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Abstract 
Because complex real-world domains defy perfect for- 
malization, real-world planners must be able to cope with 
incorrect domain knowledge. This paper offers a theoreti- 
cal fhmework fmpemissiveplanning, a machine leam- 
ingmethodforimprovingthereal-world behaviorofplan- 
ners. Permissive planning aims to acquire techniques that 
tolerate the inevitable mismatch between the planner’s in- 
ternal beliefs and the external world. Unlike the reactive 
approach tothis mismatch, permissive planning embraces 
projection. The method is both problem-iudependent and 
domain-independent. Unlike classical planning, permis- 
sive planning does not exclude real-world performance 
from the formal definition of planning. 

Introduction 
An important facet of AI planning is projection, the pro- 

cess by which a system anticipates attributes of a future world 
state from knowledge of an initial state and the intervening ac- 
tions. A planner’s projection ability is often flawed. A classi- 
cal planner can prove goal achievement only to be thwarted by 
reality. The reactive approach; which has received much at- 
tention, avoids these problems by reducing reliance on projec- 
ticm or disallowing it-altogether. For ah its stimulating effect 
on the field, however,+ reactivity is only one path around pro- 
jection problems. It is important to continue searching for and 
researching alternatives. In this paper we advance one such al- 
ternative termedpemissiveplanning. In some ways it is the 
dual of the reactive approach, relying heavily on a goal projec- 
tion ability enhanced by machine learning. From a broader 
perspective, permissive planning embodies an approach to in- 
ference which integrates empirical observations into a tradi- 
tioual apriori domain axiomatization. 
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Pe 
The real world is captured within an inference system by 

some description in a formal language such as the predicate 
calculus. The system’s internal description may only appmxi- 
mate the external real world, giving rise to discrepancies be- 
tween inferred and observed world behavior. In classical plan- 
ning, the difficulties with projection can be traced to such a 
discrepancy, in this case, adiscrepancy between an action’s in- 
terml definition (the one represented and reasoned about) and 
its external definition (the mapping enforced by the real 
world). To concentrate on the discrepancies of action defini- 
tions, we will assume in this paper that no difficulty is intro- 
duced by the system’s sensing or state representation abilities. 
Then, for simplicity in our figures, we can employ a single 
universe of states to denote both internal and external sets of 
states. Figure 1 illustrates a difference between a plan’s proj- 

I IJniverse of States 
I 
Figure 1: Au Action Sequence 

Projected and Actual Mappings 

ected and actual mappings from an initial state. The dot la- 
beled initial state represents both a particular configuration of 
the world (which we call the external state) and the system’s 
formal description of it (the internal state). According to the 
system’s internal model, the plan’s action sequence trans- 
forms the initial state into a goal state. In the real world, how- 
ever, the actual final state falls well outside the goal region. 

One might employ machine learning to improve the sys- 
tem’s operator definitions. The result would be a more faithful 
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representation of their real-world effects. This would yield a 
more accurate projection ability as illustrated in Figure 2. Un- 

Universe of States Universe of States 

Figure 2: Conventional Learning Figure 3: Permissive Raming 
Adjusts Projected Mapping Adjusts Actual Mapping 
towards Actual Mapping towards Projected Mapping 

fortunately, a trend toward increasingly correct operator defi- 
nitions is necessarily also a trend towards more complex oper- 
ator definitions. Increased complexity results in more work 
for the planner which must rule out concomitantly more nega- 
tive interactions. Indeed, operate complexity can grow un- 
boundedly as dictated by the qualification problem [McCart- 
hy80]. With sufficient experience, this use of machine 
learning could paralyze any planner. 

There is an alternative machine learning approach. When 
au apparently sound plan fails to achieve its goal in the real 
world, it may be possible to find a small alteration of the plan 
which tends not to influence the projected final state but 
moves the act&final state closer to the projected one. Instead 
of altering the system’s representations to better fit the ob- 
served world (Figure 2), this approach alters the actions se- 
lected so the real-world effects better match the projected ef- 
fects.ThisisillustratedinFigure3. Ifsuchaplancanbefound, 
the planner itself might be altered so that when presented with 
similar future problems, the planner will tend to produce a so- 
lution similar to the improved plan rather than repeating the 
mistakes of the the original plan. Our approach is to alter sys- 
tematically the planner in response to execution failures sothe 
planner prefers not to employ its domain knowledge in ways 
that seem to lead to failure. We call the approach “permissive” 
because it allows the planner to construct plans that work in 
the real world in spite of flaws in its domain knowledge. 

Permissive Planning Principle: Blame the plan and adjust 
the planner in response to execution failures even though 
the implementor-supplied domain theory is known to be 
at fault. 

ssive 

In response to the need for breakfast a planner may be able 
to formulate several acceptable action sequences. One results 
in pancakes, another in cold raisin bran cereal, still another in 
hot oatmeal, etc. CMcourse, most planners will not produce all 
possible plans. Plauniug activity typically ceases when the 
first acceptable solution is found. After constructing an ac- 
ceptable plan for a hot oatmeal breakfast, the system should 
not waste effort in working out the details for cooking pan- 
cakes. 

We call the set of all possible plans that a particular classi- 
cal planner could produce in principle for a problem, the corn- 
petence set of the planner for that planning problem. We call 
the particular element of this set which is in fact constructed 
in response to the problem theperfomtance of the planner for 
that planniug problem. We use the term planner bias to refer 
to the preference, no matter how it is realized, for the particu- 
lar performance plan from the planner’s competence set. By 
systematically altering a planner’s bias in response to ob- 
served plan execution failures, the same planning competence 
cau yield quite different planning performance, resulting in 
improved real-world behavior. The permissive adjustment of 
a planner’s bias so as to improve the real-world success of its 
performance behavior can be seen as applying the permissive 
planning principle above: the planner is blamed and its bias 
adjusted even though the offending projection failures are due 
to inaccurate operator definitions. 

In this view of planning, actions may have different inter- 
nal and externd effects. We ‘will say that an action sequence 
PSoZves a planning problem the goal holds in the projection of 
the initial state through the sequence. The sequence Esolves 
the problem if the goal is achieved in the real world by execut- 
ing sequence s from the initial state. 

In the planning literature, it is not uncommon to view a 
plan as a collection of constraints [Ghapman87, 
We subscribe to this notion but carry it a bit further. For us, a 
plan for a planning problem is any set of constraints which in- 
dividuates an action sequence such that the action sequence 
ISolves the planning problem. The accepted nonlinear view 
(e.g., CChapmau87, Sacerdoti75, WiIkins88]), is similar but 
does not require the individuation of an action sequence. A 
typical non-linear planner imposes constraints only until all 
action sequences consistent with the constraints are guaran- 
teed to reach a goal state (i.e., each ISolves the planning prob- 
lem). Stopping here allows anotion of minimal planning com- 
mitment. Remaining ambiguities are left for plan execution 
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when they are resolved in the most propitious manner avail- 
able in the execution environment. Our definition of a plan is 
more restrictive. We allow no ambiguities for later resolution. 
This requirement follows from our desire to adjust the plan- 
ner’s bias. We wish to incorporate the entire decision proce- 
dure resulting in an action sequence within the planner proper. 
Only then can the permissive adjustment procedure have ac- 
cess to the full bias reflected in the executable actions. 

We use the informal term partial plan to refer to a set of 
constraints which is intended to solve a particular planning 
problem but does not yet individuate an action sequence. 

A planner (including its bias) is adequate if 1) whenever 
a plan is produced that ISolves a problem it also ESolves the 
problem, and 2) whenever the planner fails to find a plan its 
competence set contains no plan whose action sequence 
ESolves the problem. 

Finally, aplanning computation is a finite sequence of de- 
cisions, Dip fi= I ,...n). Each decision selects a constraint, ci, to 
be added to the partial plan from a (possibly infinite) set of al- 
ternatives (ai, , ai,z, ai, . . . } entertained by the planner for that 
decision, sothat Ci E {ai,], ai,a, q,3...}. The partial plan (which 
is initially the empty set of constraints) is augmented with the 
new decision’s constraint, resulting in a (possibly) more re- 
strictive constraint set. A planning computation is successful 
if, at its termination, there is exactly one distinct action se- 
quenceconsistent with the set of constraints and that action se- 
quence ISolves the planning problem. 

Planning, in this framework, is repeatedly entertaining al- 
ternative constraint sets and for each, selecting one constraint 
to be imposed on the partial plan This is not to say that every 
planner must explicitly represent the alternative constraint 
sets. But every planner’s behavior can be construed in this 
way. From this perspective, a planner’s competence is deter- 
mined by the sets of alternatives that the planner can entertain. 
A (possibly empty) subset of alternatives from each constraint 
set supports successful plan completion. The planner’s com- 
petence is precisely the set of all possible successful plans giv- 
en the entertained alternatives. A planner’s performance, on 
the other hand, is determined by its particular choice at each 
point from among the subset of alternatives which support a 
successful computation continuation. 

The Permissive Planning Algorithm 
A planning bias is auy strategy for designating a particular 

element from among sets of valid continuation alternatives. 
Permissive adjustment of a planner is an empirically-driven 

search through the space of possible biases. Searching for an 
alternative bias is evoked whenever inadequate real-world 
planning behavior is observed. 

In practice, the bias space is extremely large and the per- 
missive planning search must be strongly guided by domain 
knowledge. If such domain knowledge is unavailable, the al- 
gorithm continues to have its formal properties. However, we 
believe that the practical ease with which suitable domain 
knowledge can be formulated will largely govern when the 
permissive planning approach will be useful. The permissive 
planning algorithm: 
1. Initialize Candidate-Bias-Set to the space of all biases. 
2. Using domain knowledge select an element from the 

Candidate,Bias-Set, call it Current-Bias. 
3. Solve planning problems using Current-Bias. If an ex- 

ecuted plan fails to achieve its goal go to 4. 
4. Delete all biases from Candidate-Bias-Set that are prov- 

ably inadequate using domain knowledge (including at 
least Current-Bias). 

5. If Candidate-Bias-Set is not empty, Go To 2. 
6. FAIL, no adequate bias exists. 

As will become clear in the example, domain knowledge, 
in the form of qualitative information relating operators’ ef- 
fects to their arguments, can substantially increase the effi- 
ciency of permissive planning by guiding the selection of a 
promising bias in step 2 and increasing the number of untried 
but guaranteed inadequate biases rejected in step 4. 

It can be easily proven when the algorithm terminates an 
adequate planner has been produced. Further, it can be proven 
that the algorithm will terminate so long as the bias space pos- 
sesses somemodest properties. On advice from an anonymous 
reviewer these proofs have been deleted in favor of more sub- 
stantial discussions of other issues. 

An Example of Permissive Planning 
Suppose we have a two-dimensional gantry-type robot 

arm whose task is to move past an obstacle to position itself 
above a target (see Figure 4). The operators are LEFT, RIGHT, 

Figure 4: Goal to Move Past 
au Obstacle 

Figure 5: Collision Observed 
During Execution 

OPEN, CLOSE, KJP, and DOWN, which each take an amount as 
an argument. The obstacle is 2.5 units high, the tip of the hand 
is 1.2 units above the table, and the front face of the target is 
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4.201 units from the left finger. The planner’s native bias re- 
sults in a plan individuating the action sequence: ~~(1.4) 
~m~~(4.2). Figure 6 shows the alternatives entertained. 
Shaded alternatives indicate the competence selections given 
the constraints already adopted. The performance selection 
for each decision is outlined in a solid white box. 

The first decision selects UP. The second decision selects 
a value for the parameter to UIb. Any value greater than 1.3 up 
to the ceiling is possible according to the system’s internal 
world. The value 1.4 is selected. Finally, RIGHT is selected 
with an argument of 4.2. 

Duriug execution a collision is detected. Permissive pro- 
cessing is invoked which explains the most likely collision in 
qualitative terms. The problem deemed most likely is the one 
requiring the least distortion of the internal projection. In this 
case, the most likely collision is with the obstacle block; the 
height of the gripper fingers is judged too low for the height 
of the obstacle as shown in Figure 5. The planning decisions 
are examined in turn for alternative competence set elements 
which can qualitatively reduce the diagnosed error. In this 
case it amounts to looking for alternatives that, according to 
the operators’ qualitative descriptions, increase the distance 
between the finger tip and the top of the obstacle. Decision 2 
is a candidate for adjustment. Higher values for decision 2 do 
not influence the projected goal achievement in the internal 
world but appear qualitatively to improve avoidance of the ob- 
served collision. The resulting plan is generalized in standard 
EBL fashion [DeJong86] resulting in a new schema which 
might be called REACH-OVER-OBSTACLE. It embodies spe- 
cialized bias knowledge that, in the context of this schema, the 
highest possible value consistent with the internal world mod- 
el should be selected as the parameter for the UP action. The 
new performance choice is illustrated in Figure 6 by a dashed 
white box. 

1) First 2) Argument 3) Second 4) Argument 
Operator for UP Operator for RIGHT 

Competeiii=e Selections 
(given prior constraints) 
Performance Selection 

Figure 6: Plan Computation 
before permissive adjust. 

cz: Performance Selection 
after permissive adjust. 

From now on, the robot will retreat to the ceiling when 
reaching over an obstacle. If other failures are encountered, 
permissive planning would once again be invoked resulting in 
additional or alternative refinements. If no further refinement 
can be constructed, the schema forces a hard planning failure; 
none of the elements of the systems performance set is empiri- 
cally adequate. Although the internal model supports solu- 
tions, this class of planning problems cannot be reliably 
solved in the external world. Any adequate planner must fail 
to offer a plan for such a class of planning problems. 

ias Space 
What constitutes a bias space and how does one go about 

selecting a particular bias? These are important practical ques- 
tions. If there is no convenient way to construct a searchable 
bias space, then permissive planning is of little consequence. 
The required theoretical properties are modest and do not sig- 
nificantly restrict what can and cannot serve as a bias space. 

In fact it is quite easy to construct an effectively searchable 
bias space. We employ a method for the example above and 

SPER system based on problem-solving schema- 
ta (generalized macro-operators). Each schema represents a 
parameterized solution to a class of planning problems (like 
~ACH-o’9rE&oBsTACLE). When the planner is given a new 
planning problem, the schema library is examined first. If no 
schema is relevant, a standard searching planner is applied to 
the problem. If a schema is found, the schema specifies how 
the problem is to be dealt with, and the native searching plan- 
ner is not invoked. Thus, the schema library acts as a variable 
sieve, intercepting some planning problems while letting the 
native planner deal with the rest. 

One practical difficulty with this method of bias adjust- 
ment is the utility problem [Minton88]. However, this is a sep- 
arate issue from planner adequacy. Furthermore, recent re- 
search [Gratch92, Greiner921 has shown effective methods 
for attacking the utility problem that are consistent with this 
view of permissive planning. 

Empirical Evidence 

We have implemented a permissive planner, called 
GRASPER, and tested its planning on two domains using a 
real-world robot manipulator. Here we summarize the results 
of two experiments. Readers are referred to [Bennett931 for 
details of the system and the experimental domains. 

periment I. The task is to grasp and lift designated ob- 
jects from the table with the gripper even though the gripper’s 
actual movements are only imprecisely captured by the sys- 
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tern’s operator knowledge. Objects are known only by their 
silhouette as sensed by an over-head television camera. This 
experiment consists of an experimental and a control condi- 
tion. Twelve plastic pieces of a children’s puzzle were each as- 
signed a random position and orientation within the robot’s 
working envelope. Pieces were successively positioned as as- 
signed on the table. Por each, the robot performed a single 
grasp attempt. In the experimental condition permissive plan- 
ning was employed; in the control condition permissive plan- 
ning was turned off. The results are summarized in Figure 7A. 
In the control condition only two of the twelve attempted 
grasps succeeded. In the experimental condition ten of the 
twelve attempts succeeded. Pailures due to three dimensional 
motion of the target, which cannot be correctly sensed by the 
robot, were excluded. One bias adjustment was sufficient to 
preclude recurrences of each of the two observed types of 
grasping failure. The two bias adjustments can be interpreted 
as 1) preferring to open the gripper as wide as possible prior 
to approaching the target, and 2) selecting opposing sides for 
grasp points that are maximally parallel. Other permissive ad- 
justments that have been exhibited by the system in this do- 
main include closing the gripper more tightly than is deemed 
necessary and selecting grasp points as close as possible to the 
target’s center of geometry. 

Experiment 2. Details of this task domain are borrowed 
from Christiansen [Christiansen90]. It is alaboratory approxi- 
mation to orienting parts for manufacturing: a tray is tilted to 
orient a rectangular object free to slide between the tray’s 
sides.. Christiansen employed the domain to investigate sto 
chastic planning to which we compare permissive planning. 
The tray is divided into nine identical regions. The task is to 
achieve a desired orientation (either vertical or horizontal) of 
the rectangular object in a specified region. 

0 1 2 3 4 5 6 7 8 9 101112 -‘p Trial 0 1 2 3 4 5 6 7 8 9101112 
Control Condition, No 
Permissive Adjustment 

Experimental Condition, 
Permissive Adjustment enabled 

Figure 7: Effect of Permissive Adjustment on Grasp Success 

We compared l-step permissive plans to l-and 3-step op- 
timal stochastic plans. The optimal stochastic plans were gen- 
erated using the technique described in [Christiansen90]. In 
the experiment, a sequence of 52 block orientation problems 
was repeatedly given to the permissive planner 20 times ( 1040 
planning problems in all). Figure 8 shows the improvement 

Figure 8: Average Success Rates over 20 Repetitions for 
I-Step Permissive vs. l- and 3Step Stochastic Plans 

in average success rate in the course of the20 repetitions. Each 
data point is the average success over the 52 problems. Suc- 
cess rate increased from about 40% to approximately 80%. 
The final l-step permissive performance approaches the 
3-step stochastic performance, but requires fewertraining ex- 
amples. 

In this paper we have described our efforts towardformal- 
izing permissive planning. Prior descriptions [Bennett911 
have discussed our motivations and how these motivations 
have guided the implementation of experimental systems. We 
feel that we now understand the reasons behind the success of 
our implementations sufficiently to offer a beginning formal 
account of why our experimental systems work. 

Qurnotionofbiaswasinspiredbytheuseofthesameterm 
in machine learning wtgoff86]. However, the bias referred to 
in permissive planning is quite separate from the bias of its un- 
derlying machine learning system. Likewise, our competen- 
ce/performance distinction for planners is borrowed from a 
similar but fundamentally different notion in linguistics 
[Chomslcy65]. 

In the current research literature the methods most similar 
to permissive planning trace their roots to dynamic program- 
ming [Bellman571 variously called reinforcement learning, 
temporal difference methods, and Q learning [92]. Like per- 
missive planning the motivation is toimprove real-world goal 
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achievement. Some approaches utilize prior operator knowl- 
edge. However, like dynamic programming, the goal specifi- 
cation is folded into the acquired knowledge; the improved 
system is not applicable to other goals without redoing the ma- 
chine learning. Purthermore, like stochastic planning, (but un- 
like permissive planning) a coarse discretization of continu- 
ous and fine-grained domain attributes is required. 

One interesting consequence of permissive planning con- 
cerns minimal commitment planning. Permissive planning re- 
jects this apparently attractive and generally accepted planner 
design goal. The desire to make the fewest necessary planning 
commitments is motivated by theoretical elegance, planning 
efficiency, and discrepancies with the real world. However, it 
denies access to a significant portion of the planning bias. 

The primary significance of this work, we believe, lies in 
combining the internal constraints of a planner’s apriori do- 
main axiomatization (i.e., its definition of operators) with the 
external constraints obtained from examining real-world out- 
comes of action sequences. The machine learning formalism 
for combining these internal and external world models is pro- 
blem-independent and domain-independent, although some 
amount of domain training is introduced. The approach offers 
real-world robustness previously associated only with reac- 
tive interleaving of sensing and action decisions. 

The examples described here are modest. For each failure 
that initiates permissive planning, one could, after the fact, re- 
craft the operator definitions. But this misses the point. After 
all of the axiom tuning a human implementor can endure, inac- 
curacies will still exist in a planner’s world knowledge. As 
long as there are multiple ways of solving a problem, permis- 
sive planning can be employed to preferentially generate 
plans that work in the external world. 
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