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Abstract 

Machine learnin g approaches to knowledge compilation seek to 
improve the performance of problem-solvers by storing 
solutions to previously solved problems in an efficient, 
generalized form. The problem-solver retrieves these learned 
solutions in appropriate later situations to obtain results more 
efficiently. However, by relying on its learned knowledge to 
provide a solution, the problem-solver may miss an alternative 
solution of higher quality - one that could have been generated 
using the original (non-learned) problem-solving knowledge. 
This phenomenon is referred to as the masking effect of learning. 

In this paper, we examine a sequence of possible solutions for 
the masking effect. Each solution refines and builds on the 
previous one. The final solution is based on cascaded filters. 
When learned knowledge is retrieved, these filters alert the 
system about the inappropriateness of this knowledge so that the 
system can then derive a better alternative solution. We analyze 
conditions under which this solution will perform better than the 
others, and present experimental data supportive of the analysis. 
This investigation is based on a simulated robot domain called 
Groundworld.’ 

I. Introduction 
Knowledge-compilation techniques in the field of 

machine learning seek to improve the performance of 
problem-solvers/planners by utilizing their past 
experiences. Some examples of these knowledge- 
compilation techniques are explanation-based 
generalization (EBG/EBL) (DeJong and Mooney, 1986, 
Mitchell, Keller, and Kedar-Cabelli, 19861, chunking 
(Laird, Rosenbloom, and Newell, 1986a), production 
composition (Anderson, 1983, Lewis, 19781, macro- 
operator learning (Fikes, Hart, and Nilsson, 1972, Shell 
and Carbonell, 1989), and analogical and case-based 
reasoning (Carbonell, 1986, Hammond, 1986). These 
techniques store experiences from previously solved 
problems in an efficient, generalized form. The problem- 
solver then retrieves these learned experiences in 
appropriate later situations so as to obtain results more 
efficiently, and thus improve its performance. 

However, by relying on its learned knowledge to 
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provide a solution, the problem-solver may miss an 
alternative solution of higher quality - one that could 
have been generated using the original (non-learned) 
problem-solving knowledge. For instance, in a planning 
domain, the problem-solver may miss the derivation of a 
higher-quality plan, if a lower-quality plan has been 
learned earlier. The following example from the 
Groundworld domain (Stobie et al., 1992) illustrates this 
phenomenon. Groundworld is a two-dimensional, multi- 
agent simulation domain in which both space and time are 
represented as continuous quantities. The principal 
features in this world are walls, which block both 
movement and vision. Currently, our task in Groundworld 
involves two agents: an evasion agent and a pursuit agent. 
The evasion agent’s task is to reach its destination from 
its starting point, without getting caught by the pursuit 
agent, and to do so as quickly as possible. The pursuit 
agent’s task is to catch the evasion agent. Both agents 
have a limited range of vision. When the two agents are in 
visual range, the pursuit agent starts chasing, while the 
evasion agent attempts to escape by hiding behind some 
wall, from where it replans to reach its destination. 

Figure l-l-a shows part of an example scenario from 
Groundworld. The thick straight lines indicate walls. 
Here, the two agents are within visual range. To avoid 
capture, the evasion agent uses a map to create a plan 
(shown by dashed lines) to hide behind a wall. The plan 
is stored in learned rules, to be retrieved and reused in 
similar later situations. The situation in Figure l-l-b is 
similar and the learned rules directly provide a plan to the 
hiding spot. However, by relying on these learned rules, 
the evasion agent misses a closer hiding spot (denoted by 
X). If the evasion agent had confronted the problem in 
Figure l- l-b without its previously learned rules, it would 
have planned a path to the closer hiding spot. However, 
due to its learned rules, the evasion agent follows a low 
quality plan. While the lower-quality plan allows it to 
hide successfully, there is a significant delay in its hiding, 
which in turn delays it in reaching its real destination. 

This effect, of using a low quality learned solution, has 
been observed for some time in humans, where it is 
referred to as Einstehng (Luchins, 1942). Modeling 
Einstellung in computer simulations is an important 
aspect of capturing human skill acquisition (Lewis, 1978). 
More recently, Clarke and Holte (Clark and Holte, 1992) 
report this effect in the context of a Prolog/EBG system, 
where they call it the masking &kct, because the learned 
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Figure 1-I: The masking problem when hiding: approx 
15% of the Groundworld scenario is shown. 

knowledge masks the original problem-solving 
knowledge. However, in contrast to the psychological 
work, Clarke and Holte’s goal is not to produce this 
effect, but to eliminate it. 

The hypothesis underlying the work described here is 
part way between these two perspectives; in particular, 
the assumption is that masking (Einstellung) is in its 
essence unavoidable, but that there are effective strategies 
that an intelligent system can use to minimize its negative 
consequences. Note that a low-quality solution produced 
due to masking is not always problematical. For instance, 
in real-time situations, a low-quality solution may be 
acceptable, as long as it is produced in bounded time 
(Korf, 1990). However, in other situations, a good quality 
solution has a much higher priority and hence avoiding 
the masking effect assumes importance. 

We start by motivating the overall hypothesis by 
examining the relationship of masking to overgenerality, 

ng at some of the existing approaches for dealing 
with this overgenerality and discussing the problems these 
approaches have. We then propose a sequence of three 
new approaches to coping with masking, based on the 
concepts of approximations, filters, and cascades of 
filters. This is all then wrapped up with some analysis 
and backup experiments comparing these approaches. 

2. Masking and Overgenerality 
The masking effect arises because, while generating a 

new learned rule (i.e., at generation time), the system may 
fail to capture all of the knowledge that was relevant in 
deriving a high-quality solution. This may occur, for 
example, because the requisite knowledge is only implicit 
in the problem solving, or because it is intractable to 
capture the knowledge. Either way, the learned rule may 
be missing some knowledge about the exact situations 
where its application will lead to a high quality solution. 
Thus, when the learned rule is retrieved (i.e., at retrieval 
time), it may apply even though it leads to a low quality 
solution. 

This is clearly an instance of overgenerality (Laird, 
Rosenbloom, and Newell, 1986b); however, this 
overgenerality is with respect to producing a high quality 
solution, not with respect to producing a correct solution. 
That is, these learned rules do not lead to a failure in task 
performance. For instance, in Figure l-l-b, the learned 
rules that lead to masking do not result in a failure in 
hiding, even though a closer hiding place is missed. 

The two classical types of solutions to overgenerality 
are: (1) avoid it by learning correct rules, or (2) recover 
from it by detecting the performance failures they 
engender and then learning patches for those situations. 
Clarke and Holte’s approach is of the first type. In their 
Prolog-based system, knowledge about solution quality is 
implicit in the ordering of the Prolog rules. Their EBG 
implementation fails to capture this knowledge while 
learning new rules, and leads to the masking effect. The 
key feature of their solution is, at generation time, to order 
the learned and non-learned rules according to solution 
quality. This ordering is guaranteed to remain valid at 
retrieval time, so the highest quality solution can be 
retrieved simply by selecting the topmost applicable rule 
from the ordering. 

In general, solutions of type 1 - which we shall 
henceforth refer to as generation-time exact or @T-exact 
solutions - require capturing all of the relevant 
knowledge into the learned rules at generation time. 
However, in complex domains, it can be extraordinarily 
difficult to do this; that is, tractability problems result. 
Consider a second example from the Groundworld 
domain (Figure 2- 1). In Figure 2-l-a, the evasion agent 
attempts to reach its destination, using a map to plan a 
path through a set of regions (Mitchell, 1988). The path 
(shown by a dashed line) is chosen so as to be the shortest 
one that avoids traveling close to the ends of walls - 
these are potential ambush points that may not allow the 
evasion agent sufficient maneuvering space to reach a 
hiding place before it is caught. In this particular 
instance, the evasion agent has no information about the 
pursuit agent’s position, and hence cannot e that into 
account while planning the path; however, the pursuit 
agent is far enough away that it cannot intercept the 
evasion agent anyway. 

The rule learned from the path-planning process in 

Plan Learning 527 



(a) Learned plan. 

01 I 
0 500 7r 

(b) The masking effect. 

Figure 2-1: Masking when trying to reach destination. 

Figure 2-1-a captures a plan - a generalized sequence of 
regions through which the agent must traverse - that 
transfers to the situation in Figure 2-l-b. In this situation, 
the plan leads to interception by the pursuit agent. Such 
interceptions occur in this world, and are by themselves a 
non-issue - interceptions do not lead to failure (capture) 
as long as there is enough maneuvering space for 
successful hiding. However, in this case masking occurs 
because the evasion agent has knowledge about the 
location of the pursuit agent - from an earlier encounter 
with it - so it should have been possible to avoid this 
interception, and the resultant time lost from hiding and 
replanning. Without the learned rule, the evasion agent 
would have formed a different plan in Figure 2-1-b, one 
that would have avoided the area around the pursuit agent, 
allowing it to reach its destination quickly. 

To apply the GT-exact solution to this problem, the 

correct learned rule would need to capture exactly the 
circumstances under which the path is of low quality; that 
is, those circumstances in which the pursuit agent is in a 
known location from which it can intercept the evasion 
agent’s path. For example, the overgeneral rule could be 
augmented with explicit disabling conditions of the form: 
(know pursuit agent in region-X), (know pursuit agent in 
region-Y) and so on. These disabling conditions avert the 
retrieval of the learned path if the pursuit agent is known 
to be in any of the regions from which it could intercept 
the path traversed. 

While this approach seems plausible here, there are two 
problems which tend to make it intractable. First, locating 
all possible disabling conditions, i.e., positions of the 
pursuit agent for which the plan is of low-quality, 
involves a large amount of processing effort This is a 
long path, and there are a variety of positions of the 
pursuit agent which threaten the path. Second, a large 
number of disabling conditions can severely increase the 
match cost of the learned rule, causing an actual 
slowdown with learning (Tambe, et al., 1990). The 
problems become even more severe in intractable 
domains. For example, in the chess end-game domain, it 
is effectively impossible to correctly condition a learned 
plan at generation time so as to ensure its exact retrieval 
(Tadepalli, 1989). As a result, at retrieval time, the 
learned plan may apply, but it does not always lead to a 
successful solution. And further in incomplete domains 
the relevant knowledge may not even be available at 
generation time. Together these problems limit the 
feasibility of the GT-exact approach to relatively simple 
domains. 

The second general class of existing solutions to 
overgenerality am the refinement (or recovery) strategies 
(Gil, 1992, Huffman, Pearson and Laird, 1991, Chien, 
1989, Tadepalli, 1989). However, these solutions all 
depend on explicit detection of failures at planning or 
execution time (e.g., failure in forming or executing a 
plan) to indicate the incorrectness of a rule, and thus to 
trigger the refinement process (Huffman, Pearson and 
Laird, 1991). While this works for overgeneral solutions 
that produce incorrect behavior, with the masking effect 
the learned solutions are only of low quality, and do not 
lead to explicit failure. Without an explicit failure, the 
refinement process simply cannot be invoked. 
(Furthermore, failure-driven learning may not always be 
the right strategy, e.g., in Groundworld, failure is 
extremely expensive - it leads to capture by the pursuit 
agent!) Thus, this class of solutions does not look 
feasible for masking problems. 

3. New Approaches to 
The previous section ruled out refinement strategies 

and raised tractability issues with respect to GT-exact. 
This section introduces a sequence of three new 
approaches: (1) GT-approximate takes the obvious step of 
avoiding the intractability of GT-exact by approximating 
the disabling conditions; (2) RT-approximate improves on 
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GT-approximate’s real-time characteristics by using the 
approximations as retrieval-time filters; and (3) RT- 
cascade refines RT-approximate by reducing the amount 
of replanning. 
3.1. Approximating Disabling Conditions 

GT-approximate overcomes the intractability issues 
faced by GT-exact by using overgeneral approximations 
(simplifying assumptions) about the exact situations for 
which the learned rules lead to low quality solutions. In 
the path-planning example, this involves replacing the set 
of exact disabling conditions by a single, more general, 
approximate condition - (know pursuit agent’s position) 
- thus disabling the learned rule if any knowledge about 
the pursuit agent’s position is available. Inclusion of only 
a single disabling condition also alleviates the problem of 
high match cost. 

For this solution to be effective in general, the system 
must be able to derive good approximations. Fortunately, 
there is already considerable amount of work on this topic 
that could provide such approximations, e.g., (Elkan, 
1990, Ellman, 1988, Feldman and Rich, 1986). However, 
there are still two other problems with GT-approximate. 
First, due to the overgeneral approximations, it may 
overspecialize a learned rule, disabling it from applying 
even in situations where it leads to a high quality solution. 
For instance, suppose the rule learned in 2-l-a is to be 
reused in 2-1-a, and (know pursuit agent’s position) is 
true. In this situation, GT-approximate will disable the 
learned rule, even though the pursuit agent is far away, 
and the learned rule is thus appropriate. Second, GT- 
approximate does not facilitate the speed-quality tradeoff 
that is essential for real-time performance (Boddy and 
Dean, 1989). In particular, the disabling conditions used 
here simply disable learned rules in situations where they 
lead to low quality solutions, forcing the system to derive 
a new solution from scratch. However, in some real-time 
situations, a low quality response is perfectly acceptable 
(Korf, 1990), e.g., in the hiding situation, the evasion 
agent may find a low-quality plan acceptable if the pursuit 
agent is close and there is no time to generate a better 
plan. 
3.2. Approximations as Retrieval-Time Filters 

RT-approximate alleviates the real-time performance 
problem faced by GT-approximate by converting the 
(approximate) disabling conditions into (approximate) 
retrieval-time filters.2 These filters quickly check if a 
learned solution is of low quality after its retrieval. For 
instance, (know pursuit agent’s position) cm be used as 
an approximate filter for the path-planning example. If 
this filter is true at retrieval time, then the retrieved plan is 
marked as being one of possibly low quality. In a time- 
critical situation, such as the hiding situation, the system 

2Filtering strategies have also been used in other agent architectures. 
For example, in IRMA (Bratman, et al., 1988). filters decide if an external 
event/opportunity is compatible or incompatible with the plan the system 
has committed to. 

can simply ignore this mark and use its learned solution. 

Where do these filters come from? One “top-down” 
possibility is that they arise from explicit generation-time 
assumptions, much as in GT-approximate. For example, 
if it is known that the planning proceeded under the 
assumption that no knowledge is available about the 
location of the pursuit agent, then this assumption could 
be captured as a filter and associated with the learned 
rule. Though existence of such location knowledge at 
retrieval time does not necessarily mean that the plan will 
be of low-quality, the filter does at least ensure that the 
plan will not suffer from the masking effect because of 
this location information. 

A second “data-driven” possibility is to use 
“significant” external events as the basis for filters. 
Essentially, the system notices some external object/event 
which may suggest to it that a retrieved solution is 
inappropriate. For instance, in the hiding example, if the 
system notices a closer, larger wall in front, then this may 
suggest to it that its retrieved hiding plan is inappropriate. 
This strategy is related to the reference features proposed 
in (Pryor and Collins, 1992), which are tags that the 
system associates with potentially problematical elements 
in its environment. Later activation of a reference feature 
alerts the system to a potential negative (positive) 
interaction of that element with its current plan. 

The biggest problem with RT-approximate is that it 
suffers from the same overspecialization problem that 
dogs GT-approximate; that is, the filters are overgeneral, 
and can eliminate plans even when they would yield high- 
quality solutions. 
3.3. Cascading Filters 

RT-cascade overcomes the overspecialization problem 
of RT-approximate by cascading a more exact filter after 
the approximate filter. It fist applies the approximate 
filter to the retrieved solution. If this indicates that the 
solution may be of low quality, then the exact filter is 
applied to verify the solution. If the exact filter also 
indicates that the retrieved solution is inappropriate, then 
the system replans from scratch. (Sometimes, a better 
alternative may be to modify and re-use the existing plan 
(Kambhampati, 1990).) If the exact filter indicates that the 
solution is appropriate, then the original solution is used, 
thus overcoming the overspecialization introduced by the 
approximate fif ter. 

As an example, consider what happens when RT- 
cascade is applied to the two Groundworld scenarios 
introduced earlier. In the path-planning scenario, the 
approximate filter is (know pursuit agent’s position) and 
the exact filter is a simulation of the plan that verifies 
whether the pursuit agent’s position will lead to an 
interception. In the hiding scenario, the approximate filter 
is (wall in front of evasion agent). Here, the exact filter 
verifies that the wall actually is a hiding place (e.g., it will 
not be so if the pursuit agent is located between the wall 
and the evasion agent), and that the wall is close. In both 
the scenario in Figure 2-l-b and the one in Figure l-l-b 
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the approximate filters detect possibly low quality plans. 
The exact filters are then run, and since they concur, 
replanning occurs, yielding the plans in Figure 3-l. In 
both of these cases RTcascade yields the same qualitative 
behavior as would RT-approximate; however, in other 
circumstances RT-cascade would have stayed with the 
original plan while RT-approximate replanned. In either 
event, this experience can be learned so as not to repeat 
the exact verification (and replanning) on a similar future 
problem. 
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Figrare 3-1: Overcoming the masking effect. 

The exact verification in RT-cascade may appear 
similar to GT-exact; but there is a big difference in their 
computational costs. In the exact verification process, the 
system reasons only about the single situation that exists 
at retrieval time. In contrast, GT-exact reasons about all 
possible potentia.lly problematical situations that may 
arise at retrieval time. For instance, in the path-planning 
example, GT-exact requires reasoning about all possible 
positions of the pursuit agent that can lead to an 
interception, as opposed to a single position of the pursuit 
agent. This difference in reasoning costs at generation 
time and retrieval time have also been observed (and 

exploited) in some other systems (Huffman, Pearson and 
Laird, 1991). Note that this high cost of GT-exact also 
rules out a GT-cascade solution, which would combine 
the exact and approximate disabling conditions at 
generation time. 

We have focused on applying the cascaded filters after 
the retrieval of a learned solution, but before its 
execution/application. However, the cascaded filters 
could be employed during or after execution as well. For 
instance, in the path-planning example, the cascaded 
filters could be invoked only if the pursuit agent actually 
intercepts the path. Here, this interception itself acts as a 
bottom-up approximate filter. The exact filter then 
verifies if the path is a low quality one (e.g., this path 
could be the best the system could plan if it had no prior 
knowledge about the pursuit agent, or this was the only 
path possible, etc.) This experience can be learned, and 
retrieved in future instances. However, one key problem 
with this strategy is that it disallows any preventive action 
on the problem at hand. 

The key remaining question about RT-cascade is how 
well it performs in comparison to RT-approximate; that 
is, whether the extra cost of performing the exact 
verifications in RT-cascade is offset by the replanning 
effort that would otherwise be necessary in RT- 
approximate. This is a sufficiently complicated question 
to be the topic of the next section. 

4. -approximate vs 
Two factors determine whether RTcascade 

outperforms RT-approximate. The first is the amount of 
overspecialization/inaccuracy in the approximate filter. 
Without such inaccuracy, the exact filter is simply 
unnecessary. The second factor relates to the cost of 
(re)derivation. Since the exact filter is intended to avoid 
the (re)derivation of a solution, it must cost less than the 
rederivation to generate savings. Winslett (Winslett, 
1987) shows that while, in the worst case, derivation and 
verification processes are of the same complexity, in 
general, verification may be cheaper. 

Let us consider two systems. The first, S-approximate, 
uses the RT-approximate approach; and a second, S- 
cascade, uses the RT-cascade approach. Now, consider a 
problem-instance where the approximate filter is 
inaccurate, i.e., it indicates that a solution is of low 
quality, but it is actually not of low quality. Since S- 
approximate depends on only the approximate filter, it 
will derive a new solution from scratch, and it will incur 
the cost of Cdetive. On the contrary, with S-cascade, the 
exact filter will be used to verify the quality of the 
solution. This verification will succeed, indicating that the 
solution is actually not of low quality. Therefore, S- 
cascade will not derive a new solution, and wilI only incur 
the cost of C;,,, for successful verification. Assuming 
C vsucc is less *m ‘derive (as discussed above), this 
situation favors S-cascade. It will obtain a speedup over 
S-approximate of: C,,etiv&vsucc. 
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Thus, a cascaded filter can lead to performance 
improvements. However, now consider a second problem 
instance, where the approximate filter is accurate, i.e., it 
indicates that a solution is of low quality, and it is actually 
of low quality. S-approximate will again derive a new 
solution from scratch, with cost of Cdetive. S-cascade will 
again use an exact filter to verify the quality of the 
solution. However, now since the solution is of low 
quality, the verification will fail, at the cost of Cvfail. S- 
cascade will then derive a new solution, at the cost of 
C derive, so that the toal cost for S-cascade will be: 
C derive+Cvfail. This situation favors S-approximate. It will 
obtain a speedup over S-cascade of: 

Thus, if the approximate filter functions inaccurately 
for a problem instance, S-cascade outperforms S- 
approximate; otherwise, S-approximate performs better. 
In general, there will be a mix of these two types of 
instances. Let N,, be the number of instances where the 
approximate filter performs accurately, and Nina= be the 
number of instances where it performs inaccurately. 
Simple algebra reveals that if S-cascade is to outperform 
S-approximate, then the accuracy of the approximate filter 
[Nacc/(Nacc+Ninacc)] must be bounded above by: (Cdetive - 
C vsuccY~Cvfail + (‘&r&e - C,,,,>)- If the approximate 
filter is any more accurate, S-approximate will outperform 
S-cascade. (It may be possible to improve this bound 
further for S-cascade by applying the exact filter 
selectively; that is, skipping it when C&rive is estimated to 
be cheaper than C,,,,.) 

We do not yet know of any general procedures for 
predicting a priori how accurate an approximate filter will 
be, nor how low this accuracy must be for RT-cascade to 
outperform RT-approximate. So, we have instead 
investigated this question experimentally in the 
Groundworld domain. Our methodology has been to 
implement RT-cascade as part of an evasion agent that is 
constructed in Soar (Rosenbloom, et al., 1991) - an 
integrated problem-solving and learning architecture, 
which uses dunking (a variant of EBL) to acquire rules 
that generalize its experience in solving problems - and 
then to use this implementation to gather data that lets us 
approximate the parameters of the upper-bound equation, 
at least for this domain. 

Table 4-l presents the experimental results. Since the 
values for Cdefive, C,,,, and C,,,, vary for different start 
and destination points, live different sets of values were 
obtained. The first, second and third columns give 
C derive’ C vsucc and Gfail respectively (measured in 
number of simulation cycles). The fourth column gives 
the speedup - Cdetiv&,succ - obtained by the System 
due to the cascaded filter, when the approximate filter is 
inaccurate. The ftith column gives the slowdown - 

(Cderive+Cvfail)/Cderive - observed by the system due to 
the cascaded filter, when the approximate filter is 
accurate. The last column in the table is the computed 

bound on the accuracy of the approximate filter. 

Table 4-1: Experimental results for the path-planning example. 

The first row in the table shows the data for the start 
and destination points as shown in Figure 2-l-a. Here, the 
value of 30 for Cvsucc represents a case where the pursuit 
agent is located far to the north-east of the evasion agent, 
so that it will not intercept the planned path. The value of 
I1 for C,, was obtained for the case where the pursuit 
agent is located as shown in Figure 2-I-b. The other four 
rows represent four other problems, with decreasing path 
lengths. 

The table shows that in cases where the approximate 
filter is inaccurate, the system derives good speedups due 
to the cascaded filter. In cases where the approximate 
filter is accurate, the system encounters very small 
slowdowns due to the cascaded filter. The last column in 
the table shows that even if the accuracy of the 
approximate filter is as high as 9597%, the cascaded 
filter will continue to provide the system with some 
performance benefits. The approximate filter that we have 
used - (know pursuit agent’s position) - is not as 
accurate as this. For the five problems above, its actual 
accuracy varied from about 44% for the first problem to 
28% for the last problem. We could employ an alternative 
filter, but its accuracy would need to be more than 
9597% before the cascaded filters become unuseful for 
this problem. 

The last row in Table 4-l shows a low Cdetive, for 
source and destination points that are close. Here, 
spcedup due to the cascaded filters has decreased. 
However, the other entries in this last row are blank. This 
is because with such close source and destination points, 
verification failure is instant: the pursuit agent is in visual 
range and starts chasing. In such cases, the evasion agent 
abandons its path planning, and instead tries to hide. 

For the hiding example, Cdetive is 14, while C,,,, and 
C vfail are both 3. These values show little variance with 
different hiding destinations. This provides a bound of 
73% on the accuracy of the approximate filter. If the 
approximate filter is any more accurate than this, the 
cascaded filter is not beneficial. We estimate the accuracy 
of our approximate filter - (wall in front of evasion 
agent) - to be approximately 25%. 
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5. Summary and 
This paper focused on the masking problem in 

knowledge compilation systems. The problem arises 
when a system relies on its learn4 knowledge to provide 
a solution, and in this process misses a better alternative 
solution. In this paper, we examined a sequence of 
possible solutions for the masking effect. Each solution 
refined and built on the previous one. The final solution is 
based on cascaded filters. When learned knowledge is 
retrieved, these filters alert the system about the 
inappropriateness of this knowledge so that the system 
can then derive a better solution. We analyzed conditions 
under which this solution performs better than the others, 
and presented experimental data supportive of the 
analysis. 

Much more needs to be understood with respect to 
masking. Concerns related to masking appear in different 
systems, including some non-learning systems. One 
example of this is the the qualljkation problem (Ginsberg 
and Smith, 1987, Lifschitz, 1987, McCarthy, 1980), 
which is concerned with the issue that the successful 
performance of an action may depend on a large number 
of qualifications. The disabling conditions for learned 
rules (from Section 2) are essentially a form of such 
qualifications. However, the solutions proposed for the 
qualification problem have a different emphasis - they 
focus on higher-level logical properties of the solutions. 
For instance, one well-known solution is to group 
together all of the qualifications for an action under a 
single disabling abnormal condition (McCarthy, 1980, 
Lifschitz, 1987). This condition is assumed false by 
default, unless it can be derived via some independent 
disabling rules. However, issues of focusing or limiting 
the reasoning involved in these disabling rules are not 
addressed. In contrast, our use of filters to focus the 
reasoning at retrieval time and the use of two filters (not 
just one), provide two examples of our concern with more 
pragmatic issues. 

Masking also needs to be better situated in the overall 
space of learning issues. We have already seen how it is a 
subclass of overgeneralization that leads to a decrease in 
solution quality rather than outright solution failure. 
However, it also appears to be part of a more general 
family of issues that includes, among others, the utility 
problem in EBL. 

The utility problem concerns the degradation in the 
speed of problem-solving with learning (Minton, 1988, 
Tambe, et al., 1990). Clarke and Holte (Clark and Holte, 
1992) note that this is distinct from masking, which 
concerns degradation in solution quality with learning. 
However, the utility problem can be viewed from a 
broader perspective, as proposed in (Holder, 1992). In 
particular, the traditional view of the utility problem is 
that it involves symbol-level learning (e.g., acquisition of 
search-control rules), and creates a symbol-level utility 
problem (degradation in speed of problem-solving) 
(Minton, 1988). Holder (Holder, 1992) examines the 

problem of over-fitting in inductive learning, and views 
that as part of a general utility problem. This over-fitting 
problem could actually be viewed as involving 
knowledge-level (inductive) learning, and creating a 
knowledge-level utility problem (degradation of the 
accuracy of learned concepts). Given this perspective, we 
can create a 2x2 table, with the horizontal axis indicating 
the type of utility problem, and the vertical axis indicating 
the type of learning (Figure S-l). 

Type of utility problem 

Symbol-level Knowledge-level 

Type of 
learning 

Figure 5-1: A broader perspective on the utility problem. 

The masking effect may now be viewed as involving 
symbol-level learning (knowledge compilation), but 
creating a knowledge-level utility problem (degradation in 
solution quality). Finally, the average growth effect that is 
observed in some systems (Tambe, 1991) provides an 
example of knowledge-level learning causing a symbol- 
level utility problem. Here, a large number of new rules 
acquired via knowledge-level learning can cause a 
symbol-level utility problem. We hope that by exploring 
such related issues, we can obtain a broader 
understanding of the masking effect. 
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