3 o C can 
only be resolved by separation. However, the threat 2 0 B 
can always be resolved by imposing the ordering constraint 
2 < 1 (demotion). Since demotion is consistent with the 
only possible resolution of the remaining threats, the threat 
2 0 B can be postponed according to Theorem 4. 

Over-constraining 
The primary difficulty with applying Theorem 4 and 
Corollary 5 is that they both take time that is exponential in 
the number of threats being considered. In fact it can be 
shown that: 

Theorem 6: Given a partial ordering and a set of threats, it 
is NP-complete to determine whether there exists an exten- 
sion to the partial ordering that will resolve the threats. 

The proof of this theorem (Kautz 1992) involves a 
reduction of 3-SAT clauses to a partial ordering and set of 
threats. The complete proof can be found in (Smith & Peot 
1993). 

Although the general problem of postponing threats is 
computationally hard, there are some special cases that are 
more tractable. The first technique that we consider 
involves over-constraining the operator graph. In particular, 
we simultaneously impose both promotion and demotion 
ordering constraints on the operator graph for all threats in 
the graph but one. We then check to see if there is an 
ordering constraint on the remaining threat (demotion or 
promotion) that is still possible in the over-constrained 
graph. If so, we know that the ordering constraint will work 

Plan Generation 503 



for all possible resolutions of the remaining threats, and we 
can therefore postpone the threat. More precisely: 

remaining threat 

r c -+ r t. The threat t can be postponed if either: 

1. 0, c 0, is consistent with the operator graph, and 
0, e Predecessors (0,) in the augmented opera- 
tor graph. 

2. 0, c 0, is consistent with the operator graph, and 
0, P Successors(0,) in the augmented operator 
graph. 

Proof Sketch: Let A be the set of augmentation edges 
added to the graph. Every consistent way of resolving the 
set of remaining threats corresponds to some subset of 
these constraints. Suppose that case 1 holds for the above 
theorem. Since 0, +z Predecessors (0,) in the augmented 
graph, we know that it will also hold for every subset of the 
augmentation edges. As a result, we know that this condi- 
tion holds for every possible way of resolving the remain- 
ing threats in the graph. Furthermore, in a consistent graph, 
0, e Predecessors(0,) implies that t can be resolved by 
demotion. As a result, Theorem 4 says that t can be post- 
poned. The argument for case 2 is analogous. 

To see how this theorem applies, consider the threat 
Glue (x, y) @ 7Fastened(x, z) in Figure 3. To see if this 
threat can be postponed, we need to augment the operator 
graph with all ordering constraints that resolve the 
remaining three threats. For the threat 
Bolt (x, y) 0 7Fastened(x, z) we need to add the edge 
Shape(x) -+ B&(x, y) to the graph, since it is the only 
way of resolving the threat. For the other two threats, 
Shape(x) @ Drilled (x) and Shape(x) @ Drilled(y), we 
need to add the two edges Shape(x) + Drill(x) and 
Bolt (x, y) -+ Shape(x). The resulting graph is shown in 
Figure 5. 

Figure 5: Machine shop example with over-constrained threats. 
Partial-ordering constraints are shown as grey arrows. 

Now consider the two possibilities for resolving 
Glue (x, y) o ,Fastened(x, z) . Glue cannot be ordered 
before Start in the operator graph, so case 1 is out. Glue 
can be ordered after Shape, however, so we need to 
consider case 2. In the augmented graph, the only successor 
of Glue is Finish. Since Shape is not in this set, the second 
condition is satisfied. Therefore we can postpone the threat 
Glue (x , y) o ,Fastened (x , z) . 

Theorem 7 can also be used to show that each of the 
remaining threats in the machine shop problem can be 
postponed. More generally, Theorem 7 can be applied in a 
serial fashion: after one threat is postponed, it does not 
need to be considered in the analysis of subsequent threats. 

3.2 Threat Blocks 
Although Theorem 7 is considerably weaker than Theorem 
4, it can be applied in time that is linear in the size of the 
operator graph. As a result, it can often be used to quickly 
eliminate many of the easiest threats from consideration. 
Unfortunately, there are some sets of threats where the full 
power of Theorem 4 is still needed. Consider the graph 
shown in Figure 6. The four threats shown in the top half of 

Figure 6: Threat graph with difficult threats. 

the graph can be resolved and postponed using Theorem 4 
but not Theorem 7. The set of threats in the bottom half of 
the graph cannot be resolved using only ordering 
constraints, and therefore cannot be postponed. In a case 
like this, the top and bottom halves of the graph are 
independent, and we should be able to examine the threats 
in the two halves separately. 

To do this we first need some definitions. We define a 
block as a subset of an operator graph having a common 
beginning and ending. More precisely: 

Definition 5: Let Begin and End be two operators such that 
Begin is a predecessor of End in the operator graph. A block 
is a subset of the operator graph (ignoring threats), such 
that, for each node N in the block: 

1. Begin occurs on all paths from S Zart to N. 

2. End occurs on all paths from N to Finish. 

3. Every node and edge on a path from Begin to N is 
in the block. 

4. Every node and edge on a path from N to End is in 
the block. 

504 Smith 



In the graph above, each of the four branches constitutes poned in domains with loosely-coupled operators. 
a block. Any two or three of these branches also constitute The techniques do little to help highly recursive 
a block. - 

efinition 6: A threat block is a block where all threats that 
touch any node in the block are contained completely 
within the block. A threat block is minimal if no subset of 
the block is a threat block. 

According to this definition, there are two minimal 
threat blocks in the above graph, one containing the top two 
and one containing the bottom two branches. 

Theorems 4 and 7 can now be extended to threat blocks. 
We restate Theorem 4 for threat blocks. 

Theorem 8: Let T be the set of threats in a minimal threat 
block and let P be a subset of those threats. The threats in P 
can be postponed if there is a set of ordering constraints 
that resolves the threats in P for every possible resolution 
of the remaining threats in T - P . 

roof Sketch: Consider the set of threats not in the threat 
block. If we consider every possible way of resolving these 
outside threats it is easy to see that the resulting ordering 
constraints can have no impact on any ordering decisions 
within the block. Thus, if the conditions of Theorem 8 hold, 
we can expand the set T to include the threats outside the 
block and Theorem 4 will apply. 

Using this theorem, we could examine and postpone the 
threats in the top half of the graph of Figure 6. 

It is relatively easy to find minimal threat blocks. We 
start with one threat, and find the common descendents and 
ancestors of both ends of the threat. If other threats are 
encountered in the process, we include the endpoints of 
these new threats in our search for a common ancestor and 
descendent. With pre-numbering of the graph, this process 
can be done in time linear in the size of the graph. 

4.1 Implementation 

sets of operators. 

2. The time taken to build an operator graph and ana- 
lyze threats is computationally insignificant in 
comparison to the time required to do planning. 
For non-trivial planning problems, this time is less 
than 10% of planning time, and is often much 
smaller than that. 

Our experience suggests that the speed of these 
procedures is not a concern and that even the use of 
Theorem 8 on threat blocks will probably not cause serious 
computational problems. We speculate that if the threats in 

Both (Etzioni 1993) and (Knoblock 1990, 1991) have 
proposed goal ordering mechanisms to reduce the number 
of threats that arise during planning. In particular, Etzioni 
and Knoblock construct and analyze graphs similar to the 
operator graphs developed here. Etzioni derives goal- 
ordering rules from this graph, while Knoblock constructs 
predicate hierarchies to guide a hierarchical planner. 
Unfortunately, both of these systems were developed for a 
total-order planner. In a total-order planner the order in 
which goals are processed affects the ordering of actions in 
the plan. This, in turn, determines the presence or absence 
of threats in the plan. 

In contrast, for partial-order planning, the order in which 
goals are processed does not determine the ordering of 
actions within the plan. As a consequence, goal ordering 
does not affect the presence or absence of threats in the 
plan, and cannot be used to help reduce threats. Although 
goal ordering can be used to reduce search in partial-order 
planning (Smith 1988, Smith & Peot 1992), it cannot be 
used to reduce the number of threats. A more detailed 
critique of Knoblock’s technique can be found in (Smith & 
Peot 1992). 

In our current implementation, we first attempt to eliminate 
as many individual threats as possible using Theorem 7. 
After this, we construct minimal threat blocks for the 
remaining threats. We then use Corollary 5 on each 
individual threat block. We have not yet implemented the 
more powerful Theorems 4 or 8, but expect to apply them 
only after other more tractable alternatives have failed. 

Our preliminary testing indicates several things: 

4.3 Extensions 
Originally, we thought it was possible to use local analysis 
techniques to postpone many threats. However, all of our 
conjectures in this area have proven false. The one area that 
we think still holds promise is division into threat blocks. 
We think that there may be criteria that will allow threats to 
be broken up into smaller blocks. 

1. The number of threats that can be postponed var- 
Another approach that we think holds promise is 

ies widely across problems and domains. As we 
variable analysis in the operator graph (Etzioni 1993). By a 

would expect, many more threats can be post- 
careful analysis of variable bindings in the operator graph, 
it is often possible to eliminate many phantom threats from 

Plan Generation 505 



the graph. This, in turn, makes it more likely that other 
threats can be postponed. 

There are other possibilities for analysis of the operator 
graph, including analysis of potential loops. Here, the 
recognition and elimination of unnecessary loops among 
the operators can allow the postponement of additional 
threats. Some of these possibilities are discussed in (Smith 
& Peot 1993). 

4.4 Final Remarks 
The techniques developed in this paper have a direct impact 
on the efficiency of the planning process. Whenever 
possible, they separate the tasks of selecting actions from 
the task of ordering or scheduling those actions. This is a 
natural extension of the least-commitment strategy inherent 
to partial-order planning. 

But perhaps as important as threat postponement is the 
ability to recognize threats that are difficult to resolve. If a 
block of threats cannot be postponed, the planner should 
pay attention to those threats early. This information could 
be used to help the planner avoid partial plans with difficult 
threat blocks. It could also be used to help determine the 
order in which to work on open conditions. In particular, if 
the planner is faced with a difficult threat block it should 
probably generate and resolve that portion of the plan early. 
In our experience, both the choice of partial plan and the 
choice of open condition can dramatically influence the 
performance of a planner. For this reason, information 
about difficult threat blocks could make a significant 
difference. 

Acknowledgments 
The idea of analyzing threats in the operator graph was 
motivated by the work of Craig Knoblock (Knoblock 1990, 
1991). Thanks to Mark Drummond, Steve Minton, Craig 
Knoblock, and Oren Etzioni for comments and discussion. 
Thanks to Henry Kautz and David McAllester for help with 
the NP-completeness result. This work is supported by 
DARPA contract F30602-9 1 -C-O03 1. 

References 

Barrett, A. and Weld, D. 1993. Partial-Order Planning: 
Evaluating Possible Efficiency Gains, Technical Report 92- 
05-01, Dept. of Computer Science, University of Washing- 
ton. 

Collins, G., and Pryor, L. 1992. Representation and Perfor- 
mance in a Partial Order Planner, Technical Report 35, The 
Institute for the Learning Sciences, Northwestern Univer- 
sity. 

Etzioni, 0. 1993. Acquiring Search-Control Knowledge via 
Static Analysis, Artificial Intelligence, to appear. 

Harvey, W. 1993. Deferring Threat Resolution Retains Sys- 
tematicity, Technical Note, Department of Computer Sci- 
ence, Stanford University. 

Kambhampati, S. 1992. Characterizing Multi-Contributor 
Causal Structures for Planning, In Proceedings of the First 
International Conference on AI Planning Systems, College 
Park, Maryland, 116-125. 

Kambhampati, S. 1993. On the Utility of Systematicity: 
Understanding Tradeoffs between Redundancy and Com- 
mitment in Partial-Ordering Planning, In Proceedings of 
the Thirteenth International Conference on AI, Chambery, 
France. 

Kautz, H. 1992, personal communication. 

Knoblock, C. 1990, Learning abstraction hierarchies for 
problem solving. In Proceedings of the Eight National 
Conference on AI, Boston, MA, 923-928. 

Knoblock, C. 1991. Automatically Generating Abstractions 
for Problem Solving, Technical Report CMU-CS-9 1- 120, 
Dept. of Computer Science, Carnegie Mellon University. 

McAllester, D., and Rosenblitt, D. 1991. Systematic non- 
linear planning, In Proceedings of the Ninth National Con- 
ference on AI, Anaheim, CA, 634-639. 

Penberthy, J. S., and Weld, D. 1992. UCPOP: A Sound, 
Complete, Partial Order Planner for ADL, In Proceedings 
of the Third International Conference on Knowledge Rep- 
resentation and Reasoning, Cambridge, MA. 

Peot, M., and Smith, D. 1992. Conditional Nonlinear Plan- 
ning, In Proceedings of the First International Conference 
on AI Planning Systems, College Park, MD, 189- 197. 

Peot, M., and Smith, D. 1993. Threat-removal Strategies 
for Partial-Order Planning, In Proceedings of the Eleventh 
National Conference on AI, Washington, D.C. 

Smith, D. 1988. A Decision Theoretic Approach to the 
Control of Planning Search., Technical Report 87-11, Stan- 
ford Logic Group, Department of Computer Science, Stan- 
ford University. 

Smith, D., and Peot, M. 1992. A Critical Look at Knob- 
lock’s Hierarchy Mechanism, In Proceedings of the First 
International Conference on AI Planning Systems, College 
Park, Maryland, 307-308. 

Smith, D., and Peot, M. 1993. Threat Analysis in Partial- 
Order Planning. Forthcoming. 

Tate, A. 1977. Generating Project Networks, In Proceed- 
ings of the Fifth International Joint Conference on AI, Bos- 
ton, MA, 888-893. 

Yang, Q., A Theory of Conflict Resolution in Planning, 
Artificial Intelligence, 58:361-392, 1992. 

506 Smith 


