
PERMISSE PLANNING: A MAC
TO LINKING INTERN

Gerald De Jong dejong@cs.uiuc.edu
Computer Science /. Beckman Institute

University of Illinois at Urbana/Champaign
405 N. Mathews,Urbana IL 61801

Abstract
Because complex real-world domains defy perfect for-
malization, real-world planners must be able to cope with
incorrect domain knowledge. This paper offers a theoreti-
cal fhmework fmpemissiveplanning, a machine leam-
ingmethodforimprovingthereal-world behaviorofplan-
ners. Permissive planning aims to acquire techniques that
tolerate the inevitable mismatch between the planner’s in-
ternal beliefs and the external world. Unlike the reactive
approach tothis mismatch, permissive planning embraces
projection. The method is both problem-iudependent and
domain-independent. Unlike classical planning, permis-
sive planning does not exclude real-world performance
from the formal definition of planning.

Introduction
An important facet of AI planning is projection, the pro-

cess by which a system anticipates attributes of a future world
state from knowledge of an initial state and the intervening ac-
tions. A planner’s projection ability is often flawed. A classi-
cal planner can prove goal achievement only to be thwarted by
reality. The reactive approach; which has received much at-
tention, avoids these problems by reducing reliance on projec-
ticm or disallowing it-altogether. For ah its stimulating effect
on the field, however,+ reactivity is only one path around pro-
jection problems. It is important to continue searching for and
researching alternatives. In this paper we advance one such al-
ternative termedpemissiveplanning. In some ways it is the
dual of the reactive approach, relying heavily on a goal projec-
tion ability enhanced by machine learning. From a broader
perspective, permissive planning embodies an approach to in-
ference which integrates empirical observations into a tradi-
tioual apriori domain axiomatization.

The research reported in this paper was carried out at the University
of Illiuois and was supported by the Office of Naval Research under
grant NOOO1491-J-1563. The authors also wish to thank Renee Bail-
largeon, Pat Hayes, Jon Gratch and the anonymous reviewers for
helpful comments.

508 DeJong

Scott Bennett bennett@sra.com
Systems Research and Applications Corporation

2000 15th St. North
Arlington VA 22201

Pe
The real world is captured within an inference system by

some description in a formal language such as the predicate
calculus. The system’s internal description may only appmxi-
mate the external real world, giving rise to discrepancies be-
tween inferred and observed world behavior. In classical plan-
ning, the difficulties with projection can be traced to such a
discrepancy, in this case, adiscrepancy between an action’s in-
terml definition (the one represented and reasoned about) and
its external definition (the mapping enforced by the real
world). To concentrate on the discrepancies of action defini-
tions, we will assume in this paper that no difficulty is intro-
duced by the system’s sensing or state representation abilities.
Then, for simplicity in our figures, we can employ a single
universe of states to denote both internal and external sets of
states. Figure 1 illustrates a difference between a plan’s proj-

I IJniverse of States
I
Figure 1: Au Action Sequence

Projected and Actual Mappings

ected and actual mappings from an initial state. The dot la-
beled initial state represents both a particular configuration of
the world (which we call the external state) and the system’s
formal description of it (the internal state). According to the
system’s internal model, the plan’s action sequence trans-
forms the initial state into a goal state. In the real world, how-
ever, the actual final state falls well outside the goal region.

One might employ machine learning to improve the sys-
tem’s operator definitions. The result would be a more faithful

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

representation of their real-world effects. This would yield a
more accurate projection ability as illustrated in Figure 2. Un-

Universe of States Universe of States

Figure 2: Conventional Learning Figure 3: Permissive Raming
Adjusts Projected Mapping Adjusts Actual Mapping
towards Actual Mapping towards Projected Mapping

fortunately, a trend toward increasingly correct operator defi-
nitions is necessarily also a trend towards more complex oper-
ator definitions. Increased complexity results in more work
for the planner which must rule out concomitantly more nega-
tive interactions. Indeed, operate complexity can grow un-
boundedly as dictated by the qualification problem [McCart-
hy80]. With sufficient experience, this use of machine
learning could paralyze any planner.

There is an alternative machine learning approach. When
au apparently sound plan fails to achieve its goal in the real
world, it may be possible to find a small alteration of the plan
which tends not to influence the projected final state but
moves the act&final state closer to the projected one. Instead
of altering the system’s representations to better fit the ob-
served world (Figure 2), this approach alters the actions se-
lected so the real-world effects better match the projected ef-
fects.ThisisillustratedinFigure3. Ifsuchaplancanbefound,
the planner itself might be altered so that when presented with
similar future problems, the planner will tend to produce a so-
lution similar to the improved plan rather than repeating the
mistakes of the the original plan. Our approach is to alter sys-
tematically the planner in response to execution failures sothe
planner prefers not to employ its domain knowledge in ways
that seem to lead to failure. We call the approach “permissive”
because it allows the planner to construct plans that work in
the real world in spite of flaws in its domain knowledge.

Permissive Planning Principle: Blame the plan and adjust
the planner in response to execution failures even though
the implementor-supplied domain theory is known to be
at fault.

ssive

In response to the need for breakfast a planner may be able
to formulate several acceptable action sequences. One results
in pancakes, another in cold raisin bran cereal, still another in
hot oatmeal, etc. CMcourse, most planners will not produce all
possible plans. Plauniug activity typically ceases when the
first acceptable solution is found. After constructing an ac-
ceptable plan for a hot oatmeal breakfast, the system should
not waste effort in working out the details for cooking pan-
cakes.

We call the set of all possible plans that a particular classi-
cal planner could produce in principle for a problem, the corn-
petence set of the planner for that planning problem. We call
the particular element of this set which is in fact constructed
in response to the problem theperfomtance of the planner for
that planniug problem. We use the term planner bias to refer
to the preference, no matter how it is realized, for the particu-
lar performance plan from the planner’s competence set. By
systematically altering a planner’s bias in response to ob-
served plan execution failures, the same planning competence
cau yield quite different planning performance, resulting in
improved real-world behavior. The permissive adjustment of
a planner’s bias so as to improve the real-world success of its
performance behavior can be seen as applying the permissive
planning principle above: the planner is blamed and its bias
adjusted even though the offending projection failures are due
to inaccurate operator definitions.

In this view of planning, actions may have different inter-
nal and externd effects. We ‘will say that an action sequence
PSoZves a planning problem the goal holds in the projection of
the initial state through the sequence. The sequence Esolves
the problem if the goal is achieved in the real world by execut-
ing sequence s from the initial state.

In the planning literature, it is not uncommon to view a
plan as a collection of constraints [Ghapman87,
We subscribe to this notion but carry it a bit further. For us, a
plan for a planning problem is any set of constraints which in-
dividuates an action sequence such that the action sequence
ISolves the planning problem. The accepted nonlinear view
(e.g., CChapmau87, Sacerdoti75, WiIkins88]), is similar but
does not require the individuation of an action sequence. A
typical non-linear planner imposes constraints only until all
action sequences consistent with the constraints are guaran-
teed to reach a goal state (i.e., each ISolves the planning prob-
lem). Stopping here allows anotion of minimal planning com-
mitment. Remaining ambiguities are left for plan execution

Plan Learning 509

when they are resolved in the most propitious manner avail-
able in the execution environment. Our definition of a plan is
more restrictive. We allow no ambiguities for later resolution.
This requirement follows from our desire to adjust the plan-
ner’s bias. We wish to incorporate the entire decision proce-
dure resulting in an action sequence within the planner proper.
Only then can the permissive adjustment procedure have ac-
cess to the full bias reflected in the executable actions.

We use the informal term partial plan to refer to a set of
constraints which is intended to solve a particular planning
problem but does not yet individuate an action sequence.

A planner (including its bias) is adequate if 1) whenever
a plan is produced that ISolves a problem it also ESolves the
problem, and 2) whenever the planner fails to find a plan its
competence set contains no plan whose action sequence
ESolves the problem.

Finally, aplanning computation is a finite sequence of de-
cisions, Dip fi= I ,...n). Each decision selects a constraint, ci, to
be added to the partial plan from a (possibly infinite) set of al-
ternatives (ai, , ai,z, ai, . . . } entertained by the planner for that
decision, sothat Ci E {ai,], ai,a, q,3...}. The partial plan (which
is initially the empty set of constraints) is augmented with the
new decision’s constraint, resulting in a (possibly) more re-
strictive constraint set. A planning computation is successful
if, at its termination, there is exactly one distinct action se-
quenceconsistent with the set of constraints and that action se-
quence ISolves the planning problem.

Planning, in this framework, is repeatedly entertaining al-
ternative constraint sets and for each, selecting one constraint
to be imposed on the partial plan This is not to say that every
planner must explicitly represent the alternative constraint
sets. But every planner’s behavior can be construed in this
way. From this perspective, a planner’s competence is deter-
mined by the sets of alternatives that the planner can entertain.
A (possibly empty) subset of alternatives from each constraint
set supports successful plan completion. The planner’s com-
petence is precisely the set of all possible successful plans giv-
en the entertained alternatives. A planner’s performance, on
the other hand, is determined by its particular choice at each
point from among the subset of alternatives which support a
successful computation continuation.

The Permissive Planning Algorithm
A planning bias is auy strategy for designating a particular

element from among sets of valid continuation alternatives.
Permissive adjustment of a planner is an empirically-driven

search through the space of possible biases. Searching for an
alternative bias is evoked whenever inadequate real-world
planning behavior is observed.

In practice, the bias space is extremely large and the per-
missive planning search must be strongly guided by domain
knowledge. If such domain knowledge is unavailable, the al-
gorithm continues to have its formal properties. However, we
believe that the practical ease with which suitable domain
knowledge can be formulated will largely govern when the
permissive planning approach will be useful. The permissive
planning algorithm:
1. Initialize Candidate-Bias-Set to the space of all biases.
2. Using domain knowledge select an element from the

Candidate,Bias-Set, call it Current-Bias.
3. Solve planning problems using Current-Bias. If an ex-

ecuted plan fails to achieve its goal go to 4.
4. Delete all biases from Candidate-Bias-Set that are prov-

ably inadequate using domain knowledge (including at
least Current-Bias).

5. If Candidate-Bias-Set is not empty, Go To 2.
6. FAIL, no adequate bias exists.

As will become clear in the example, domain knowledge,
in the form of qualitative information relating operators’ ef-
fects to their arguments, can substantially increase the effi-
ciency of permissive planning by guiding the selection of a
promising bias in step 2 and increasing the number of untried
but guaranteed inadequate biases rejected in step 4.

It can be easily proven when the algorithm terminates an
adequate planner has been produced. Further, it can be proven
that the algorithm will terminate so long as the bias space pos-
sesses somemodest properties. On advice from an anonymous
reviewer these proofs have been deleted in favor of more sub-
stantial discussions of other issues.

An Example of Permissive Planning
Suppose we have a two-dimensional gantry-type robot

arm whose task is to move past an obstacle to position itself
above a target (see Figure 4). The operators are LEFT, RIGHT,

Figure 4: Goal to Move Past
au Obstacle

Figure 5: Collision Observed
During Execution

OPEN, CLOSE, KJP, and DOWN, which each take an amount as
an argument. The obstacle is 2.5 units high, the tip of the hand
is 1.2 units above the table, and the front face of the target is

510 DeJong

4.201 units from the left finger. The planner’s native bias re-
sults in a plan individuating the action sequence: ~~(1.4)
~m~~(4.2). Figure 6 shows the alternatives entertained.
Shaded alternatives indicate the competence selections given
the constraints already adopted. The performance selection
for each decision is outlined in a solid white box.

The first decision selects UP. The second decision selects
a value for the parameter to UIb. Any value greater than 1.3 up
to the ceiling is possible according to the system’s internal
world. The value 1.4 is selected. Finally, RIGHT is selected
with an argument of 4.2.

Duriug execution a collision is detected. Permissive pro-
cessing is invoked which explains the most likely collision in
qualitative terms. The problem deemed most likely is the one
requiring the least distortion of the internal projection. In this
case, the most likely collision is with the obstacle block; the
height of the gripper fingers is judged too low for the height
of the obstacle as shown in Figure 5. The planning decisions
are examined in turn for alternative competence set elements
which can qualitatively reduce the diagnosed error. In this
case it amounts to looking for alternatives that, according to
the operators’ qualitative descriptions, increase the distance
between the finger tip and the top of the obstacle. Decision 2
is a candidate for adjustment. Higher values for decision 2 do
not influence the projected goal achievement in the internal
world but appear qualitatively to improve avoidance of the ob-
served collision. The resulting plan is generalized in standard
EBL fashion [DeJong86] resulting in a new schema which
might be called REACH-OVER-OBSTACLE. It embodies spe-
cialized bias knowledge that, in the context of this schema, the
highest possible value consistent with the internal world mod-
el should be selected as the parameter for the UP action. The
new performance choice is illustrated in Figure 6 by a dashed
white box.

1) First 2) Argument 3) Second 4) Argument
Operator for UP Operator for RIGHT

Competeiii=e Selections
(given prior constraints)
Performance Selection

Figure 6: Plan Computation
before permissive adjust.

cz: Performance Selection
after permissive adjust.

From now on, the robot will retreat to the ceiling when
reaching over an obstacle. If other failures are encountered,
permissive planning would once again be invoked resulting in
additional or alternative refinements. If no further refinement
can be constructed, the schema forces a hard planning failure;
none of the elements of the systems performance set is empiri-
cally adequate. Although the internal model supports solu-
tions, this class of planning problems cannot be reliably
solved in the external world. Any adequate planner must fail
to offer a plan for such a class of planning problems.

ias Space
What constitutes a bias space and how does one go about

selecting a particular bias? These are important practical ques-
tions. If there is no convenient way to construct a searchable
bias space, then permissive planning is of little consequence.
The required theoretical properties are modest and do not sig-
nificantly restrict what can and cannot serve as a bias space.

In fact it is quite easy to construct an effectively searchable
bias space. We employ a method for the example above and

SPER system based on problem-solving schema-
ta (generalized macro-operators). Each schema represents a
parameterized solution to a class of planning problems (like
~ACH-o’9rE&oBsTACLE). When the planner is given a new
planning problem, the schema library is examined first. If no
schema is relevant, a standard searching planner is applied to
the problem. If a schema is found, the schema specifies how
the problem is to be dealt with, and the native searching plan-
ner is not invoked. Thus, the schema library acts as a variable
sieve, intercepting some planning problems while letting the
native planner deal with the rest.

One practical difficulty with this method of bias adjust-
ment is the utility problem [Minton88]. However, this is a sep-
arate issue from planner adequacy. Furthermore, recent re-
search [Gratch92, Greiner921 has shown effective methods
for attacking the utility problem that are consistent with this
view of permissive planning.

Empirical Evidence

We have implemented a permissive planner, called
GRASPER, and tested its planning on two domains using a
real-world robot manipulator. Here we summarize the results
of two experiments. Readers are referred to [Bennett931 for
details of the system and the experimental domains.

periment I. The task is to grasp and lift designated ob-
jects from the table with the gripper even though the gripper’s
actual movements are only imprecisely captured by the sys-

Plan Learning 511

tern’s operator knowledge. Objects are known only by their
silhouette as sensed by an over-head television camera. This
experiment consists of an experimental and a control condi-
tion. Twelve plastic pieces of a children’s puzzle were each as-
signed a random position and orientation within the robot’s
working envelope. Pieces were successively positioned as as-
signed on the table. Por each, the robot performed a single
grasp attempt. In the experimental condition permissive plan-
ning was employed; in the control condition permissive plan-
ning was turned off. The results are summarized in Figure 7A.
In the control condition only two of the twelve attempted
grasps succeeded. In the experimental condition ten of the
twelve attempts succeeded. Pailures due to three dimensional
motion of the target, which cannot be correctly sensed by the
robot, were excluded. One bias adjustment was sufficient to
preclude recurrences of each of the two observed types of
grasping failure. The two bias adjustments can be interpreted
as 1) preferring to open the gripper as wide as possible prior
to approaching the target, and 2) selecting opposing sides for
grasp points that are maximally parallel. Other permissive ad-
justments that have been exhibited by the system in this do-
main include closing the gripper more tightly than is deemed
necessary and selecting grasp points as close as possible to the
target’s center of geometry.

Experiment 2. Details of this task domain are borrowed
from Christiansen [Christiansen90]. It is alaboratory approxi-
mation to orienting parts for manufacturing: a tray is tilted to
orient a rectangular object free to slide between the tray’s
sides.. Christiansen employed the domain to investigate sto
chastic planning to which we compare permissive planning.
The tray is divided into nine identical regions. The task is to
achieve a desired orientation (either vertical or horizontal) of
the rectangular object in a specified region.

0 1 2 3 4 5 6 7 8 9 101112 -‘p Trial 0 1 2 3 4 5 6 7 8 9101112
Control Condition, No
Permissive Adjustment

Experimental Condition,
Permissive Adjustment enabled

Figure 7: Effect of Permissive Adjustment on Grasp Success

We compared l-step permissive plans to l-and 3-step op-
timal stochastic plans. The optimal stochastic plans were gen-
erated using the technique described in [Christiansen90]. In
the experiment, a sequence of 52 block orientation problems
was repeatedly given to the permissive planner 20 times (1040
planning problems in all). Figure 8 shows the improvement

Figure 8: Average Success Rates over 20 Repetitions for
I-Step Permissive vs. l- and 3Step Stochastic Plans

in average success rate in the course of the20 repetitions. Each
data point is the average success over the 52 problems. Suc-
cess rate increased from about 40% to approximately 80%.
The final l-step permissive performance approaches the
3-step stochastic performance, but requires fewertraining ex-
amples.

In this paper we have described our efforts towardformal-
izing permissive planning. Prior descriptions [Bennett911
have discussed our motivations and how these motivations
have guided the implementation of experimental systems. We
feel that we now understand the reasons behind the success of
our implementations sufficiently to offer a beginning formal
account of why our experimental systems work.

Qurnotionofbiaswasinspiredbytheuseofthesameterm
in machine learning wtgoff86]. However, the bias referred to
in permissive planning is quite separate from the bias of its un-
derlying machine learning system. Likewise, our competen-
ce/performance distinction for planners is borrowed from a
similar but fundamentally different notion in linguistics
[Chomslcy65].

In the current research literature the methods most similar
to permissive planning trace their roots to dynamic program-
ming [Bellman571 variously called reinforcement learning,
temporal difference methods, and Q learning [92]. Like per-
missive planning the motivation is toimprove real-world goal

512 DeJong

achievement. Some approaches utilize prior operator knowl-
edge. However, like dynamic programming, the goal specifi-
cation is folded into the acquired knowledge; the improved
system is not applicable to other goals without redoing the ma-
chine learning. Purthermore, like stochastic planning, (but un-
like permissive planning) a coarse discretization of continu-
ous and fine-grained domain attributes is required.

One interesting consequence of permissive planning con-
cerns minimal commitment planning. Permissive planning re-
jects this apparently attractive and generally accepted planner
design goal. The desire to make the fewest necessary planning
commitments is motivated by theoretical elegance, planning
efficiency, and discrepancies with the real world. However, it
denies access to a significant portion of the planning bias.

The primary significance of this work, we believe, lies in
combining the internal constraints of a planner’s apriori do-
main axiomatization (i.e., its definition of operators) with the
external constraints obtained from examining real-world out-
comes of action sequences. The machine learning formalism
for combining these internal and external world models is pro-
blem-independent and domain-independent, although some
amount of domain training is introduced. The approach offers
real-world robustness previously associated only with reac-
tive interleaving of sensing and action decisions.

The examples described here are modest. For each failure
that initiates permissive planning, one could, after the fact, re-
craft the operator definitions. But this misses the point. After
all of the axiom tuning a human implementor can endure, inac-
curacies will still exist in a planner’s world knowledge. As
long as there are multiple ways of solving a problem, permis-
sive planning can be employed to preferentially generate
plans that work in the external world.

References

on Machine Learning
586-590.

cts ofthe Theory of Syn-

27-39.

earning Search Contra
on-Based Approach,

[~~tt~~2~ Machine Learning

. Wlkim, Practical Planning: Extending

Plan Learning 513

