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Abstract 
We extend two notions of “only knowing”, that of 
Halpern and Moses [1984], and that of Levesque [1990], 
to many agents. The main lesson of this paper is that 
these approaches do have reasonable extensions to the 
multi-agent case. Our results also shed light on the 
single-agent case. For example, it was always viewed 
as significant that the HM notion of only knowing was 
based on S5, while Levesque’s was based on K45. In 
fact, our results show that the HM notion is better un- 
derstood in the context of K45. Indeed, in the single- 
agent case, the HM notion remains unchanged if we use 
K45 (or KD45) instead of S5. However, in the multi- 
agent case, there are significant differences between K45 
and S5. Moreover, all the results proved by Halpern and 
Moses for the single-agent case extend naturally to the 
multi-agent case for K45, but not for S5. 

1 Introduction 
There has been over twelve years of intensive work on 
various types of nonmonotonic reasoning. Just as with 
the work on knowledge in philosophy in the 1950’s and 
1960’s, the focus has been on the case of a single agent 
reasoning about his/her environment. However, in most 
applications, this environment includes other agents. 
Surprisingly little of this work has focused on the multi- 
agent case. To the extent that we can simply represent 
the other agents’ beliefs as propositions (so that “Al- 
ice believes that Tweety flies” is a proposition just like 
“Tweety flies”), then there is no need to treat the other 
agents in a special way. However, this is no longer the 
case if we want to reason about the other agents’ rea- 
soning. In fact, we need to reason about other agents’ 
reasoning when doing multi-agent planning; moreover, 
much of this reasoning will be nonmonotonic (see [Mor- 
genstern 19901 for examples). 

*The work of the author is sponsored in part by the Air 
Force Office of Scientific Research (AFSC), under Contract 
F49620-91-C-0080. The United States Government is au- 
thorized to reproduce and distribute reprints for governmen- 
t al purposes. 

we show how to extend to the multi- 
related approaches to nonmonotonic 
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t In this paper, 
agent case two 
reasoning, both 
ing”: that of Halpern and Moses [1984] (hereafter called 
the HM notion) and that of Levesque [1990]. The main 
lesson of the paper is that, despite some subtleties, both 
approaches do have reasonable extensions to the multi- 
agent case. Our results also shed light on the single- 
agent case. For example, it was always viewed as sig- 
nificant that the HM notion of only knowing was based 
on S5, while Levesque’s was based on K45.l In fact, 
our results show that the HM notion is better under- 
stood in the context of K45. Indeed, in the single-agent 
case, the HM notion remains unchanged if we use K45 
(or KD45) instead of S5. However, in the multi-agent 
case, there are significant differences between K45 and 
S5. Moreover, as we show here, all the results proved 
by Halpern and Moses for the single-agent case extend 
naturally to the multi-agent case for K45, but not for 
s5. 

2 M notion of “all1 
The intuition behind the HM notion is straightforward: 
In each world of a (Kripke) structure, an agent consid- 
ers a number of other worlds possible. In the case of 
a single agent whose knowledge satisfies S5 (or K45 or 
KD45), we can identify a world with a truth assignment, 
and a structure with a set of truth assignments. Truth 
in these logics is with respect to situations (W, uf), con- 
sisting of a structure W, representing the set of truth 
assignments (worlds) that the agent considers possible, 
and a truth assignment w, intuitively representing the 
“real world” .2 The more worlds an agent considers pos- 
sible, the less he knows. Thus, (W, w) is the situation 
where (Y is all that is known if (1) (IV, w) /= LCY (so 
that the agent knows cy) and (2) if (W’, w’) b Lo, then 

‘Due to lack of space, we are forced to assume that the 
reader is familiar with standard notions of modal logic. De- 
tails can be found in [Hughes and Cresswell 1968; Halpern 
and Moses 19921. 

2For KD45, we require that W be nonempty; for S5, we 
require in addition that w E W. 
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W’ C W. If there is no situation (W, w) satisfying (1) 
and (2), then CY is said to be dishonest; intuitively, it 
cannot then be the case that “all the agent knows” is 
Q. A typical dishonest formula is Lp V Lq. To see that 
this formula is dishonest, let Wp consist of all truth 
assignments satisfying p, let Wp consist of all truth as- 
signments satisfying Q, and let w satisfy p A Q. Then 
(W,, w) b Lp V Lq, and (W*,w) k LpV Lq. Thus, if 
LpV Lq were honest, there would have to be a situation 
(W, w’) such that (W, w’) b LpV Lq and W 3 Wp U Wq 
It is easy to see that no such situation exists. Notice 
that in the case of one agent, the notions of honesty 
and “all I know” coincide for K45, KD45, and S5. 

We want to extend this intuition to the multi-agent 
case and-in order to put these ideas into better 
perspective-to other modal logics. We consider six 
logics, three that do not have negative introspection, 
K,, T,, and S4,, and three that do, K45,, KD45,, 
and 55 ‘)2 .3 Below, when we speak of a modal logic S, 
we are referring to one of these six logics; we refer to 
K45,, KD45, and S5, as introspective Zogics, and K,, 
T,, and S4, as non-introspective i’ogics (despite the fact 
that positive introspection holds in S4,). As we shall 
see, “all I know” behaves quite differently in the two 
cases. 

There are philosophical problems involved in dealing 
with a notion of “all I know” for the non-introspective 
logics. What does it mean for an agent to say “all I 
know is a” if he cannot do negative introspection, and 
so does not know what he doesn’t know. Fortunately, 
there is another interpretation of this approach that 
makes sense for arbitrary modal logics. Suppose that a 
says to b, “All i knows is o?’ (where i is different from a 
and b). If b knows in addition that i’s reasoning satisfies 
the axioms of modal logic S, then it seems reasonable 
for b to say that i’s knowledge is described by the “min- 
imal” model satisfying the axioms of S consistent with 
Lia, and for b to view a as dishonest if there is no such 
minimal model. 

Of course, the problem lies in defining what it means 
for a model to be “minimal”. Once we consider multi- 
agent logics, or even nonintrospective single-agent log- 
its, we can no longer identify a possible world with a 
truth assignment. It is not just the truth assignment 
at a world that matters; we also need to consider what 
other worlds are accessible from that world. This makes 
it more difficult to define a reasonable notion of mini- 
mality. To deal with this problem, we define a canonical 
collection of objects that an agent can consider possible. 
These will act like the possible worlds in the single- 
agent case. The kind of objects we consider depends 
on whether we consider the introspective or the non- 

3The subscript n in all these logics is meant to emphasize 
the fact that we are considering the n-agent version of the 
logic. We omit it when considering the single-agent case. 
Details and axiomatizations can be found in [Halpern and 
Moses 19921. 

introspective logics, for reasons that will become clearer 
below. We start with the non-introspective case. 

Fix a set @ of primitive propositions, and agents 
1 9’“l n. We define a (rooted) k-tree (over @) by induc- 
tion on b: A O-tree consists of a single node, labeled by 
a truth assignment to the primitive propositions in +. 
A (ilc + 1)-tree consists ofa root node labeled by a truth 
assignment, and for each agent i, a (possibly empty) set 
of directed edges labeled by i leading to roots of distinct 
b-trees.4 We say a node w’ is the i-successor of a node 
w in a tree if there is an edge labeled i leading from 
w to w’. The depth of a node in a tree is the distance 
of the node from the root. We say that the k: + l-tree 
Tk+l is an extension of the E-tree 57 if Z&+1 is the re- 
sult of adding some successors to the depth-k: leaves in 
Q. Finally, an w-tree T, is a sequence (To, Tl, . . .), 
where Tk is a b-tree, and Tk+l is an extension of Tk, 
for I% = 0, 1, 2, , . . . . (We remark that w-trees are closely 
related to the knowledge structures of [Fagin, Halpern, 
and Vardi 1991; Fagin and Vardi 1986],-although we do 
not pursue this connection here.) 

We now show that with each .situation we can asso- 
ciate a unique w-tree. We start by going in the other 
direction. We can associate with each K-tree T (k # w) 
a Kripke structure M(T) defined as follows: the nodes 
of T are the possible worlds in M(T), the & accessi- 
bility relation of M(T) consists of all pairs (w, w’) such 
that w’ is an i-successor of w in T, and the truth of a 
primitive proposition at a world w in M(T) is deter- 
mined by the truth assignment labeling w. 

We define the depth of a formula by induction on 
structure. Intuitively, the depth measures the depth of 
nesting of the & operators. Thus, we have depth(p) = 
0 for a primitive proposition p; depth(lcp) = depth(y); 
dePth(PA+) = max( depth(y), depth($)); depth(&cp) = 
1 + depth(y). If M and M’ are (arbitrary) structures, 
w is a world in M, and 20’ a world in M’, we say that 
(M, w) and (M’, w’) are equivalent up to depth k, and 
write (M, w) Z-I~ (M’, w’) if, for all formulas cp with 
depth(cp) I k, we have (M, w) b cp iff (M’, w’) + cp. 
For convenience, if wo is the root of T, we take M(T) /= 
~3 to be an abbreviation for (M(T), wo) b ‘p, and write 
(M, w) G-F~ M(T) rather than (M, w) ~-6 (M(T), WO). 

Proposition 2.1: Fix a situation (M, w). For all 
6, there is a unique k-tree TM,W,k such that such that 
(M, w) zk M(TM,w,k). Moreover, TM,W,k+l is an ex- 
tension of TM,w,k. 

Let TM,~ be the w-tree (TM,~,o, TM,~,I, TM,,,,+. . .). 
By Proposition 2.1, TM,~ can be viewed as providing 
a canonical way of representing the situation (M, w) in 
terms of trees. We use (w-)trees as a tool for defining 
what agent i considers possible in (M, w). Thus, we 
define i’s possibilities at (M, w), denoted Possi(M, w), 
to be (TM,~I : (w, w’) E K;). 

4Since we are allowing a node to have no successors, any 
k-tree is also a (k + l)-tree. 
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Intuitively, for a to be i-honest, there should be a sit- 
uation (M, w) for which i has the maximum number of 
possibilities. Formally, if S is a non-introspective logic, 
we say that cy is S-i-honest if there is an S-situation 
(M, w), called an S-i-ma&mum situation for cy, such 
that (M, w) /= L; cy, and for all S-situations (M’, w’), if 
(%w’) I= Licp, th en Possi(M’, w’) C Possi(M, w). If 
Q! is S-i-honest, we say that agent i knows /3 if all he 
knows is a, and write o!kip, if (M, w) /= Lip for some 
S-i-maximum situation for cr.5 

How reasonable are our notions of honesty and ki? 
The following results give us some justification for these 
definitions. The first gives us a natural characterization 
of honesty. 

Theorem 2.2: If S is a non-introspective logic, then 
the formula Q! is S-i-honest iff Lia! is S-consistent, and 
for all formulas ‘p1, . . . , vk, if I=s Lia * (Licpl V . ..V 
Licpk), then bs Lice 3 Livj 1 for some j E (1,. . . , k). 

Thus, a typical dishonest formula in the case of T, 
or S4, is Lip V .&Q, where p and 4 are primitive propo- 
sitions. If CII is Lip V Liq, then &a! j (Lip V Liq) 
is valid in T, and S4,, although neither Lia! 3 Lip 
nor Lia! + Liq is valid. However, the validity of 
Lia j (Lip V Liq) depends on the fact that Licr 3 a. 
This is not fan axiom of K,. In fact, it can be shown 
that LipV Liq is K,-i-honest. Thus, what is almost the 
archetypical “dishonest” formula is honest in the con- 
text of K,. As the following result shows, this is not an 
accident. 

Theorem 2.3: All formulas are K,-i-honest. 

A set S of formulas is an S-i-stable set if there is 
some S-situation (M, w) such that S = (‘p : (M, w) k 
Kicp}. We say the situation (M, w) corresponds to the 
stable set S. This definition is a generalization of the 
one given by Moore [1985] (which in turn is based on 
Stalnaker’s definition [1980]); Moore’s notion of stable 
set corresponds to a K45-stable set in the single-agent 
case. (See [Halpern 19931 for some discussion as to why 
this notion of stable set is appropriate.) Since a stable 
set describes what can be known in a given situation, 
we would expect a formula to be honest if it is in a 
minimum stable set. This is indeed true. 

Theorem 2.4: If S is a non-introspective logic, then a! 
is S-i-honest ifl there is an S-i-stable set S” containing 
a which is a subset of every S-i-stable set containing cy. 
Moreover, if a! is stable, then cyki/3 $0 E S”. 

This characterization of honesty is closely related to one 
given in [Halpern and Moses 19841; we discuss this in 
more detail below. 

5There may be more than one S-i-maximum situation 
for cr; two S-i-maximum situations for a may differ in what 
j # i considers possible. However, if (M, W) and (M’, w’) 
are two S-i-maximum situations for (Y, then (M, W) + L$ 
iff (M’, w’) i= L/3. 

Our next result gives another characterizion of what 
agent i knows if “all agent i knows is a”, for an honest 
formula o. Basically, it shows that all agent i knows are 
the logical consequences of his knowledge of ~1. Thus, 
“all agent i knows” is a monotonic notion for the non- 
introspective logics. 

Theorem 2.5: If S is a non-introspective logic and a! 
is S-i-honest, then ab;P iff bs Lia! + L#. 

This completes our discussion of the 
non-introspective logics. We must take a slightly dif- 
ferent approach in dealing with the introspective logics. 
To see the difficulties if we attempt to apply our ear- 
lier approach without change to the introspective case, 
consider the single-agent case. Suppose <f consists of 
two primitive propositions, say p and q, and suppose 
that all the agent knows is p. Surely p should be hon- 
est. Indeed, according to the framework of Halpern and 
Moses [1984], there is a maximum situation where p is 
true where the structure consists of two truth assign- 
ments: one where both p and q are true, and the other 
where p is true and q is false. Call this structure M. 
There is, of course, another structure where the agent 
knows p. This is the structure where the only truth as- 
signment makes both p and q true. Call this structure 
M’. Let w be the world where both p and q are true. 
We can easily construct TM,~ and TM~,~; the trouble 
is that Possr (M, w) and Pass r (M’, w) are incompara- 
ble. What makes them incomparable is introspective 
knowledge: In (M, w), the agent does not know q; so, 
because of introspection, he knows that he does not 
know q. On the other hand, in (M’, w), the agent does 
not know this. These facts are reflected in the trees. 
We need to factor out the introspection somehow. In 
the single-agent case considered, this was done by con- 
sidering only truth assignments, not trees. We need an 
analogue for the multi-agent case. 

We define an i-objective k-tree to be a k-tree whose 
root has no i-successors. We define a i-objective w- 
tree to be an w-tree all of whose components are i- 
objective. Given a k-tree T, let p be the result of re- 
moving all the i-successors of the root of T (and all the 
nodes below it). Given an w-tree T = (To, Tl, . . .), let 
T = (Z&T&..). Th e way we factor out introspection 
is by considering i-objective trees. Intuitively, this is 
because the i-objective tree corresonding to a situation 
(M, w) eliminates all the worlds that i considers pos- 
sible in that situation. Notice that in the case of one 
agent, the i-objective trees are precisely the possible 
worlds. 

We define IntPossi (M, w) = (Ti : T E Possi (M, w)}. 
(IntPoss stands for introspective possibilities.) The fol- 
lowing result assures us that we have not lost anything 
in the introspective logics by considering IntPossi in- 
stead of Possi. 

Lemma 2.6: If M is an S-structure, and S is an intro- 
spective logic, then Possi(M, w) is uniquely determined 
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by IntPossi(M, w). 

In the case of the introspective logics, we now repeat 
all our earlier definitions using IntPoss instead of Puss. 
Thus, for example, we say that that cr is S-i-honest if 
there is an S-situation (M, w) such that (M, w) k Licy, 
and for all S-situations (M’, w’), if (M’, w’) k Licp, 
then IntPoss; (M’, w’) C IntPossi(M, w). We make 
the analogous change in the definition of ki. Since i- 
objective trees are truth assignments in the single-agent 
case, it is easy to see that these definitions generalize 
those for the single-agent case given in [Halpern and 
Moses 19841. 

We now want to characterize honesty and “all agent 
i knows” for the introspective logics. There are some 
significant differences from the non-introspective case. 
For example, as expected, the primitive proposition p 
is S-l-honest even if S is introspective. However, due 
to negative introspection, 1Llq 3 LllLlq is S-valid, 
so we have I=s Lip + (Llq V LllLlq). Moreover, we 
have neither ks Lip 3 Llq nor bs Lip 3 LIlLlq. 
Thus, the analogue to Theorem 2.2 does not hold. 

We say a formula is i-objective if it is a Boolean com- 
bination of primitive propositions and formulas of the 
form Lj cp, j # i, where y3 is arbitrary. Thus, q A L,L,p 
is l-objective, but Lip and q A Lip are not. Notice 
that if there is only one agent, say agent 1, then the l- 
objective formulas are just the propositional formulas. 
As the following result shows, the analogue of Theo- 
rem 2.2 holds for KD45, and K45,, provided we stick 
to i-objective formulas. 

Theorem 2.7: For S E (KD45,, K45,}, the formula cr 
is S-i-honest ifl for all i-objective formulas (PI,. . ., $ok, 
if FS Lia * (Licplv . . . V Licpk) then bs Lia! 3 Lipj, 
for some j E (1,. . ., k}. 

This result does not hold for S5,; for example, 
t= ~5, Lip =+ (Llq V L1L2lL2L1q) (this follows from 
the fact that +ss, lL1q + L1L21L2L1q). How- 
ever, it is easy to see that ks5, Lip + Llq and 
F ~5, Lip + L1L2lL2Llq. Since p is S5,-l-honest, 
Theorem 2.7 fails for S5,. 

Theorem 2.7 is a direct extension of a result in 
[Halpern and Moses 19841 for the single-agent case. 
Two other characterizations of honesty and “all I know” 
are given by Halpern and Moses, that can be viewed as 
analogues to Theorems 2.4 and 2.5. As we now show, 
they also extend to K45, and KD45,, but not S5,. 

One of these characterizations is in terms of stable 
sets. The direct analogue of Theorem 2.4 does not 
hold for the introspective logics. In fact, as was already 
shown in [Halpern and Moses 19841 for the single-agent 
case, any two consistent stable sets are incomparable 
with respect to set inclusion. Again, the problem is 
due to introspection. For suppose we have two consis- 
tent S-i-stable sets S and S’ such that S c S’, and 
cp E S’ - S. By definition, there must be situations 
(M, w) and (M’, w’), corresponding to S and S’ respec- 

tively, for which we have (M, w) b Licp and (M’, w’) k 
Licp. By introspection, we have (M, w) b L; Licp and 
(M’, w’) b Lil Licp. This means that Li cp E S and 
1 Licp E S’. Since S C S’, we must also have Li v E S, 
which contradicts the assumption that S’ is consistent. 

We can get an analogue of Theorem 2.4 if we con- 
sider i-objective formulas. Define the i-kernel of an 
S-i-stable set S, denoted keri(S), to consist of all the 
i-objective formulas in S. 

Theorem 2.8: For S E {KD45,, K45,}, a formula cu 
is S-i-honest ifl there is an S-i-stable set Si containing 
Q! such that for all i-stable sets S containing CII, we have 
keri(Si) C keri (S). Moreover, a! is S-i-honest, then 
cxki/3 iflp E S%. 

As we show in the full paper, Theorem 2.8 does not 
hold for S5,. This is not an artifact of our definition 
of honesty for S5,, since in fact we can show that for 
no formula cr is there an S5,-i-stable set containing a! 
whose i-kernel is a minimum. 

Finally, let us consider the analogue to Theorem 2.5. 
In contrast to the non-introspective case, inference from 
“all agent i knows” is nonmonotonic for the introspec- 
tive logics. For example, we have pk,lLlq, even 
though ks Lip j LllLlq. This seems reasonable: if 
all agent 1 knows is p, then agent 1 does not know q and 
(by introspection) knows that he does not know this. As 
shown in [Halpern and Moses 19841, there is an elegant 
algorithmic characterization of “all agent i knows” in 
the single-agent case. We extend it to the multi-agent 
case here. We recursively define a set Di (a) that intu- 
itively consists of all the formulas agent i knows, given 
that agent i knows only cy (and reasons using modal 
logic S): 

cp E 23$(a) iff bs (Lia! A (p*si) =+ Licp, 

where pali ’ is the conjunction of Li$ for all subformulas 
Li$ of cp for which $ E D:(a), and lLi$ for all subfor- 
mulas Li$ for which $ $ D$ (a) (where ‘p is considered 
a subformula of itself). Thus, the algorithm says that 
the agent knows cp if it follows from knowing cy, together 
with the formulas that were decided by recursive appli- 
cations of the algorithm. Then we have: 

Theorem 2.9: For S E {KD45,, K45,}, the formula 
a is i-honest ifl D:(a) is (propositionally) consistent. 
If cx is S-i-honest, then skip iff p E Di (cu). 

While the analogue to Theorem 2.9 does not hold for 
S5,, the algorithm is correct for honest formulas. 

Theorem 2.10: If cy is S5,-i-honest, then cxkg,,p ifl 

P E D&b). 
We now characterize the complexity of computing 

honesty and “all i knows”. 

Theorem 2.11 : For S E (Tn,S4n : n 2 1) U 
{KD45,, K45,, S5, : n > 21, the problem of comput- 
ing whether (x is S-i-honest is PSPACE-complete. 
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Of course, the problem of computing whether ar 
i-honest is trivial: the answer is always “Yes”. 

is K,- 

Theorem 2.12 : For S E {Kn,Trr, S4, : n 2 l> U 
{KD45,, K45,, S5, : n 2 21, if CY is S-i-honest, then 
the problem of deciding if cxkij3 is PSPACE-complete. 

We close this section by briefly comparing our ap- 
proach to others in the literature. Fagin, Halpern, and 
Vardi [1991] d e fi ne a notion of i-no-information ezten- 
sion that can also be viewed as characterizing a notion 
of “all agent i knows” in the context of S5,. However, 
it is defined only for a limited set of formulas. It can 
be shown that these formulas are always S5,-i-honest 
in our sense, and, if a! is one of these formulas, we have 
CX~“,, ,0 iff ,0 is true in the i-no-information extension 
of cy. The fact that these two independently motivated 
definitions coincide (at least, in the cases where the 
i-no-information extension is defined) provides further 
evidence for the reasonableness of our definitions. 

Vardi [1985] d e fi nes a notion of “all agent i knows” for 
S4,, using the knowledge-structures approach of [Fagin, 
Halpern, and Vardi 19911, and proves Theorem 2.5 for 
Sk in the context of his definition. It is not hard to 
show that our definition of honesty coincides with his 
for S4,. However, the knowledge structures approach 
does not seem to extend easily to the introspective log- 
its. Moreover, using our approach leads to much better 
complexity results. For example, all that Vardi was able 
to show was that honesty was (nonelementary-time) de- 
cidable. 

Parikh [1991] d e fi nes a notion of “all that is known” 
for S5, much in the spirit of the definitions given here. 
Among other things, he also starts with k-trees (he 
calls them normal models), although he does not use 
i-objective trees. However, rather than focusing on all 
that some fixed agent i knows as we have done, Parikh 
treats all agents on an equal footing. This leads to some 
technical differences between the approaches. He was 
also able to obtain only nonelementary-time algorithms 
for deciding whether a formula was honest in his sense. 

3 Levesque’s notion of “only knowing” 
Despite the similarity in philosophy and terminology, 
Levesque’s notion of “only knowing” differs in some sig- 
nificant ways from the HM notion (see [Halpern 19931 
for a discussion of this issue). Nevertheless, some of the 
ideas of the previous section can be applied to extending 
it to many agents. 

Levesque considers a K45 notion of belief, and intro- 
duces a modal operator 0, where Oa! is read “only be- 
lieves CX”. The 0 operator is best understood in terms 
of another operator introduced by Levesque denoted 
N. While La! says “Q! is true at all the worlds that the 
agent considers possible”, No is viewed as saying “Q! 
is true at all the worlds that the agent does not con- 
sider possible”. Then Oa! is defined as an abbreviation 
for La! A Nlcx. Thus, Oa holds if CY is true at all the 

worlds that the agent considers possible, and only these 
worlds. We can read La! as saying “the agent knows at 
least 01”) while Nlcu says “the agent knows at most 
Q” (for if he knew more, than he would not consider 
possible all the worlds where Q! is true). 

In the case of a single agent, since worlds are asso- 
ciated with truth assignments, it is easy to make pre- 
cise what it means that the agent does not consider a 
world possible: it is impossible if it is not one of the 
truth assignments the agents considers possible. Thus, 
Levesque defines: 

(W, w) + No if (W, w’) b Q for all w’ $! W. 

Two important features of this definition are worth 
mentioning here. First, the set of all worlds is abso- 
lute, and does not depend on the situation: it is the set 
of all truth assignments. Thus, the set of impossible 
worlds given that W is the set of worlds that the agent 
considers possible is just the complement of W (rela- 
tive to the set of all truth assignments). Second, when 
evaluating the truth of CY at an “impossible world” w’, 
we do not change W, the set of worlds that the agent 
considers possible. (We remark that it is this second 
point that results in the main differences between this 
notion of “all I know” and the HM notion; see [Halpern 
19931.) 

Of course, the problem in extending Levesque’s no- 
tion to many agent lies in coming up with an analogue 
to “the worlds that the agent does not consider possi- 
ble”. This is where our earlier ideas come into play. 

Before we go into details on the multi-agent case, we 
mention one important property of this notion of “only 
knowing”. Moore [1985] defines a stable ezpansion of 
cy to be a (K45-)stable set S such that S is the closure 
under propositional reasoning of {a} U {La! : Lcr E S} U 
{lLo! : ~Lcr E S}. Notice that for any stable set S, 
there is a unique set Ws of truth assignments such that 
cp E S iff ( WS, w) b Lp for all w E WS. Levesque shows 
that S is a stable expansion of Q! iff ( WS, w) /= Oa! for 
all w E WS. 

We now turn to extending Levesque’s definitions to 
the multi-agent case. We first extend the language of 
knowledge by adding modal operators Ni and Oi for 
each agent i = l,..., n. Following Lakemeyer, we call 
the full language ON&. We say that a formula in 
ON,& is basic if it does not involve the modal operators 
Oi or Ni. Finally, we take the language ONLC, to be 
the sublanguage of ON&, where no Oj or Nj occurs in 
the scope of an Oi , Ni , or Li , for i # j. In analogy to 
Levesque, we define Oicv as the conjunction Lid Ni ~QI. 
The problem is to define Nia. As in the single-agent 
case, we want Nice to mean that Q! is true at all the 
worlds that i does not consider possible. So what are 
the worlds that i does not consider possible? 

Perhaps the most straightforward way of making 
sense of this, used by Lakemeyer [1993], is to define 
Ni in terms of the complement of the Ici relation. We 
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briefly outline this approach here. Given a structure 
M = (W, /cl,. . . , ?C,, x), let Ei(w) = (w’ : (w, w’) E 
Xi). Ici (w) is the set of worlds that agent i considers 
possible at w. We write w ~:i w’ if lci (w) = lci (w’). 
Thus, if w RQ w’, then agent i’s possibilities are the 
same at w and w’. Finally, Lakemeyer defines: 

(M, w) bLak Nia! if (M, w’) /= cy for all 20’ such 
that (w, w’) 6 lci and w e:i w’. 

By restricting attention to worlds w’ such that w wi 
w’, Lakemeyer is preserving the second property of 
Levesque’s definition, namely, that when evaluating the 
truth of a formula at an impossible world, we keep 
the set of agent i’s possibilities unchanged. However, 
this definition does not capture the first property of 
Levesque’s definition, that the set of impossible worlds 
is absolute. Here it is relative to the structure. To 
get around this problem, Lakemeyer focuses on a cer- 
tain canonical model, which intuitively has “all” the 
possibilities .(j It is only in this model that the Ni (and 
thus the 0;) operators seem to have the desired behav- 
ior. (We discuss to what extent they really do have the 
desired behavior in this canonical model below.) 

We want to define Ni and Oi in a reasonable way in 
all models. We proceed as follows: 

(M, w) b N;a! if. (M’, w’) b CY for all 
(M’, w’) such that Th,,,,, 4 IntPossi(M, w) and 
IntPossi (M, w) = IntPossi (M’, w’). 

The analogues to Lakemeyer’s definitions should be 
obvious: we replace (w, w’) $ lCi by T&,,w, 6 
IntPossi( M, w) and w pi w’ by IntPossi( M, w) = 
IntPoss; (M’, w’). 

What evidence do we have that this definition is rea- 
sonable? One piece of evidence is that we can extend 
to the multi-agent case Levesque’s result regarding the 
relationship between only knowing and stable expan- 
sions. To do this, we first need to define the notion of 
stable expansion in the context of many agents. We 
say that S is a K45,-i-stable expansion of a if S is a 
K45,-i-stable set and S is the closure under K45, of 
(a} u (Lia : Lia! E S} U (lLia! : lLia! E T3.7 

Next, we need to associate a situation with each 
K45,-i-stable set, as we were able to do in the single- 
agent case. Given a set S of basic formulas, we say 
that the K45,-situation (M, w) i-models S if, for all 
basic formulas y3, we have (M, w) b Lirp iff ‘p E S. In 
analogy to the single-agent case, the situation that we 

‘This canonical model is built using standard modal logic 
techniques (cf. [Halpern and Moses 1992; Hughes and Cress- 
well 19681); th e worlds in this canonical model consist of all 
maximally K45,-consistent subsets of formulas. 

71n Moore’s definition of stable expansion, we could have 
used closure under K45 instead of closure under deduc- 
tive reasoning. The two definitions are equivalent in the 
single-agent case, but modal reasoning is necessary in the 
multi-agent case so that agent i can capture j’s introspec- 

would like to associate with a stable set S is one that 
i-models S. There is, however, a complication. In the 
single-agent case, a stable set determines the set of pos- 
sible truth assignments. That is, given a stable set S, 
there is a unique set WS such that (for any w) we have 
( WS, w) /= Lcp iff cp E S. The analogue does not hold in 
the multi-agent case. That is, given a stable set S, there 
is not a unique set W of i-objective w-trees such that if 
(M, w) i-models S, then IntPossi(M, w) = W. As we 
show in the full paper, two structures can agree on all 
basic formulas, and still differ with regard to formulas of 
the form Nia or Oia under b.” A similar phenomenon 
was encountered by Levesque [1990] when considering 
only knowing in the first-order case. We solve our prob- 
lem essentially the same way he solved his. We say 
that (M, w) is a maximum i-model of the stable set S if 
(M, w) is an i-model of S and for every i-model (M’, w’) 
of S, we have IntPossi (M’, w’) C IntPossi(M, w). 

Lemma 3.1: Every K45,-i-stable set has a maximum 
i-model. 

Theorem 3.2: Suppose S is a K45,-i-stable set and 
(M, w) is a maximum i-model of S. Then S is an i- 
stable expansion of a ifl (M, w) j= Oia. 

We remark that an analogous result is proved by Lake- 
meyer [ 19931, except that he restricts attention to situ- 
ations in the canonical model. 

More evidence as to the reasonableness of our def- 
initions is given by considering the properties of the 
operators Ni and 0;. As usual, we say that ‘p is valid, 
and write b (p, if (M, w) 1 cp for all situations (M, w). 
We write IL& cp if y3 is valid under Lakemeyer’s se- 
mantics in the canonical mode4 we remark that EL& 
is the notion of validity considered by Lakemeyer, since 
he is only interested in the canonical model. 

Theorem 3.3: For all formulas cp, if j= ‘p then bLa]E 
p. If p E Oni& we have j= p i# bLak p. 

This theorem says that Lakemeyer’s notion of valid- 
ity is stronger than ours, although the two notions agree 
with respect to formulas in the sublanguage ON&. In 
fact, Lakemeyer’s notion of validity is strictly stronger 
than ours. Lakemeyer shows that +Lak ‘Oi’Ojp; un- 
der his semantics, it is impossible for i to only know 
that it is not the case that j only knows p. This seems 
counterintuitive. Why should this be an unattainable 
state of knowledge ? Why can’t j just tell i that it is 
not the case that he (j) only knows p? 

We would argue that the validity of this formula is 
an artifact of Lakemeyer’s focus on the canonical model. 
Roughly speaking, we would argue that the canonical 
model is not “canonical” enough. Although it includes 
all the possibilities in terms of basic formulas, it does 

‘This can be viewed as indicating that basic formulas 
are not expressive enough to describe w-trees. If we had 
had allowed infinite disjunctions and conjunctions into the 
language, then a stable set would determine the set of trees. tive reasoning. 

660 Halpern 



not include all the possibilities in terms of the extended 
language. The formula O;lOjp is easily seen to be sat- 
isfiable under our semantics. 

Lakemeyer provides a collection of axioms that he 
proves are sound with respect to +La]c, and complete 
for formulas in On/C,. He conjectures that they are 
not complete with respect to the full language. It is not 
hard to show that all of Lakemeyer’s axioms are sound 
with respect to our semantics as well. It follows from 
Theorem 3.3 and Lakemeyer’s completeness result that 
these axioms are complete with respect to On/C, for 
our semantics too. It also follows from these observa- 
tions that, as Lakemeyer conjectured, his proof system 
is not complete. This follows since everything provable 
in his system must be valid under our semantics, and 
1OilOjp is not valid under our semantics (although it 
is valid under his). 

4 Discussion 
We have shown how to extend two notions of only know- 
ing to many agents. The key tool in both of these exten- 
sions was an appropriate canonical representation of the 
possibilities of the agents. Although we gave arguments 
showing that the way we chose to represent an agent’s 
possibilities was reasonable, it would be nice to have a 
more compelling theory of “appropriateness”. For ex- 
ample, why is it appropriate to use arbitrary trees for 
the non-introspective logics, and i-objective trees for 
the introspective logics ? Would a different representa- 
tion be appropriate if we had changed the underlying 
language? Perhaps a deeper study of the connections 
between o-trees and the knowledge structures of [Fagin 
and Vardi 1986; Fagin, Halpern, and Vardi 19911 may 
help clarify some of these issues. 

Another open problem is that of finding a complete 
axiomatization for ON,&. We observed that Lake- 
Meyer’s axioms were not complete with respect to his 
semantics. In fact, it seems that these axioms are es- 
sentially complete for OJVC, under our semantics.g We 
hope to report on these results in the future. 

Acknowledgements: I would like to thank Ron Fagin, 
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for their helpful comments on an earlier draft of this 
paper. 

‘The reason we say “essentially complete” here is that 
one of the axioms has the form 

N~CY + ~Lia for all basic i-objective o falsifiable in K45,. 

We need to extend this axiom to formulas that are not ba- 
sic. But the axiom system K45, does not apply to non-basic 
formulas. We deal with this problem by extending the lan- 
guage so that we can talk about satisfiability within the 
language. The axiom then becomes 

icon + (N;cx =s- ~Lia), 

where Con(o) holds if a is satisfiable. 
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