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Abstract 

One of the hardest problems in reasoning about a 
physical system is finding an approximate model 
that is mathematically tractable and yet captures 
the essence of the problem. Approximate models 
in science are often constructed by informal rea- 
soning based on consideration of limiting cases, 
knowledge of relative importance of terms in the 
model, and understanding of gross features of the 
solution. We show how an implemented program 
can combine such knowledge with a heuristic sim- 
plification procedure and an inequality reasoner to 
simplify difficult fluid equations. 

Introduction 
Many important scientific and technological problems 
- from life in moving fluids, to drag on ship hulls, to 
heat transfer in reentering spacecrafts, to motion of air 
masses, and to evolution of galaxies - arise in connec- 
tion with fluid equations. In general, these equations 
form a system of coupled nonlinear partial differential 
equations, which presents enormous analytical and nu- 
merical difficulties. 

We are interested in making computers to help scien- 
tists and engineers analyze difficult fluid problems. By 
this we do not mean the development of new computer 
technology for more machine cycles and memory nor 
clever numerical methods nor better turbulence models 
nor techniques for automatic grid generation or body 
definition. Advances in all these areas will no doubt en- 
hance the applicability of direct numerical approaches 
to fluid problems. A thorough understanding of the 
physics involved, however, requires much more than 
numerical solutions. The present computers generate 
too much low-level output and that makes the process 
of discovering interesting flow phenomena and tracking 
important structures tedious and error-prone. 

Our goal is to build a new generation of smart, ex- 
pert machines that know how to represent - not just 
present - the important features of the solutions so 
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that they can talk about them, reason about them, and 
use them to guide further experiments or build simpli- 
fied mathematical models. Our programs are not big 
number-crunchers; nor are they symbolic calculators 
like Macsyma. Rather we view them as models of what 
some scientists do when they are investigating physi- 
cal phenomena. We want our computer programs to 
simulate how scientists analyze these phenomena; they 
should be able to formulate approximate models, to 
perform qualitative and heuristic analyses, to provide 
a high-level executive summary of these analyses, and 
to give meaningful information that helps a scientist in 
understanding the phenomena. 

One of the most important skills in developing un- 
derstanding of a physical phenomenon is the ability 
to construct approximate models that are mathemat- 
ically tractable but yet retain the essentials of the 
phenomenon. The scientist must exercise judgment 
in choices of what idealizations or approximations to 
make. Making such judgement often requires an un- 
derstanding of the gross features of the solution, knowl- 
edge of the relative importance of terms in the model, 
and consideration of limiting cases. The purpose of 
this paper is to demonstrate how this kind of knowl- 
edge can be embodied in a computer program to tackle 
the difficult problem of model approximation in fluid 
dynamics. 

Related works in AI include research in model selec- 
tion and model generation. Addanki’s graph of models 
guides the selection of an appropriate model from a set 
of handcrafted models [Addanki et al., 19911. Weld’s 
model sensitivity analysis provides an alternative but 
more general approach to model selection [Weld, 19921. 
Falkenhainer and Forbus automate model generation 
by composing suitable model fragments [Falkenhainer 
and Forbus, 19911. 

Another relevant line of work concerns order of mag- 
nitude reasoning. Raiman introduces order of mag- 
nitude scales to extend the power of qualitative alge- 
bra [Raiman, 19911. Weld explores related ideas in a 
technique called exaggeration in the context of com- 
parative analysis [Weld, 19901. Mavrovouniotis and 
Stephanopoulos combines numerical and symbolic or- 
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der of magnitude relations in analyzing chemical pro- 
cesses [Mavrovouniotis and Stephanopoulos, 19881. 

Our project differs from these works in two major 
aspects. First, whereas all the previous works deal 
with either qualitative models or models specified by 
algebraic or ordinary differential equations, we ana- 
lyze systems of nonlinear partial differential equations 
(PDEs). Second, we base our programs on a theory 
of asymptotic order of magnitude of functions, which 
we believe is closer to what applied mathematicians or 
fluid dynamicists use. ’ 

The Task 

We are interested in the task of model simplification, a 
part of a larger process of modeling-analysis-validation 
the purpose of which is to establish our confidence in 
the applicability of an approximate model in describ- 
ing certain physical phenomenon. Model simplification 
takes three inputs: (1) a detailed model, (2) a descrip- 
tion of the parameters, dependent variables, and inde- 
pendent variables of the model, and (3) essential phys- 
ical effects to be included. Its output is one or more 
simplified models with constraints on parameters to 
represent the applicability of the models. 

Detailed fluid models are usually available from stan- 
dard textbooks and so are the physical meanings of pa- 
rameters and variables. The description of variables is 
problem-dependent; it often includes their boundary 
values and estimated maximum order of magnitude. 
Knowledge of which physical effects are essential can 
come from experimental observations concerning the 
phenomenon. For instance, a model that neglects vis- 
cosity will predict zero drag on a solid body in steady 
flow; results diverge from physical reality. 

In general, the simplified model is valid only under 
a range of parameter values. For instance, the approx- 
imation may require the Reynolds number to be large 
and conditions like this are represented by symbolic 
constraints among the parameters. 

As our model problem, we use Prandtl’s boundary 
layer approximation for high Reynolds number flows, 
which is probably the single most important approxi- 
mation made in the history of fluid mechanics. For ease 
of exposition, we consider the case of two-dimensional, 
steady, incompressible flow over a flat plate (Fig. 1). 
The same technique will work for three-dimensional, 
unsteady flow over arbitrary bodies. 

The detailed model is the 2D steady incompressible 
Navier-Stokes equations (Fig. 2). Equations (1) and 
(2) are the momentumequations, while (3) is the equa- 
tion of continuity (or conservation of mass). The model 
is a system of three coupled PDEs containing three un- 
knowns U, w, and p. The objective is to simplify the 
model in the limit Re + 00. 

‘The asymptotic theory is also commonly used in the 
analysis of algorithms. 

outer flow (iviscid) 

Two-Dimensional steady, incompressible Navier 
u and v are the horizontal and normal 

of the velocity, p is the pressure, and Re is the 

Prandtl’s idea is that at high Reynolds numbers vis- 
cosity remains important near the body surface even 
if it could be disregarded everywhere else. As long as 
the “no-slip” condition holds, i.e., that fluids do not 
slip with respect to solids, there will be a thin layer 
around the body where rapid changes of velocity pro- 
duce notable effects, despite the small coefficient &. 
The layer in question is called boundary layer. 

To get a feel of the type of reasoning involved in 
the derivation of the boundary layer approximation, 
we will quote a passage, slightly edited for our purpose, 
from a standard fluid dynamics textbook [Yih, 19771: 

To start with we assume that 6*, the width of the boundary 
layer, is small compared with L, the length of the flat plate 
if Re is large. That means 6 = $ << 1, and the range of 
the boundary layer y is 6. Since u and c are all of order 
of unity, equation (3) states that v is of order 6. Now the 
convective terms in equation (1) are all of O(1). A glance at 

the viscous terms in equation (1) reveals that $ << 3 so 

that the first can be neglected and the viscous terms can be 

replaced by &&. Since in the boundary layer the viscous 

terms are of the sirne order of magnitude as the inertial terms, 
1 8”u 

Re c-19 = O(1); this shows that: 

Re = O(-$ (4) 

To see how p varies, we turn to equation (2). Again the term 

s can be neglected since it is added to a much larger term 
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2. Then all the terms involving v are of O(S). Hence the 

pressure variation with respect to y in the boundary layer is of 
O(a2), and can be neglected. Thus we take the pressure out- 
side the boundary layer to be the pressure inside. But outside 
the boundary layer, the pressure distribution p(z) is a func- 
tion of G only. So we can replace the partial derivative of the 
pressure term by the total derivative. Thus the flow in the 
boundary layer is governed by: 

i a2u =--++- 
Re dy2 (5) 

to which must be added the equation of continuity (3). 

Much can be learned from this explanation. First, 
we notice that the simplified model consists of only two 
equations (5) and (3)) -and two unknowns u and & the 
momentum equation (2) is discarded. The pressure p 

becomes a known bound ary term to be given by the 
solution to the outer flow, the farfield apnroximation, 
where viscosity can be totally ignored. Second, the exi 
planation refers to physical meanings of the terms in 
the equations; we have inertia terms, convective terms, 
viscous terms, and pressure terms. Third, the reason- 
ing makes heavy use of order of magnitude estimate to 
justify the elimination of small terms. Fourth, given a 
few basic order of magnitude estimates (such as those 
of 6, u, and z), estimates for more complicated quanti- 
ties involving partial derivatives are automatically in- 
ferred. In particular, it derives the important conclu- 
sion that the dependency of the pressure on y, i.e., 
the variation across the thin boundary layer, can be 
neglected at this level of approximation. -Finally, by 
balancing the inertia terms and the viscous terms, it 
obtains a quantitative condition on the range of pa- 
rameter values Re, equation (4), for which the approx- 
imation is valid. 

Characteristics of the Problem Domain 
Some Terminology 
Fluids obey Newton’s laws of motion. The momentum 
equations 11) and (2) are just examples of Newton’s 
2nd Law (F = ma).‘ In fluid mechanics, it is customary 
to have the acceleration or the inertia terms written on 
the left hand side of the equation, while the remaining 
force terms on the right. See Fig. 3. 

Figure 3: Meaning of terms 
Navier-Stokes Equations. 

in the 2D steady incompressible 

Since the motion of a fluid particle can change with 
both time and space, the inertia consists of two parts: 

the local acceleration (i.e., rate of change of velocity 
with respect to time), and the convective accelera- 
tion (i.e., product of velocity and the velocity gradi- 
ent) s 

A steady flow is one in which the local accelera- 
tion is zero. The applied forces on the fluid can be 
divided into two types: (1) surface forces, caused 
by molecular attractions, include pressure and friction 
forces due to viscosity, and (2) body forces result- 
ing from external force fields like gravity or magnetic 
field. It is often convenient to define the pressure term 
to include gravity (i.e., p + pgy, where p is density of 
fluid, g gravitational constant, and y is the vertical co- 
ordinate). When the divergence of the fluid velocity is 
zero (equation (3)), the flow is called incompressible, 
which just means that the mass of fluid inside a given 
volume is always conserved. 

The momentum equations express a balance of op- 
posing forces on the fluid: the inertia forces keep the 
fluid moving steadily against the effects of pressure gra- 
dient and viscous forces. Reynolds number is simply 
the ratio between the inertia and the viscous forces; it 
is an indication of the relative importance of viscos- 
ity - actually the unimportance since high Reynolds 
numbers are associated with slightly viscous flow. 

Ontology 

Description of fluid motion involves a variety of quanti- 
ties: (1) the fundamental quantities: time, space, and 
mass, (2) the usual dynamical quantities from particle 
mechanics such as velocity, acceleration, force, pres- 
sure, and momentum, (3) quantities that are less fa- 
miliar but can be easily derived from the more basic 
ones: velocity gradient and pressure gradient, convec- 
tive acceleration, viscous shearing forces, and turbulent 
stress, (4) dimensionless parameters such as Reynolds 
number, and (5) scale parameters, such as 6, which de- 
termine the length, time, or velocity scale of interest. 

Asymptotic Order of Magnitude of 
Puuct ions 

Flows often vary widely in character depending on the 
relative magnitude of certain parameters or variables. 
For instance, the flow near a jet may be highly irreg- 
ular, but at a large distance the mean velocity profile 
may become quite regular; this is the so-called farfield 
approximation. Another example is the Reynolds num- 
ber. Small Reynolds number are often associated with 
laminar (smooth) flow, whereas large Reynolds num- 
bers flow are quite erratic. So it should not be sur- 
prising that most useful approximations in fluid me- 
chanics (and in many other branches of physics) are 
dependent on a limit process, the approximation be- 
coming increasingly accurate as a parameter tends to 
some critical value. In our model problem, for exam- 
ple, we would be interested in how the boundary layer 
velocities u and v behave as Re becomes large. 
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More generally, we will consider the asymptotic 
behavior of a function f(e) as c approaches some criti- 
cal value ~0. Without loss of generality, we can assume 
co = 0, since translation 
can be used to handle any 
limiting values. 

There are several ways to describe the asymptotic 

(C- ~0) and inversion (L) 
non-zero finite and infiniee 

behavior of a function with varying degrees of preci- 
sion. For instance, we could describe the limiting value 
f(c) as E + 0 qualitatively, i.e., whether it is bounded, 
vanishing, or infinite. Or, we could describe the limit- 
ing value quantitatively by giving a numerical value for 
the bound. But it is most useful to describe the shape 
of the function qualitatively as a limit is approached. 
The description uses the order symbols 0 (“big oh”), 
o (“little oh”), and - (“asymptotically equal”) to ex- 
press the relative magnitudes of two functions. 

Definition 1 f(6) = O(g(c)), E -+ 0 if lim,_.*o i ‘, = K 
i-i 

where K is a finite number. 
Definition 2 f(c) = o(g(E)), E -+ 0 if 

Definition 3 f(c) - g(c), E -+ 0 if 

Typically, we will use a convenient set of simple func- 
tions-inside an order symbol ; they are called the gauge 
functions because they are used to describe the shape 
of an arbitrary function in the neighborhood of a criti- 
cal point. Common gauge functions include the powers 
and inverse powers of E. For example, sin(c) = O(E) as 
6 --+ 0. For more complicated problems, ‘logarithms 
and exponentials of powers of E may also be used. 

The asymptotic order of magnitude must be distin- 
guished from the numerical order of magnitude. If 
f = 106g, then f and g differ by 6 numerical orders of 
magnitude, but they are still of the same asymptotic 
order. However, in a physical problem the variables are 
normally scaled in such as way that the proportionality 
constant I< will be close to 1.. 

Below we list some useful rules of operation on order 
symbols: 

1. O(fs) = W)W 
2. O(f + 9) = maxtW>9 O(9)> 
3 0 O(f) + o(f) = O(f) 
;* 
. = O(K 1 g(t) 1 dt) as 
c -4 0. 

Order relations cannot in general be differentiated. 
That is, if f = O(g), th en it is not generally true that 
f’ = O(g’). However, using the definition of the to- 
tal differential of a function f (x, y), df = gdx + $dy 

-u 
df-x df-Y 

where df-x and df-y are the partial differentials, we 
can derive some useful rules involving partial deriva- 
tives: 

I. 0( g)O(dz) = O( df-x) 
2. 0( g)O(dy) = 0( d&y) 

3. O(df) = max(O(df-x), O(df-y)) 

Theory of Simplification 
The basic idea in simplification is to identify small 
terms in an equation, drop these terms, solve the sim- 
plified equation, and check for consistency. But this 
does not always work. Consider the following simple 
polynomial: 

3E2X3 + x2 - tzx - 4 - 0 - 

in the limit 6 -+ 0. We might naively drop the cu- 
bic and the linear terms because their coefficients are 
small. But if we do that, we only get two roots x = f2, 
losing the third root. Thus, the process of simplifica- 
tion leads to a loss of important information. 

What went wrong ? The problem is that terms that, 
appear small are not really small. The missing root 
depends inversely on E in such a way that the cubic 
term is not negligible even its coefficient becomes small. 
To fix this problem, we introduce three concepts: an 
undetermined gauge, a significant gauge, and a 
maximal set. To begin, we will assume x = O(P) 
where n is still undetermined - hence the name unde- 
termined gauge. The order of each term is then: 

@2+&-*-&=O 

O(f 3n+2) O(e) o(c”+‘) O(1) 

To determine the relative importance of terms, we use 
the heuristic that we only retain the smallest number 
of terms that will balance the equation. Since we must 
allow the situation where two or more terms may have 
the same asymptotic order, we group terms into equiv- 
alence classes by the relation -. A maximal set is any 
such class that is not smaller than any other classes. 
As an example, the cubic polynomial above has four 
maximal sets each containing one term. The heuristic 
can then be stated as follows: 

Heuristic of minimal complication (or Method of 
Dominant Balance): 
If the equation has two or more maximal sets, bal- 
ance two of them; these two maximal sets are called 
dominant. Assume the remaining sets are negligible. 
Self-consistent choices of dominant maximal sets cor- 
respond to significant simplified equations. 

Applying this heuristic to the polynomial, we get six 
cases to consider. For instance, one possibility is that 
the first two terms are dominant, i.e., c2x3 - x2 >> 
EX,~. Equating the two undetermined gauges, we get 
3n + 2 = 2n and this implies n = -2. The remaining 
terms are 0(6-l) and O(l), which is consistent with 
the assumption that the first two terms are dominant. 
So this possibility is included. On the other hand, if 
we assume c2x3 - EX >> x2, 4, we get n = -$. But 
then x2 = O(E--l) >> O(d), violating the assumption 
that it should be much smaller than the first term. 
This possibility must be excluded. A similar analysis 
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shows that only one more possibility, when the second 
and fourth terms are dominant, i.e., n = 0, is self- 
consistent. So the heuristic concludes that we should 
consider two simplified polynomials: 

and 

3c2x3 + x2 = 0 * 2 - J- 
3c2 

The values of en for which we get self-consistent domi- 
nant maximal sets are called significant gauges. The 
balancing of the dominant maximal sets produces sim- 
plified equations that correspond to qualitatively sig- 
nificant asymptotic behaviors. 

Implementation: The Details 
Our method has two main parts: (1) a preprocessor, 
which given the input specification of a model, creates 
internal representations of quantities, equations, and a 
constraint network connecting the quantities, and (2) a 
model-simplifier, which finds all the self-consistent ap- 
proximate models by the heuristic of minimal compli- 
cation. The model-simplifier relies on three procedures 
- a constraint propagator, a graph searcher, and an 
inequality bounder - to determine the order of magni- 
tude of quantities and their relationships. We describe 
each of these five pieces in turn. 

The Preprocessor 
The problem specification is defined by the macro 
defmodel, which takes a name, a list of quantity de- 
scriptions, the momentum and continuity equations in 
infix form, relations defining external pressure and free 
stream velocities, and a list of estimated orders of mag- 
nitude. 
(defmodel prandtl-boundary-layer-with-pressure-gradient 

(with-independent-variables 
((x :lower-bound 0 :upper-bound 1 

:physicaI-features ‘(space streamwise)) 
(y :lower-bound 0 :physical-features ‘(space transverse))) 

. . . 
;;similar descriptions for U, V, P, Re, etc.;; 
. . . 
(with-essential-terms 

(viscous inertia) 
(with-equations 

((streamwise-momentum-equation 
(U * (d U / d x) + V * (d U / d y) 

= - (d P /d x) + (d2 U / d2 x) / Re + (d2 U / d2 y) / Re)) 
(transverse-momentum-equation 
(U * (d V / d x) + V * (d V / d y) 

= - (d P /d y) + (d2 V / d2 x) / Re + (d2 V / d2 y) / Re)) 
(continuity 
(Cd U / d x) + (d V / d Y) = 0))) 

(with-relations 
(constant U 1) 
(constant x 1) 
(constant y ‘delta) 
(constant PO 1)))))) 

Quantities 
Quantities are represented by CLOS objects. They 
are divided into four types: (I) independent vari- 
ables (space and time), (2) dependent variables (e.g., 
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pressure, velocity), (3) controllable parameters (e.g., 
Reynolds number), and (4) scale parameters (e.g., 
length scale S). Each quantity has slots for its upper 
bound, lower bound, boundary values, physical fea- 
tures, and relations which other quantities. A depen- 
dent variable contains additional information about its 
dependency on the independent variables. For exam- 
ple, the dependent variable U depends on both x and 
Y- 

The input specifies nine quantities - 
x, y, U, V, U-inJ PO, P, R e, and delta. But a total of 60 
quantities will be created. The reason is that for each 
dependent variable, quantities corresponding to its to- 
tal differential, partial differentials, and derivatives are 
also automatically generated. For instance, the depen- 
dent variable U generates 5 additional quantities: dU, 
d U-x, d U-y, g9 and z. Quantities are also gener- 
ated for each term in the equations and relations. An 
example would be the dependent variable d2Udx2/RE 
corresponding to the viscous term k(G). 

Input quantities have associated physical features 
such as space, velocity, and pressure. These features 
are used to determine the physical meaning of derived 
quantities by simple rewrite rules. For instance, a ve- 
locity quantity differentiated by a space quantity gives 
a velocity-gradient quantity. The physical meaning of 
a term in the equation is determined in a similar fash- 
ion. For example, a term that is the product of a ve- 
locity quantity and a velocity gradient represents the 
convective inertia term. 

A Constraint Language 
Equations involving quantities are represented as con- 
straints so that when all but one quantities are known 
the value of the remaining one can be computed in 
terms of the others Our constraint language has 6 
primitives: 

1. 

2. 

3. 

4. 

5. 

6. 

The equality constraint, (== ql q2), asserts that 
O(q1) = O(q2). E xample: the continuity equation (3) 
is represented by (== dudx dvdy). 

The multiplier constraint, (multiplier ql q2 q3), 
specifies that the quantities ql, q2 and q3 must be re- 
lated by the equation O(q1) x O(q2) = O(q3). Example: 
(multiplier u dudx ududx) . 

The maximum constraint, (maximum ql q2 q3), spec- 
ifies that O(q3) = max(O(ql), O(q2)). Example: 
(maximum du-x du-y du). 

The variation constraint, (variation f x df-x), cap- 
tures the inference that when the partial differential 
of a function f( 2, y) with respect to x is much less 
than the value of f at its outer boundary, then f is 
asymptotically equal to its boundary value. Symboli- 
cally, df-x = o(fo) + O(f) = O(fo), where fo is the 
value of f at its outer boundary in the x-direction. 

The total-variation constraint, (total-variation f 
df), specifies: 0td.f) = O( upperbound (f) - 
lowerbound (f)) . 

The constant constraint, (constant q v), just says that 
O(q) = ?I. 



The constraint language allows simple inferences 
about quantities to be made. For instance, using the 
continuity equation (3) and the known order of mag- 
nitudes for the quantities U, 2, and y, the value for V 
is automatically deduced. 

Qualitative Order Relations 
An important type of inference is the determination of 
the ordering relationship between two quantities. For 
instance, in order to drop a term A, the system has to 
show that A is much smaller than another quantity B 
in the equation. For models involving a few scale pa- 
rameters, such as our model problem, the relationship 
can be determined by relatively simple algebraic ma- 
nipulations. But for quantities involving three or more 
scale parameters, the algebra can be quite complicated. 

A simpler inference technique is to represent the or- 
der relationships explicitly in a directed graph whose 
nodes are quantities and edges are labeled order rela- 
tions, and to use a breadth-first search to find paths 
between quantities. The idea is similar to Simmons’ 
graph search in a quantity lattice [Simmons, 19861, 
but we generalize it to include symbolic factors in the 
order relations. Let’s look at an example (Fig. 4a). 
We have 4 quantities: A, B, C, and D. Assume S is 
a small parameter. The following relations are also 
known: (1) O(A) = O(B), (2) O(B) = SO(D), and (3) 
O(A) = SO(C). To show that O(C) = O(D), we find 
the shortest path between them, collecting the sym- 
bolic factor of each edge of the path. The symbolic 
factors are divided into two groups: the <<-factors, and 
the >>-factors depending on whether the edge is labeled 
< or >. In the example, the <<-factors consists of one 
factor S, while the >>-factors consists of one factor j. 

The inference procedure can also handle partial m- 
formation. For instance, in the graph shown in Fig. 4b, 
it will correctly conclude that E >> H even it is not 
told what the symbolic factor of edge F >> G is. 

A N *B 

<<6 <<6 

v 
? 0 

C *D 
(a) @I 

Figure 4: Graph search to determine order relations 

Inequality Bounder 
The constraint propagator and the graph searcher are 
fast but they cannot determine more subtle ordering 
relationships. For instance, given S2 = O(k) and 
S < 1, they can’t deduce that & x i << 1. This 
problem in its general form is equivalent to the satisfi- 
ability of a set of inequality constraints. To solve this 

problem, we use a version of the sup-inf bounding al- 
gorithm first proposed by [Bledsoe, 19751 and extended 
by [Brooks, 19811 and [Sacks, 19871 to deal with non- 
linear inequalities. Our algorithm is simpler because 
there is no need to deal with nonmonotonic functions 
such as the trigonometric functions. 

Simplification Algorithm 
The purpose of the simplification algorithm is to search 
for all self-consistent simplified models corresponding 
to a detailed input model. A simplified model is self- 
consistent if the terms neglected are consistent with 
the dominant balance assumptions, and it contains the 
essential terms specified by the input. The algorithm 
determines the maximal sets for each momentum equa- 
tion, balances all possible pairs of maximal sets, and 
eliminates the inconsistent ones. It terminates when 
each momentum equation has only one maximal set. 

The principal steps of simplification are: 

1. If the model has no unsimplified momentum 
equation, then return the model. 

2. Otherwise, pick the first unsimplified 
momentum equation and consider all possible 
pairwise dominant balances. 

3. Propagate the effects of the dominant balance 
and record any assumptions made on parameters 
due to the balance. 

4. If the resulting model is self-consistent, 
call simplification recursively on it. 
Otherwise, return nil. 

The algorithm will terminate because during each 
call of simplification, the number of maximal sets is 
reduced by at least one. So each recursive call will 
return either a simplified model or nil if the partially 
simplified model is not self-consistent. 

erformance Trace 
The following script shows how the program produces 
the boundary layer approximation for our model prob- 
lem. The problem generates 60 quantities and 65 con- 
straints; it takes about 60 sets real time on a Spare 
330. 

The program builds model-l according to the in- 
put description. Each momentum equation has three 
maximal sets. The program simplifies the transverse 
momentum equation by balancing its maximal sets; 
there are three possible balances. The first choice - 
balancing viscous stress and pressure gradient - is not 
consistent. 

> (search-simplifications *model*) 

Making <MODEL-2: PRANDTL-BOUNDARY-LAYER> from 
<MODEL-l: PRANDTL-BOUNDARY-LAYER).... 
Balancing two terms: 
D2VDY2/RE (VISCOUS STRESS TRANSVERSE) 
DPDY (PRESSURE-GRADIENT) 
in TRANSVERSE-MOMENTUM-EQUATION 
with I parameter assumption: 
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(<< RE (- DELTA -211 that is not self-consistent is certainly a poor approxi- 
The model is not self-consistent because the simplifiedmation. Inpractice,an approximatemodelisvalidated 
equations do not contain the essential INERTIA term. by subjecting its predictions to experimental and nu- 

merical checks. In fact, there still exists no theorem 
which speaks to the validity and accuracy of Prandtl’s 
boundary layer approximation, but ninety years of ex- 
perimental results leave little doubt of its validity and 
its value. 

The second choice - balancing viscous stress and in- 
ertia - generates a consistent model model-3. Since 
model-3 is not completely simplified, the program goes 
on to simplify its streamwise equation, which now 
has two maximal sets. So there is only one balanc- 
ing choice; the result is a consistent model model-4. 
The program also finds the correct condition on the 
Reynolds number. 

Making <MODEL-$: PRANDTL-BOUNDARY-LAYER> from 
<MODEL-3: PRANDTL-BOUNDARY-LAYER>... 
Balancing two terms: 
D2UDY2/RE (VISCOUS STRESS TRANSVERSE) 
DPDX (PRESSURE-GRADIENT) 
in STREAMWISE-MOMENTUM-EQUATION 
with 1 parameter assumption: 
(= RE (- DELTA -2)). 
<MODEL-4: PRANDTL-BOUNDARY-LAYER> is self-consistent 

The final choice of balance for the transverse equa- 
tion is inconsistent. Let’s check that model-4 has the 
correct boundary layer equations (equations (5) and 
(3)): 
> (model-simplified-equations model-41 

((U * (D U / D X)) + (V * (D U / D Y)) = 
- (D P / D X) + ((D2 U / D2 Y) / RE)) 

((D U / D X) + (D V / D Y> = 0) 

Evaluation 
The program has been tested on several problems in- 
cluding ODES and PDEs representing flows in turbu- 
lent wake and turbulent jet. The turbulent wake prob- 
lem, for instance, has 89 quantities and 112 constraints; 
it takes the program about 90 sets real time to find two 
simplified models. 
When does the simplification heuristic fail? 

There are equations for which balancing two maxi- 
mal sets does not give any self-consistent approxima- 
tions. For instance, the ODE 2 - f = 9 requires a 
S-term balance because all the palrwise balances are 
inconsistent. Our algorithm incorporates a system- 
atic search starting from a-term balance until a self- 
consistent model is found. 
How good are the approximate models? 

There is no simple answer to this question. It is 
known that solutions to a self-consistent approximate 
model derived by dominant balances can be grossly in- 
accurate. A simple example is an ill-conditioned set of 
linear algebraic equations, in which a small change in 
the coefficients can lead to a large change in the solu- 
tion vector. The situation for PDEs is much worse be- 
cause, except in rare cases, it is not known whether the 
approximate model has a solution at all or whether the 
solution if exists will be unique. The strongest claim 
one can made seems to be this: An approximate model 
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Conclusion 
We have demonstrated how a heuristic simplification 
procedure can be combined with knowledge of asymp- 
totic order of functions, relative importance of terms, 
and gross physical features of the solution to capture 
certain aspects of the informal reasoning that applied 
mathematicians and fluid dynamicists use in finding 
approximate models - informal because the approxi- 
mation is done without firm error estimates. The key 
to the simplification method is to examine limiting 
cases where the model becomes singular (i.e., when the 
naively simplified model has a different qualitative be- 
havior from the original model). This idea of simplifi- 
cation by studying the most singular behaviors is very 
general: it comprises the core of many powerful ap- 
proximation and analysis techniques that have proven 
to be extremely useful in reasoning about behaviors of 
complicated physical systems. 
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