
CFRL: A Language for Specifying the Causal Functionality of Engineered 

Marcos Vescovi Yumi Iwasaki Richard Fikes B. Chandrasekaran 
Knowledge Systems Laboratory 

Stanford University 
701 Welch Road, Bldg C 

Palo Alto, CA 94304 
vescovi,iwasaki,fikes@ksl.stanford.e 

Laboratory for AI Research 
The Ohio State University 

du 

217 B, Bolz Hall, 2036 Neil Avenue 
Columbus, OH 43210-1277 
chandra@cis.ohio-stateedu 

Abstract* 

Introduction 

Understanding the design of an engineered device requires 
both knowledge of the general physical principles that 
determine the behavior of the device and knowledge of 
what the device is intended to do (i.e., its functional 
specification). However, the majority of work in model- 
based reasoning about device behavior has focused on 
modeling a device in terms of general physical principles 
or intended functionality, but not both. For example, most 
of the work in qualitative physics has been concerned with 
predicting the behavior of a device given its physical 
structure and knowledge of general physical principles. In 
that work, great importance has been placed on preventing 

* The research by the first three authors is supported in part by 
the Advanced Research Projects Agency, ARPA Order 8607, 
monitored by NASA Ames Research Center under grant NAG 2- 
581, and by NASA Ames Research Center under grant NCC 2- 
537. Chandrasekaran’s research is supported by the Advanced 
Research Projects Agency by means of AFOSR contract F- 
49620-89-C-01 10 and AFOSR grant 89-0250. 

evices 

a pre-conceived notion of an intended function of the 
device from influencing the system’s reasoning methods 
and representation of physical principles in order to 
guarantee a high level of “objective truth” in the predicted 
behavior. In contrast, in their work based on the FR 
(Functional Representation) language (Sembugamoorthy 
& Chandrasekaran 1986) (Keuneke 1986), Chandrasekaran 
and his colleagues have focused mostly on modeling a 
device in terms of what the device is intended to do and 
how those intentions are to be accomplished through 
causal interactions among components of the device. 

Both types of knowledge, functional and behavioral, 
seem to be indispensable in fully understanding a device 
design. On the one hand, knowledge of intended function 
alone does not enable one to reason about what a device 
might do when it is placed in an unexpected condition or to 
infer the behavior of an unfamiliar device from its 
structure. On the other hand, knowledge of device 
structure and general physical principles may allow one to 
predict how the device will behave under a given 
condition, but without knowledge of the intended 
functions, it is impossible to determine if the predicted 
behavior is a desirable one, or what aspect of the behavior 
is significant. 

In order to use both functional and behavioral 
knowledge in understanding a device design, it is crucial 
that the functional knowledge is represented in such a way 
that it has a clear interpretation in terms of actual behavior. 
Suppose, for example, that the function of a charge current 
controller is to prevent damage to a battery by cutting off 
the charge current when the battery is fully charged. To be 
able to determine whether this function is actually 
accomplished by an observed behavior of the device, the 
representation of the function must specify conditions that 
can be evaluated against the behavior. Such conditions 
might include occurrence of a temporal sequence of 
expected events and causal relations among the events and 
the components. Without a clear semantics given to a 
representation of functions in terms of actual behavior, it 
would be impossible to evaluate a design based on its 
predicted behavior and intended functions. 

While it is important for a functional specification to 
have a clear interpretation in terms of actual behavior, it is 
also desirable for the language for specifying functions to 
be independent of any particular system used for 
simulation. Though there are a number of alternative 

626 Vescovi 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



methods for predicting behavior, such as numerical under which the phenomenon occurs and a set of 

simulation with discrete time steps or qualitative consequences of the phenomenon. The conditions specify 

simulation, a functional specification at some abstract level a set of instances of object classes that must exist and a set 

should be intuitively understandable without specifying a of relations that must hold among those objects and their 

particular simulation mechanism. If a functional attributes for the phenomenon to occur. The consequences 

specification language was dependent on a specific specify the functional relations the phenomenon will cause 

simulation language or mechanism, a separate functional to hold among the objects and their attributes. 

specification language would be needed for each different Model fragments can represent phenomena as occurring 

simulation language, which is clearly undesirable. What is continuously while the fragment’s conditions hold or as 

needed is a functional specification language that has events that occur instantaneously when the conditions 

sufficient expressive power to support descriptions of the become true. The consequences of a model fragment that 

desired functions of a variety of devices. At the same represents an event are facts to be asserted resulting from 

time, the language should be clear enough so that for each the event, whereas the consequences of a model fragment 

simulation mechanism used, it can be given an that represents a continuous process are sentences (e.g., 

unambiguous interpretation in terms of a simulated ordinary differential equations) which are true while the 

behavior. phenomena is occurring. 

An essential element in the description of a function is 
causality. In order to say that a device has achieved a 
function, which may be expressed as a condition on the 
state of the world, one must show not only that the 
condition is satisfied but also that the device has 
participated in the causal process that has brought about 
the condition. For example, when an engineer designs a 
thermostat to keep room temperature constant, the design 
embodies her idea about how the device is to work. In 
fact, the essential part of her knowledge of its function is 
the expected causal chain of events in which it will take 
part in achieving the goal. Thus, a representation 
formalism of functions must provide a means of 
expressing knowledge about such causal processes. 

When there exists at time t a set of objects represented 
by model fragments mi to mj that satisfy the conditions of 
a model fragment mg, we say that an instance of mg is 
active at that time. We will call mi through mj the 
participants of the mg instance. 

We have developed a new representational formalism 
for representing device functions called CFRL (Causal 
Functional Representation Language) that allows functions 
to be expressed in terms of expected causal chains of 
events. We have also provided the language with a well- 
defined semantics in terms of the type of behavior 
representation widely used in model-based, qualitative 
simulation. Finally, we have used CFRL as the basis for a 
functional verification program which determines whether 
a behavior achieves an intended function. 

Representation of physical knowledge in terms of model 
fragments is a generalization of the representation of 
physical processes and individuals in Qualitative Process 
Theory (Forbus 1984). There are several systems, 
including the Device Modeling Environment (DME) 
(Iwasaki & Low 1991) the Qualitative Process Engine 
(QPE) (Forbus 1989), and the Qualitative Process 
Compiler (QPC) (Crawford, Farquhar & Kuipers), that use 
similar representations for physical knowledge to predict 
the behavior of physical devices over time. Though the 
ways these systems actually perform prediction differ, the 
basic idea behind all of them is the following: For a given 
situation, the system identifies active model fragment 
instances by evaluating their conditions. The active 
instances give rise to equations representing the functional 
relations that must hold among variables as a consequence 
of the phenomena taking place. The equations are then 
used to determine the next state into which the device must 
move. 

This paper is organized as follows: We first describe the 
representation of behavior over time in terms of which the 
semantics of CFRL will be defined and our assumptions 
about the modeling and simulation schemes that produce 
such a behavior description. We then present the CFRL 
language and define its semantics in terms of behavior. 
We close with a discussion and summary. 

We assume that a behavior is a linear sequence of states. 
The output of a qualitative simulation system such as QPE, 
DME, and QPC is usually a tree or a graph of states. Each 
path through the graph represents a possible behavior over 
time. We will refer to such a path, i.e., a linear sequence 
of states, as a trajectory. 

A state represents a situation in which the physical 
system being modeled is in at a particular time. “A 
particular time” here can be a time point or interval. We 
will not assume any specific model of time in this paper. 
The only assumptions about time that we make are: (1) the 
times associated with different states do not overlap; (2) 
when a state sj immediately follows si in a behavior, there 
is no other “time” that falls between the times (periods) 
associated with si and sj; and (3) every state has a unique 
successor (predecessor) unless it is the final (initial) state, 
in which case it has none. 

Before describing CFRL, we briefly describe the behavior 
representation in terms of which the semantics of CFRL 
will be defined. A physical situation is modeled as a 
collection of model fragments, each of which represents a 
physical object or a conceptually distinct physical 
phenomenon, such as a particular aspect of component 
behavior or a physical process. A model fragment 
representing a phenomenon specifies a set of conditions 

Reasoning about Physical Systems 627 



In our modeling scheme, each state has a set of variable 
values and predicates that hold in the state. In addition, 
each state has a set of active model fragment instances 
representing the phenomena that are occurring in the state. 

An Electrical Power System 

We now describe the syntax and semantics of CFRL. 
Figures 2 shows an example of the representation of a 
function of the EPS. 

This section presents the device that we will use 
throughout the rest of this paper as an example. The 
device is the electrical power system (EPS) aboard an 
Earth orbiting satellite (Lockheed 1984). A simplified 
schematic diagram of the EPS is shown in Figure 1. The 
main purpose of the EPS is to supply a constant source of 
electricity to the satellite’s other subsystems. The solar 
array generates electricity when the satellite is in the sun, 
supplying power to the load and recharging the battery. 
The battery is a constant voltage source when it is charged 
between 6 and 30 ampere-hotus. When the charge level is 
below 6 ampere-hours, the voltage output decreases as the 
battery discharges. When the charge level is above 30 
ampere-hours, the voltage output increases as it is charged. 

DF: ?eps: Electrical-power-system 
CF: Object-set: ?sun: Sun ?l: electrical-load 

Conditions: T 
GF: 

(ALWAYS 
@ID 

(-> (AND (Shining-p ?sun) 
(Closed-p (Relay-component ?eps))) 

CPDl) 
(-> (OR (NOT (Shining-p ?sun)) 

(Open-p (Relay-component ?eps))) 
CPD2) 

(-> (AND (> (Electromotive-force 
(Battery-component ?eps)) 

33.8) 

SA la. 
(Closed-p (Relay-component ?eps))) 

CPD3) 

SA: Solar array 
LD: Electrical load on board 
BA: Rechargeable battery 
CCC: Charge current controller 
Kl: Relay 

Figure 1: An Electrical Power System. 

Since the battery can be damaged when it is charged 
beyond its capacity, the charge current controller opens the 
relay when the voltage exceeds a threshold to prevent the 
battery from being over-charged. The controller senses the 
voltage via a sensor connected to the positive terminal of 
the battery. When the voltage is greater than 33.8 volts, 
the controller turns on the relay Kl. When the relay is 
energized, it opens and breaks the electrical connection to 
prevent further charging of the battery, thereby switching 
the current source for the load from the solar array to the 
battery. When the relay is open or when an eclipse period 
begins, the battery’s charge-level starts to decrease. When 
the battery becomes under-charged, the voltage decreases. 
When it reaches 31.0 volts, the CCC turns relay Kl off to 
close it. 

(-> (AND (c (Electromotive-force 
(Battery-component ?eps)) 

31.0) 
(Open-p (Relay-component ?eps))) 

CPD4))) 

Figure 2-a: Function FI of EPS 

We consider a function to be an agent’s belief about how 
an object is to be used in some context to achieve some 
efict. Thus, our representation of a function specifies the 
object, the context, and the effect. However, it does not 
specify an agent, which is implicitly assumed to be 
whoever is using the representation. Formally, a function 
is defined as follows: 

Definition 1: Function 

A function F is a triplet {DF, CF, GF], where: 

DF denotes the device of which F is a function. 

CF denotes the context in which the device is to 
function. 

GF denotes the functional goal to be achieved. 

The device specification, DF, specifies the class of the 
device and the symbol by which the device will be referred 
to in the rest of the definition of F . The example in Figure 
2-a states that the function is of an Electrical-power- 
system which will be referred to as ?eps in the rest of the 
definition. 

628 Vescovi 



Current (+terminal (Load-component ? 

ar-array-camp 

-function-of ~solar-array-component ?eps)) 

(Stored-charge (Battery-component ?eps)) 

CPDZ: causal, = 

Current (+terminal (Load-component ? 

y-function-of (Battery-component ?epsB 

usal, = 

-charge (Battery-camp 

CPD3: 

(Battery-component ?e (by-function-of (Controller-component ?eps)) 

CPD4: 

(Electromotive-force 
(Battery-component ? y-function-of (Controller-component ?epsH 

Figure 2-b: CPD’s of Function FI of EPS. 

Reasoning about Physical Systems 629 



The notion of a device function assumes some physical described by the destination node, and 5 means 
context in which the device is placed, and CF is a the state described by the source node must either 
specification of such a context. CF consists of two parts, a be the same as or precede the state described by 
set of objects and a set of conditions on those objects. For the destination state. 
example, Figure Z-a states that there must exist an instance 
of Sun and an instance of electrical load. 

causal-justification: If an arc is “causal”, one can 
The conditions 

must hold throughout a behavior in order for the function 
attach a justification for the causal relation. A 

to be verified in the behavior. 
justification takes the form of a Boolean 
combination of the following predicates: 

Formally, the Object-set of a CF is a list of pairs {var, 
type}, where var is a symbol to be used in the description 
of F to refer to the object, and type is the type (class) of the 
object. Conditions is a logical expression involving the 
variables defined in the Object-set and DF. 

The third part of the function definition, GF, specifies 
the behavior to be achieved by the device used in a specific 
manner. GF of a function is represented as a Boolean 
combination of Causal Process Descriptions (CPDs) and 
conditions involving the variables defined in DF and the 
Object-set of CF. Each CPD is an abstract description of 
expected behavior in terms of a causal sequence of events. 
In the following, we formally define a CPD. 

(by-function-of <model-fragment>), 
(with-participation-of <model-fragment>). 

The meaning of these predicates will be explained 
after we give a precise definition of a causal 
relation among nodes. 

In order to refer to attributes of arcs, we will use the 
attribute name (e.g., source, destination, etc.) as a function 
of the arc as in “source”. 

We will write ni ac n. when there is a causal arc from 
ni to n.. As a condition specified by a node can be a 
Boolean combination of conditions, the following defines 
the meaning of causal relations among them, where el, e2, 
and e3 are conditions: 

Causal Process Descriptions (CPD’s) 

Figure 2-b shows examples of CPD’s which are part of the 
functional specification of the EPS. A CPD is a directed 
graph, in which each node describes a state and each arc 
describes a temporal and (optionally) a causal relation 
between states. 

A node specifies a condition on a state. The condition is 
a logical sentence about the state of the world at some time 
using the variables defined in the DF and CF portions of 
the function. For example, the node nl in Figure 2-b states 
the condition that the sun be shining. One or more nodes 
in each CPD are distinguished as the initial node(s). In the 
figures, the initial nodes are indicated with a thick oval. A 
condition specified by a node can contain AND and OR as 
logical connectives. When the meaning is clear, we will 
use the name of a node to refer to the condition represented 
by the node. 

The arcs in a CPD are directed and specify temporal and 
causal relations among nodes. An arc has the following 
attributes: 

source: The node at the tail of the arc. 
destination: The node at the head of the arc. 

causal-flag: An indicator of whether the 
relationship between the states described by the 
source and destination nodes is causal. (The 
relationship is always temporal.) 

temporal-relation: =, <, or 5, indicating the 
temporal relation between the states described by 
the source and destination nodes. = means that 
the states described by the two nodes are to be the 
same state, < means the state described by the 
source node must strictly precede the state 

a) (AND el e2) ac e3 = 
(MD (el *C e3) k2 -C e3)) 

b) el *c (AND q e3) = 

(MD (el *C e2 )(el =+ e3)) 

c) (OR el e2) ac e3 = 
(OR@] *C e3) k2 -ke3N 

d) el =;sc (OR e2 e3) = 
(OR (el *C e2) (q =k e3)) 

Semantics of a CPD 

A CPD can be considered to be an abstract specification of 
a behavior. Unlike a trajectory, it does not specify every 
state or everything known about each state. It only 
specifies some of the facts that should be true during the 
course of the behavior and partial temporal/causal 
orderings among those facts. The intuitive meaning of a 
CPD is that: 

0 For each node in the CPD, there must be a state in the 
trajectory in which the condition specified by the node is 
satisfied, and 

0 For each pair of nodes directly connected by an arc, the 
causal and temporal relationships specified by the arc 
must exist in the trajectory. 

In order for us to evaluate these conditions against a 
behavior, we must define their meanings in terms of the 
languages used to describe a (simulated or actual) 
behavior. In this paper, we will do so in terms of the 
behavior representation formalism described earlier. 

630 Vescovi 



However, note that CFRL itself is independent of the 
particular behavior representation language used, and that 
one would need to provide different definitions in order to 
evaluate functional specifications in CFRL against 
behaviors generated by a different scheme. 

We first present the definition of a causaZ dependency 
relation between sentences in a trajectory and the causuZity 
constraints that can be associated with a CPD arc. We 
then define the requirements for a trajectory to match a 
CPD and for a trajectory to match a function goal. Finally, 
we use those definitions to define the requirements for a 
trajectory to achieve a function. 

A few words about notation: We will attach [s] to a 
sentence to denote the sentence holds in state s. Therefore, 
p[s] means that p holds in state s. We will also associate a 
state with models and variables to denote sentences as 
follows: 

m[s] : An instance of model fragment m is active in s . 

v[s] : The value of variable v in s. (i.e., an axiom of 
the form (= (v&e v s) c) for some constant c.) 

We will use the relations c, >, =, and S to express 
temporal ordering among states in a trajectory. For 
example, for states sl and s2 in a trajectory, “~1 e ~2” 
means that sl strictly precedes s;! in time. Note that 
ordering is total for states in a trajectory because a 
trajectory is a linear sequence of states, while the ordering 
is partial for states in a CPD. 

Intuitively, we say p2 is causally dependent on pl in 
trajectory Tr, written pi * ~2, when it can be shown that 
pl being true in Tr eventually leads top;! being true in 73-. 

Definition 2: Causal Dependency 

The causal dependency relation, a, is a binary relation 
between sentences in a trajectory with the following 
properties: 

1. For all atomic sentences p, states s, model fragments m, 
and variables v: 

a) If ~tsol~ pts11, . . . p[s] (i.e., ifp is part of the initial 
conditions and is never changed), then @ * p[s]. 
(And we say that p[s] is exogenous.) 

b) If model fragment m represents an event and asserts p, 
and if there exists a state sj such that sj < s, wp[sj], 
m]sj/, and p[sH for all k > j (i.e., p became true at 
some point before s due to m), then m]sj] *p[s]. 

c) If model fragment m represents a continuous process 
and has p as a consequence, and if there exists a state 
sj such that ~j < S, -p[s+], m[sJ , and p[skJ for all k 
> j (i.e., p became true at some point before s due to 
m), then m[~+p[s]. 

d) If model fragment m has p as a condition, then p[s] 3 
WI. 

e) If v occurs in p as a term and p is not v[s], then v[s] 
* ptsl. 

f) If v is an exogenous variable, @ a v[s]. 

g) For all variables v’ such that v’ -> v is in the causal 

ordering1 in s : 

(i) v’[s] 3 v[s] ; 

(ii) If p[s] is the equation through which v depends 
on v’, then p[s] * v[s]. 

h) For all variables v’ such that v and v’ are in a feedback 
loop in the causal ordering in s: 

(i) v’[s] * v[s] and v[s] * v’[s] ; 

(ii) For each equation p such that p is part of the 
feedback loop and v appears in p, p[s] * v[s]. 

i) If sl is the state immediately following s, and dv is the 

time-derivative of v in s, then dv[s] * v[sl], 

2. =3 is transitive. 

When pi * pj, we will say that pj is causally dependent 
on pi or that pi causes pj. Given statements p[si] and p[sj] 
such that p[si] 3 pfsj], we call the causal sequence of 
statements starting from p[si] and leading to p[sj] the 
causal path from p[si] to p[s$. 

Having defined the meaning of a causal relation among 
statements, we can now explain the meaning of the 
predicates used to justify causal arcs in a CPD. 

efinition 3: Causality constraints 

Given an arc a from node ni to n- in a CPD and a model 

fragment m, causality constraints of the following form can 
be associated with a : 

a) (by-function-of m) -- meaning that the causal path 
ni to nj includes a consequence of an instance of m; 

from 

b) (wits-participation-of m) -- meaning that the causal 
path from ni to nj includes a consequence of an instance 
of a model fragment in which an instance of m 
participates. 

These predicates do not imply specific commitments as 
to how the components participate in the causal process. 
They give the designer the capability of using whatever 
component has the desired function, independent of its 
particular mechanism. 

We can now present the definitions on which 
verification of a trajectory with respect to a CPD is based. 

efinition 4: Matching of a state and a node 

A state s in a trajectory and a node n in a CPD are said to 
match if the condition specified in n is true in s. 

Having defined the meaning of a causal relation among 
statements in a trajectory, we can now define the meaning 

lCausa1 ordering is a technique for determining causal 
dependency relations among variables in a set of equations 
(Iwasaki & Simon 1986). 

Reasoning about Physical Systems 631 



of the causal and temporal relations between linked nodes 
of a CPD. 

Definition 5: Satisfying the constraints of an arc 

If a is an arc from node ni to nj in a CPD, then the causal 
and temporal constraints of a are satisfied at states si and sj 
if both of the following conditions are satisfied: 

a) Si < (= Or 3 Sj when ni c (= or 5) nj , respectively. 

b) If arc a is causal and if ni and/or nj are Boolean 
combinations of conditions, then the causal relation 
between ni and nj can be rewritten as a Boolean 
combination of causal relations of the form ei =+ ej, 
where ei and ej are atomic conditions. ei[sil JC ej[sj] 

is satisfied if for every variable2 vi used in ei and every 
variable vj used in ej, vi[si] * YjrsjJ and the causal 
path from vi[sil to v j[sj] satisfies the causal 
justification on a. 

Definition 6: Matching of a CPD and a trajectory 

Let T be a trajectory consisting of a linear sequence of m 
states, sl through s m. Let CPDl be a CPD consisting of a 
set of nodes, NI, and a set of arcs, A]. CPDl and T are 
said to match iff all the following conditions are satisfied: 

a) The initial nodes of CPDl match the initial state sl in T. 

b) For each remaining node n in NJ, there exists a state in 
T that matches n such that for every arc a in AI from 
nodes ni to n., the temporal and causal constraints 
specified by a are satisfied by the states matched to ni 
and nj. 

Representation of the Functional Goal (GF) 

The functional goal of a function (denoted by GF) is 
represented as an expression consisting of CPDs, 
conditions, quantifiers, and Boolean connectives. Nested 
expressions using connectives are allowed, but a quantifier 
cannot appear in the scope of another quantifier. Each 
CPD must appear in the scope of one and only one 
quantifier. There are two quantifiers, ALWAYS and 
SOMETIMES. Connectives are AND, OR, IMPLIES, and 
NOT. Syntactically, the connectives are used in the same 
way as ordinary logical connectives. The following are 
example GF expressions: 

(ALWAYS (AND cpdl cpd2 (OR cpd3 cpdq))) 
(OR (ALWAYS cpdl) 

(SOMETIMES (AND cpd2 cpdj ))) 
(ALWAYS (NOT cpdl )) 

2 The variables used in CFRL can be different from the 
variables in terms of which the trajectory states are defined, since 
CFRL descriptions represent a device-level perspective, while 
states in the trajectory represent a component or physical process- 
level perspective. Correspondences between CPD variables and 
trajectory variables are made when the function is matched 
against a specific trajectory. 

Quantifiers align the initial nodes of the CPDs in their 
scope as well as specify whether the described behavior 
must hold in every subsequence of the trajectory or only in 
some of them. The connectives and quantifiers are to be 
interpreted as specified in the following definition of 
matching a GF and a trajectory. 

Definition 7: Matching of a GF and a trajectory 

Let T be a trajectory consisting of a linear sequence of m 
states, sl through sm, * Ti denote subsequences of T from si 
through sm; and ccpd-exp> denote a Boolean combination 
of CPD’s and conditions. Then: 

a) (ALWAYS ccpd-exp>) matches T iff <cpd-exp> 
matches Ti for each Ti (i = 1 to m). 

b) (SOMETIMES <cpd-exp>) matches T iff <cpd-exp> 
matches Ti for some Ti (i = 1 to m). 

C) (AND ccpd-expg> ccpd-expl> . ..) matches T iff every 
conjunct matches T. 

d) matches T iff at least (OR 
one 

<cpd-expg> <cpd-expl> . ..) 
of the disjuncts matches T. 

e) (NOT <cpd-exp>) matches T iff ccpd-exp> does not 
match T. 

f) (IMPLIES ccpd-expg> ccpd-expl>) matches T iff 
<cpd-expg> does not match T or <cpd-expl> does 
match T. 

g) Condition c matches T iff c is true in the initial state of 
T. 

Finally, we complete the definition of the meaning of a 
function, as follows: 

Definition 8: A trajectory achieving a function 

A trajectory T achieves a function F when the condition 
specified in CF holds throughout T and GF matches T. 

Discussion and Summary 

In this paper, we have presented CFRL, a language for 
specifying an expected function of a device and defined its 
semantics in terms of the type of behavior representation 
widely used in model-based qualitative simulation. The 
language allows one to explicitly state the physical context 
in which the function is to be achieved and to describe the 
function as an expected causal sequence of events. Since 
the concept of causal interactions among components is 
essential to the understanding of a function, the language 
allows explicit representation of causal interactions and 
constraints on such interactions. 

CFRL is based on the work on Functional 
Representation (Sembugamoorthy & Chandrasekaran 
1986), and it is a further extension of the work presented in 
(Iwasaki & Chandrasekaran 1992). We have extended the 
expressive power of the function specification languages 

632 Vescovi 



described in those papers and have provided a formal 
foundation for the semantics of the resulting language. 

Franke (Franke 1991) also proposed matching design 
intent with simulated behavior. Unlike other work on 
functional representation, he focuses on representing the 
purpose of a design modification and not that of a device 
itself. He developed a representation scheme, called TED, 
in which he expresses the purpose for making a 
modification in a structure. TED’s representation of a 
function can be a sequence (not necessarily a linear) of 
partial descriptions, which is matched against states in a 
sequence of qualitative states generated by QSIM. To 
prove that a function is achieved by a modification, he 
compares the behavior of the original structure and that of 
the modified structure. 

Bradshaw and Young (Bradshaw & Young 1991) also 
represent the intended function in a manner similar to 
Functional Representation. They built a system called 
DORIS, which uses the knowledge generated by 
qualitative simulation for evaluating device behavior as 
well as for diagnosis and explanation. 

The most important characteristic that distinguishes our 
work from those by Franke and by Bradshaw and Young is 
the central role causal knowledge plays in CFRL. We 
conjecture that causal relations are an essential part of 
functional knowledge, and that representation of functional 
knowledge must allow explicit description of the causal 
processes involved. Furthermore, verification of a 
function must ascertain that the expected causal chain of 
events take place, since the satisfaction of the functional 
goal alone does not necessarily indicate that the device is 
functioning as intended. 

Because the semantics of CFRL is defined in terms of 
matching between a behavior and a functional 
specification, the language is immediately useful for the 
purpose of behavior verification. We have designed and 
implemented an algorithm that verifies a behavior 
produced by the DME system with respect to a function 
specified in CFRL as defined in this paper. Initial testing 
of the algorithm has included verifying the functional 
specifications of the EPS as given above. Care must be 
taken in designing such an algorithm to assure that 
exponential search is not required to find a match between 
a trajectory and a CPD. We are currently in the process of 
analyzing the computational complexity of the problem 
and our algorithm. 

We expect formal functional specifications to have 
many uses throughout the life cycle of a device (Iwasaki et 
al. 1993). For example, in the early stages of the design 
process, designers often do “top down” design by 
incrementally introducing assumptions about device 
structure and causality relationships. Such design 
evolution could be expressed as incremental refinements of 
a CFRL functional specification. DME could assist a 
designer in this functional refinement process by assuring 
that each successive specification is indeed a refinement of 
its predecessor so that any device that satisfies the 
refinement also satisfies the predecessor. 

eferences 

Bradshaw J.A.; and Young R.M. 1991. Evaluating Design 
Using Knowledge of Purpose and Knowledge of Structure. 
IEEE Expert April. 

Crawford J.; Farquhar A.; and Kuipers B. 1990. QPC : A 
Compiler from Physical Models to Qualitative Differential 
Equations. In Proceedings of the Eight National 
Conference on Artificial Intelligence. 

Forbus K.D. 1984. Qualitative Process Theory. Artificial 
Intelligence 24. 

Forbus, K. D. 1989. The Qualitative Process Engine. In 
Readings in Qualitative Reasoning about Physical 
Systems. Weld, D. S., and de Kleer, J. Eds. Morgan 
Kaufmann. 

Franke D.W. 1991. Deriving and Using Descriptions of 
Purpose. IEEE Expert April. 

Iwasaki Y.; and Simon H.A. 1986. Causality in device 
behavior. Art@cial Intelligence 29:3-32. 

Iwasaki Y.; and Low C.M. 1991. Model Generation and 
Simulation of Device Behavior with Continuous and 
Discrete Change. Technical Report, KSL, Dept. of 
Computer Science, Stanford University. 

Iwasaki Y .; and Chandrasekaran B. 1992. Design 
Verification through Function and Behavior-Oriented 
Representations : Bridging the gap between Function and 
Behavior. In Proceedings of the Second International 
Conference on Artificial Intelligence in Design, Pittsburgh. 

Iwasaki Y.; Fikes R.; Vescovi M.; and Chandrasekaran B. 
1993. How Things are Intended to Work : Capturing 
Functional Knowledge in Device Design. In Proceedings 
of the Thirteenth International Joint Conference on 
Artifiicial Intelligence. 

Keuneke A. 1989. Machine Understanding of Devices; 
Causal Explanation of Diagnostic Conclusions. Ph.D. 
thesis, Laboratory for AI Research, Dept. of Computer & 
Information Science, The Ohio State University. 

Lockheed Missiles and Space Company. 1984. SMM 
Systems Procedure for Electrical Power Subsystem. dot 
#D889545A, SE-23, Vol. 3. 

Sembugamoorthy V.; and Chandrasekaran B. 1986. 
Functional Representation of Devices and Compilation of 
Diagnostic Problem-Solving Systems. In Kolodner J.L. 
and Riesbeck C.K. (editors), Experience, Memory and 
Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ. 

Reasoning about Physical Systems 633 


