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Abstract 
We present Pika, an implemented self-explanatory 
simulator that is more than 5000 times faster than 
SimGen Mk2 [Forbus and Falkenhainer, 19921, the 
previous state of the art. Like SimGen, Pika auto- 
matically prepares and runs a numeric simulation 
of a physical device specified as a particular in- 
stantiation of a general domain theory, and it is 
capable of explaining its reasoning and the sim- 
ulated behavior. Unlike SimGen, Pika’s model- 
ing language allows arbitrary algebraic and dif- 
ferential equations with no prespecified causal di- 
rection; Pika infers the appropriate causality and 
solves the equations as necessary to prepare for 
numeric integration. 

Introduction 
Science and engineering have used numeric simulation 
productively for years. Simulation programs, how- 
ever, have been laboriously hand-crafted, intricate, and 
difficult to understand and change. There has been 
much recent work on automating their construction 
(e.g. [Yang, 1992, Rosenberg and Karnopp, 1983 
Abelson and Sussman, 1987, Palmer and Cremer : 
19921). To th is, the Qualitative Physics community 
has contributed the idea of a self-explanatory simulator 
[Forbus and Falkenhainer, 1990, Forbus and Falken- 
hainer, 19921. When using such a system, a person 
need only specify the basic entities, quantities, and 
equations governing the system to be simulated. From 
these, the program automatically prepares and runs a 
numeric simulation. It also keeps a record of its rea- 
soning so it can explain the simulated behavior. 

Such a simulator has three primary advantages [For- 
bus and Falkenhainer, 19901. 
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e Improved automation: Because the user specifies 
the simulated system declaratively using equations, 
creating and modifying simulations is much easier. 
Improved self-monitoring: The simulator can 
analyze the equations to produce checks that detect 
problems with the simulation, such as numerical in- 
stability. 

0 Better explanations: Because the simulator 
records the deductions needed to prepare the sim- 
ulation, it can generate custom English-language or 
graphical explanations for the simulated behavior. 
Such explanations assist debugging the simulated 
equations, and they can form the core of an auto- 
mated tutor that allows the user to explore and learn 
about the behavior of a simulated system. 
The first and third of these properties are of 

particular interest to the Electronic Encyclope- 
dia/Exploratorium (E3) project at the University of 
Washington. We are constructing a program via 
which the user may interact with simulated versions 
of various engineered artifacts to learn how they work 
[Amador et al., 19931. The user can perturb the en- 
vironment of the device to see how it reacts and even 
modify the device itself as it is “operating,” all the 
while receiving English or graphical explanations for its 
behavior. Thus a central part of the E3 program is ef- 
fectively a combined CAD system and self-explanatory 
simulator. 

Unfortunately, existing self-explanatory simulators, 
namely the SimGen MkI and SimGen Mk2 programs 
[Forbus and Falkenhainer, 1990, Forbus and Falken- 
hainer, 19921, do not meet our needs. 

o Too slow: Both compile the equation model of an 
artifact into a custom program that simulates it. 
While SimGen Mk2 is much faster than SimGen 
Mkl, this compilation process still takes much too 
long to allow prompt response to user manipulations 
of the artifact model. For example, SimGen Mk2 re- 
quires 4 hours to compile a simulator for a model of 
9 containers and 12 pipes [Forbus and Falkenhainer, 
19921. 

e Restrictive modeling language: As with their 
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predecessor Qualitative Process Theory [Forbus, 
19841, the SimGen programs require equations to 
be written as uni-directional influences. Thus the 
flow of causality and information through the model 
must be chosen by the modeler and remains fixed. 
We claim it is easier and more natural to describe 
a model using ordinary non-directional equations. 
(See “Equations” below .) 

In this paper we present Pika’, an implemented self- 
explanatory simulator which overcomes these limita- 
tions. Its first, unoptimized implementation prepares 
the above SimGen Mk2 example simulation in under 
3 seconds-more than 5000 times faster. Furthermore, 
the modeling language is based upon ordinary differen- 
tial and algebraic equations, which Pika automatically 
manipulates as necessary to simulate the model. 

The modeling language 
As with the SimGen programs, our modeling language 
(known as the Quantified Modeling Language (&ML)) 
derives from the Qualitative Process Theory [Forbus, 
19841. The user defines a model in two parts. The 
physics that apply to the device are defined in a do- 
main theory, which is general and can be reused when 
modeling different devices. This theory is instantiated 
according to a scenario description, which specifies a 
particular device for simulation. For example, a do- 
main theory might describe the various types of elec- 
trical components while a corresponding scenario de- 
scription would specify a particular circuit. 

&ML has two distinguishing features: a simplified 
modeling language and non-directional equations. 

Model Fragments 
Qualitative Process Theory’s entity, process, and vieul 
definitions are replaced by model fragments (MFs), of 
which there are two kinds. Unquantified MFs (similar 
to QP Theory’s entities) are instantiated explicitly in 
the scenario description. Quantified MFs (similar to 
QP Theory’s processes and views) are instantiated au- 
tomatically by the system when their preconditions are 
met, and their instances are likewise destroyed when 
those preconditions no longer hold. Were, for example, 
is a simplistic characterization of boiling. 
(define-MF boiling (?fluid) 
(preconditions 
(instance-of Liquid ?fluid) 
(>= (temperature ?fluid) 

(boiling-temperature ?fluid))) 
(effects 
(dyn-infl (mass ?fluid) 

(- (/ (heat-absorption-rate ?fluid) 
(latent-heat ?fluid)))))) 

The dyn-infl (dynamic influence) is a non- 
directional version of a &P-theory “direct influence” 

IA pika (pronounced 
lives in alpine rockpiles. 

pee-kuh) is a small mammal that 

written using terminology first advocated by Woods 
[Woods, 19911. P’k 1 a sums all dynamic influences upon 
a quantity to form an equation that constrains its 
derivative. Thus if boiling is the only active MF, the 
derivative of mass is constrained to be equal to the ra- 
tio of absorption rate and latent heat of vaporization. 
However, if an MF encoding fluid flow into the con- 
tainer were active then that influence would be added 
to the sum constraining the derivative. Algebraic influ- 
ences (alg-inf 1) are similar-they specify an implicit 
summation constraining the influenced quantity itself. 

Equations 

Pika treats all &ML equations as non-directional con- 
straints. This follows standard scientific practice bet- 
ter than do QP Theory’s one-directional influences. 
Scientists express almost all physical laws as constraint 
equations. Ohm’s Law (V = IR), for example, makes 
no commitment as to which variables are dependent 
and which are independent. In different contexts, such 
an equation can determine the value of any of its vari- 
ables. If a resistor MF containing an Ohm’s-Law equa- 
tion appears in a model in which it is connected to a 
constant-voltage source, Pika will use the equation to 
find the current through the resistor. If the resistor 
is instead connected to a constant-current source, the 
equation determines the voltage drop across it. 

Non-directional equation constraints make model 
writing much easier. The modeler can write the ideal 
gas law (PV = nRT) in its familiar form, with- 
out having to decide how it will be used in future 
simulations. Even &ML’s “influences” specify non- 
directional equations. The dynamic influence in the 
boiling MF above provides the modularity of QP 
Theory’s direct influences without making any com- 
mitment to causal direction. Such modular specifi- 
cation of non-directional summation equations pro- 
vides the modeler with considerable expressive power. 
For example, to encode Kirchhoff’s current rule for 
electrical nodes, the modeler need simply include 
the equation (= (net-current ?self) 0) in a Node 
MF, together with (alg-infl (net-current ?node) 
(current ?terminal)) in an MF that will be instan- 
tiated for each connected node and terminal. From 
this, Pika will create an equation for each node that 
constrains the sum of the currents of its connected ter- 
minals to be zero. Note that the “influenced” quantity 
remains constant; causality flows among the “influenc- 
ing” terminal currents as appropriate. This use of in- 
fluences is impossible in QP Theory. 

he simulation algorit 

Unlike the SimGen programs (known collectively here- 
after as “SimGen”), Pika does not compile the artifact 
model before simulating it. However, it does compile 
the domain theory once after it is written or changed. 
Pika’s domain theory compiler translates each model 
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fragment into a set of functions that speed simula- 
tion: a model fragment’s preconditions are compiled 
into functions that query the knowledge base to find 
bindings for the MF’s arguments, that test whether the 
quantitative part of the preconditions is satisfied, and 
that generate numeric integration bounding conditions 
that halt integration when those quantitative precon- 
ditions cease to be satisfied (or become satisfied, given 
that the non-quantitative preconditions are met). The 
model fragment’s effects are compiled into functions 
that assert those effects when the MF is activated and 
that retract them when it is deactivated. 

This compilation requires little time (less than the 
LISP compiler requires to compile the resulting code). 
Furthermore, one need not suffer even this small cost 
except when the domain theory changes, which hap- 
pens quite infrequently compared with changes to the 
model being simulated. 

Since Pika is still being integrated with the E3 user 
interface [Salisbury and Borning, 19931, its current im- 
plementation runs in a “batch” manner. Pika takes 
as input the compiled domain theory, the scenario de- 
scription, and a period of time for which to simulate. 
It simulates for the requested time, recording its rea- 
soning and the device’s behavior, and then stops to 
answer the user’s questions. 

Pika’s simulation algorithm is as follows: 

Instantiate unquantified MFs from scenario description 
Repeat until time bound reached 

Instantiate and deinstantiate quantified MFs based 
upon world state 

Causally order the equations 
Solve the equations for the quantities they determine 
Create integration bounds from MF preconditions 
Numerically integrate until a bound is violated 

Pika’s algorithm differs from SimGen’s in three im- 
portant ways: MF activation, numeric integration, and 
equation manipulation. 

Model fragment act ivat ion 
Both SimGen programs use an assumption-based truth 
maintenance system (ATMS) [de Kleer, 19861 to per- 
form substantial analysis during model compilation. 
SimGen Mkl generates a total envisionment of the 
model’s qualitative state space, which is computation- 
ally infeasible for large models. SimGen Mk2 reduces 
this cost by finding only the “local states” in which 
each MF is active. This analysis allows them to reduce 
the run-time checking needed to determine changes in 
the set of active MFs. If the simulation is in a qualita- 
tive state from which there is only one possible transi- 
tion, then the simulator need check only the limit hy- 
pothesis corresponding to that transition, and it can 
switch directly to the set. of active MFs determined 
during compilation to be active in the next qualitative 
state. This speeds simulation, but it exacts an enor- 
mous cost during compilation. 

Since Pika does no such compile-time analysis, it 
must test all quantified MF preconditions at runtime, 
to determine the active set. For each MF it queries the 
knowledge base for all argument bindings that meet the 
non-quantitative preconditions (e.g. the instance-of 
test in the boiling example). In the worst case, this is 
exponential in the number of MF arguments, but their 
number is under the modeler’s control and is always 
small.2 Pika then tests the quantitative preconditions 
of these candidate MF activations, which requires time 
linear in the size of the quantitative expressions. 

Numeric integration 
SimGen uses custom-generated evolver procedures 
(which use Euler’s method) to do numeric integration; 
and state transition procedures to detect transitions in 
qualitative state. Because Pika does not compile the 
model, it must instead use a general-purpose numeric 
integrator. Its current implementation uses a fourth- 
order Runge-Kutta integrator with adaptive step-size 
control [Press et al., 19861, which, at a given accuracy, 
is much faster than Euler’s method.3 

In addition to the simulation equations, initial quan- 
tity values, and integration limit, the integrator also 
takes as input a set of integration bounds. Each bound 
is an expression and an interval; if the expression’s 
value ever leaves the interval, the integrator halts (at 
the time step immediately before the bound is vio- 
lated). Pika supplies bounds representing the quan- 
titative preconditions of all currently active model 
fragments (known as deactivation bounds) and other 
bounds representing the quantitative preconditions of 
all MFs that are inactive only because of their quanti- 
tative preconditions (activation bounds). 

Equation manipulation 
All the equations in a SimGen model are written either 
as direct influences or as qualitative proportionalities 
(indirect influences). SimGen converts these into nu- 
meric integration equations by 1) summing the direct 
influences upon each quantity’s derivative, 2) sorting 
the indirect influences into a graph (causal ordering) 
such that all quantities are determined, and 3) con- 
verting the influence subgraph that determines each 
quantity into an algebraic equation via a table (known 
as the math library). Since this table contains a differ- 
ent equation for each possible combination of influences 
upon each quantity, any given qualitative proportion- 
ality can “mean” different things in different contexts. 

This arrangement implies a “two-tiered” process of 
quantitative model construction: the domain theory is 
instantiated based upon MF preconditions to produce 

2Note that SimGen must also confront this exponential 
when instantiating MFs into the ATMS. 

31t is important to emphasize that Pika’s performance 
advantage over SimGen is not due to the underlying inte- 
gration technology-the important speed-up is in simula- 
tion preparation. 
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a qualitative model, and then the math library is in- 
stantiated based upon the qualitative model influences 
to produce the quantitative model. This structure may 
make writing some kinds of models easier, but it re- 
quires the modeler to write every equation twice: once 
qualitatively for the domain theory, and once quanti- 
tatively for the math library. It also sacrifices possible 
modularity. Influences allow the modeler to specify 
qualitative equations in pieces that are automatically 
assembled by SimGen; however, the modeler must fully 
specify all possible quantitative model equations. 

With Pika, the modeler specifies the domain the- 
ory using equations which Pika automatically com- 
bines and symbolically manipulates as needed to form 
the quantitative model. &ML thus effectively collapses 
SimGen’s two-tiered structure into one, allowing mod- 
ular specification of quantitative model equations. 

Pika must convert the model’s non-directional equa- 
tions into the following directional form expected by 
the Runge-Kutta integrator: 

~=.fl<xl,... ,XnJ) yl=gl(x1,..., XJ) 

. 

dX,- 
dt - fn(i,.. .,xn,q yin =sm(i ,..., Xd) 

The X’s are the state variable used by the inte- 
grator to advance time; the Y’s are all other vari- 
ables calculated from the state variables. Pika clas- 
sifies any quantity that has a derivative (generally 
due to a dyn-infl) as a state variable. It rear- 
ranges the equations into the above form by first using 
a causal ordering routine [Iwasaki and Simon, 1986, 
Serrano and Gossard, 19871 to find an order in which 
the equations can be evaluated so as to determine val- 
ues for all quantities; this ordering may include sets of 
simultaneous equations. Pika then uses Mathematics’s 
[Wolfram, 1988] Reduce function to solve each equa- 
tion for the quantity it determines (unless it is already 
in “solved” form, i.e. (= determined-quantity expres- 
sion)). Mathematics also solves any simultaneity for 
the quantities it determines. However, since causal or- 
dering abstracts equations to sets of quantities, it can 
falsely group non-independent equations as simultane- 
ities. Here we rely upon the fact that Reduce, if it 
cannot find a solution, will reformulate the equations, 
discarding non-independent ones, so that another at- 
tempt at causal ordering will not make the same mis- 
take. This process repeats until the causal ordering 
contains no simultaneities. 

The modeler may denote some quantities as con- 
stants. Non-constant quantities retain their previous 
values if they are not determinable from the state vari- 
ables. Implementing these semantics requires that the 
equation-directionalizing process make several passes. 
First, all constants are marked as exogenous, and 
causal ordering and equation solving discover which 
quantities are determinable from them. Next, those 
state variables that remain undetermined (usually all 
of them) are marked as exogenous, and the algorithm 

9: 
A: 

9: 

A: 

9: 
A: 

9: 
A: 

Summarize the simulated behavior. 
At time 0, heat started flowing from STOVE to 

CAN-OF-WATER. 
At time 55.96147, the temperature of CAN-OF- 
WATER reached 100.0, and it started boiling. 

At time 55.969383, a gas appeared in CAN-OF- 
WATER. 

At time 95.961464, the liquid in'CAN-OF-WATER 
boiled away, and it stopped boiling. 

At time 165.31618, the pressure of CAN-OF-WATER 
exceeded 150.0, and the container exploded. 

What is the value of (TEMPERATURE CAN-OF-WATER) 
at time 40? 

(TEMPERATURE CAN-OF-WATER) is 82.10323 at 
time 40. 

How is (TEMPERATURE CAN-OF-WATER) changing? 
(TEMPERATURE CAN-OF-WATER) is increasing 
at time 40. 

What happens next? 
At time 55.96147, the temperature of CAN-OF- 
WATER reached 100.0, and it started boiling. 

Figure 1: Example of explanation generation. Queries 
are translations from a specialized query language; an- 
swers are actual program output. 

runs again. Lastly, all remaining undetermined quan- 
tities are given their previous values and treated as 
constants under the current set of equations. A fea- 
ture of this algorithm is that the modeler can force 
a state variable to be constant during one operating 
region while allowing it to vary during another. 

Explanations 
By keeping a record of its equation manipulations, 
the history of model fragment activations and deac- 
tivations, and the data returned by numeric integra- 
tion, Pika can answer the class of questions answerable 
by SimGen Mk2. This includes summarizing so-far- 
simulated behavior in qualitative terms, reporting the 
equation that determines the value of any quantity at 
any simulated time, and reporting the value of a quan- 
tity at any simulated time. It objects if the quantity 
does not exist at the requested time. Because it does no 
global envisioning, Pika (like SimGen Mk2) cannot an- 
swer some questions answerable by SimGen Mkl, such 
as summarizing currently unsimulated future behavior 
and describing alternative behaviors. See figure 1 for 
an example. 

Implementation status 
PIKA is fully implemented. It is written in Allegro 
Common Lisp and uses the LOOM knowledge repre- 
sentation system (version 1.4.1) [Brill, 19911, the Math- 
ematica symbolic math system (version 2.0) [Wolfram, 
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Test Prep4 Total5 RK %‘j Mma %r 
SimGen Mk2:8 2.7s 3.1s 6 0 
9 cant & 12 nine 
36 cant & 60 pipe9 34s 38s 6 0 
2-rung RC ladder” 4.9s 5.1s 1.5 70 
5-rung RC ladder 38s 38s 0.0006 87 
Exolodine can” 0.5s 1.8s 5 40 

Figure 2: Timing data (Sun SPARCstation IPX). 

19881, and a Runge-Kutta numeric integration package 
that is written in C [Press et al., 1986]. See figure 2 
for timing data. 

The “prep” column is what we are comparing to 
SimGen’s model-compilation time; it gives the time 
needed to prepare each model for simulation. This 
table demonstrates PIKA’s speed and scalability for 
models that do not produce large sets of simultane- 
ous equations. However, the a-rung and 5-rung “RC 
ladder” electrical circuit tests require solving sets of 21 
and 51 simultaneous equations, respectively, and suffer 
accordingly. 

Second prototype 
One way to reduce the impact of equation manipula- 
tion is to avoid redoing it when unnecessary. Pika re- 
generates the simulation equations “from scratch” ev- 
ery time the set of active MFs changes. We have reim- 
plemented Pika (as Pika2) using SkyBlue [Sannella, 
19921, a hierarchical constraint manager. SkyBlue ef- 
fectively maintains a causal-ordering graph which can 
be updated incrementally as MFs activate and deac- 
tivate. Only those equations whose causal direction 
changes (or which form new simultaneities) must Pika2 
resolve. Also, Pika2 caches solutions of individual 
equations, though not of simultaneities. 

SkyBlue offers other advantages over “traditional” 
causal ordering methods. Each constraint (a set of 
variables) has a specified strength. SkyBlue builds the 
causal-ordering graph from the highest-strength, con- 
sistent set of constraints, leaving some lower-strength 
constraints unused if necessary. Pika2 uses this 
strength hierarchy to implement the semantics of con- 

4Elapsed time spent before the first numeric integration. 
‘Total simulation elapsed time. The container/pipe and 

RC ladder tests were simulated until “quiescence”, Le. 
until all quantities had completed 99% of their possible 
change. 

‘Percent of total time spent doing numeric integration. 
7Percent of total time spent solving equations. 
80ur implementation of the example described in [For- 

bus and Falkenhainer, 19921. 
‘The SimGen Mk2 example container grid quadrupled. 

loEach “rung” of an “RC ladder” is a capacitor with 
some initial voltage in series with a resistor. All rungs are 
connected in parallel. 

llSee figure 1. 
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stants, state variables, and value persistence without 
having to repeatedly run a causal-ordering procedure. 
For example, every quantity has an associated low- 
strength equation that sets it equal to its most recent 
simulated value. SkyBlue includes the constraint rep- 
resenting this equation in the causal ordering only if 
the quantity is not otherwise determined. 

SkyBlue also allows one-way constraints, which 
Pika2 uses to represent the fact that the derivative of 
a state variable is numerically integrated to determine 
the state variable’s next value, but not vice versa. This 
allows a more accurate definition of a state, variable 
than Pika uses: a state variable is a quantity having a 
derivative that can be causally determined if the quan- 
tity is assumed to be a state variable (and hence exoge- 
nous to each time step). This definition better reflects 
the cyclic nature of numeric integration, and SkyBlue 
will use a one-way constraint between derivative and 
possible state variable only when the definition is sat- 
isfied. 

Pika2’s initial simulation-preparation times are 
about the same as Pika’s, but unfortunately it is not 
yet stable enough for timings demonstrating the value 
of incremental constraint management. 

Related work 
An important inspiration for much work in self- 
explanatory simulation was the STEAMER project 
[Holland et al., 19841, which produced an impressive 
interactive simulator/tutor for a naval propulsion sys- 
tem, though all the simulations and explanations were 
hand-crafted in advance. 

Many people have worked on easing the construc- 
tion of fast, accurate numeric simulations. The is- 
MILE and MISIM systems [Yang and Yang, 1989, 
Yang, 19921, for example, provide tools for construct- 
ing a variety of electrical and optical circuit simula- 
tions. The modeler must define new components us- 
ing a subset of FORTRAN, however, and the systems 
do no equation manipulation. The ENPORT program 
[Rosenberg and Karnopp, 19831 generates numeric sim- 
ulations from the more declarative bond-graph sys- 
tem representation, and the Dynamicist ‘s Workbench 
project [Abelson and Sussman, 19871 generates simu- 
lations from equation models. None of these systems, 
however, allow changes in the equations during simu- 
lation. 

Besides SimGen, the system closest in spirit to our 
own is SimLab [Palmer and Cremer, 19921, which al- 
lows a model-fragment-like specification of equation- 
based models that it symbolically manipulates to pro- 
duce numeric simulations. SimLab does not, however, 
allow changes in the equations during simulation, nor 
does it generate explanations. 

We note that the “How Things Work” project at 
Stanford [Fikes et al., 19921 is addressing issues similar 
to those those tackled by Pika; however, the Stanford 
work is too preliminary to discuss extensively. 



ture work 
Pika is fast, but it isn’t quite fast enough to drive a 
truly interactive simulation for the E3 project. We es- 
timate that we need another factor of ten for practical 
use and are working on several ways to speed it up. 

Pika currently uses LOOM [Brill, 19911 for its knowl- 
edge base, but it uses almost none of LOOM’s infer- 
encing power. Switching to LOOM’s CLOS subset, 
or abandoning LOOM altogether, should significantly 
speed Pika. 

Using Mathematics to solve equations dramatically 
slows Pika; solving a set of a dozen linear simultane- 
ous equations can take several seconds. Pika prepares 
the SimGen Mk2 example in under 3 seconds partly 
because that model requires no equation solving. Us- 
ing a dedicated linear-equation solver instead (when 
possible) should help. 

Conclusions 
We have presented Pika, a self-explanatory simula- 
tor 5000 times faster than SimGen Mk2, the previ- 
ous state of the art. Pika also provides a more natu- 
ral and more expressive modeling language based upon 
non-directional algebraic and differential equation con- 
straints. Pika and the SimGen programs represent 
points along a continuum: SimGen Mkl does an enor- 
mous amount of model analysis prior to simulation, 
SimGen Mk2 does less, and Pika does almost none. 
Pika must therefore pay a greater cost when changing 
the model during simulation. The highly interactive 
nature of simulation in the E3 project demands such 
an architecture. However, the performance results sug- 
gest that Pika’s strategy may work well for other ap- 
plications. 
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