
Supporting and Optimizing Full Unification 
in a Forward Chaining Rule System 

Howard E. Shrobe 
Massachusetts Institute of Technology 

NE43-839 
Cambridge, MA 02139 
hes@zermatt.lcs.mit.edu 

Abstract 

The Rete and Treat algorithms are considered the 
most efficient implementation techniques for For- 
ward Chaining rule systems. These algorithms 
support a language of limited expressive power. 
Assertions are not allowed to contain variables, 
making universal quantification impossible to ex- 
press except as a rule. In this paper we show how 
to support full unification in these algorithms. 
We also show that: Supporting full unification is 
costly; Full unification is not used frequently; A 
combination of compile time and run time checks 
can determine when full unification is not needed. 
We present data to show that the cost of support- 
ing full unification can be reduced in proportion 
to the degree that it isn’t employed and that for 
many practical systems this cost is negligible. 

1 Introduction 
Relatively efficient mechanisms have been developed for 
the implementation of forward chaining rules [l; 41. How- 
ever, these mechanisms have mainly been used in the im- 
plementation of the OPS family of production system lan- 
guages. Languages in this family have limited expressive 
power: they are pure forward chaining languages in which 
assertions are restricted to ground terms.’ 

In this paper we explore the use of these mechanisms in 
more expressive languages in the tradition of [7; 2; 3; 61. 
Such languages work by pattern directed procedure invoca- 
tion. They center around a database of assertions accessed 
by forward and backward chaining rules as well as by nor- 
mal procedural code using a Tell and Ask interface. The 
bodies of rules in such languages may be full procedures. 
Such languages naturally fall into the full unification case: 
Assertions containing variables take on the force of uni- 
versally quantified statements and these may match the 
patterns of either forward or backward chaining rules. 

However, the designers of the OPS family of languages 
did not choose the limitation to the semi-unification case 
naively. Full unification significantly complicates the Rete 
mechanisms and leads to two forms of inefficiency: 

o The resulting code executes more slowly. 

o The resulting code is significantly larger. 

‘In the remainder of the paper, we will refer to a lan- 
guage which only allows ground terms in assertions as a “semi- 
unification* language. If assertions may contain variables we 
will refer to the language as a “full-unification” language. 

710 Shrobe 

Moreover, in many domains the semi-unification case 
closely approximates the needed expressive power; full uni- 
fication is rarely required. 

In this paper, we show that one can have both the ex- 
pressive power of full unification and the efficiency of the 
techniques developed for the more limited semi-unification 
case. The mechanisms described here have been imple- 
mented and extensively used in the Joshua system[5]. 

The outline for the remainder of the paper is as follows: 
In section 2 we begin by reviewing the conventional Rete 
network, describing it as a mechanism for incrementally 
computing unifications between a set of patterns and a 
set of assertions (an unconventional viewpoint). We then 
show in section 2.1 that conventional Rete networks are 
an optimization of our viewpoint for the semi-unification 
case. In section 3, we describe our extensions to support 
full unification; section 4 presents data to show the degree 
of inefficiency introduced by our extensions. The next two 
sections present techniques for addressing the inefficien- 
cies. Section 5 presents a set of run time optimizations 
that dynamically identify when semi unification alone is 
adequate; we show that this reduces the first form of inef- 
ficiency to negligible levels. Section 6 shows how the rule 
compiler can statically segregate out portions of the rule 
system which can be compiled under the semi unification 
assumption; we show that this reduces the second form of 
inefficiency to acceptable levels. 

2 Rete Networks 
We assume that the reader is familiar with Rete networks 
and related techniques (see, for example, [l]). In describ- 
ing Rete networks, our terminology will be somewhat non- 
standard; we will refer to unification rather than matching 
in an attempt to show how our extensions fit within the 
pattern of the original algorithm. 

Rete networks incrementally maintain the partial trig- 
gering states of rules as new assertions are added and 
deleted. A rule is fully triggered when its set of patterns 
unify with a set of statements asserted in the database. 
Partial triggering states contain two kinds of information: 
I) The unifications between individual patterns and in- 
dividual assertions and 2) Extended unifications between 
subsets of a rule’s patterns and sets of assertions. Figure 1 
shows a pair of rules and the corresponding Rete network. 

The network contains two sections: Match and Join. 
Each of these incrementally updates its internal state each 
time a new token is added to (or deleted from) its input 
nodes. 

The match section is a discrimination network whose 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



Figure 1: A Typical Rete Network 

terminal nodes (the match nodes) compute unifications be- 
tween rule patterns and assertions in the database. State is 
stored only at the match nodes (these are the alpha mem- 
ories of [l]). Patterns from different rules which, are vari- 
ants (i.e. identical up to variable renaming) share match 
nodes; two patterns which share leading terms share a path 
through the network up to the point of divergence. The 
tests made by the nodes above the match nodes filter out 
assertions which cannot possibly unify with the pattern of 
the match nodes below them. 

The Join network begins at the Match nodes. State is 
stored at all join nodes (these are the beta memories in the 
terminology of El]). E ac h node of the join section merges 
the partial unifications represented by its two parent nodes, 
checking that the shared variables are unifiable. Each ter- 
minal node of the join network corresponds to a complete 
set of rule patterns. If two rules share leading patterns, 
they share join nodes up to the point of divergence. 

The rete network compiler emits code for each node in 
the network to perform the above functions.2The code for 
match and join nodes perform the indicated unifications; 
they also package up the results into state tokens stored at 
the node.3 

2.1 Optimizations for the Semi 
Unification Case 

In classic Rete networks all assertions contain only ground 
terms and therefore no variable in a rule’s pattern may 
ever be bound to another variable. Under these conditions 
the Rete network can be viewed as computing relational 
selects (at the match nodes) and relational joins (at the 
join nodes) (as pointed out in [4]). 

Operationally matching reduces to: 1) checking that 
constants in the assertion are equal to corresponding con- 
stants in the pattern and 2) checking that terms of an 

21nthe Joshua system, the methods for generating this code 
are customizable by the user; this is part of the Protocol of 
Inference see [5]. 

3 Joshua aho w user-supplied procedural condition elements; s 
these require a special node type. Procedural nodes are at- 
tached to a single parent node; they contain the original pro- 
cedure surrounded by supporting code which generates a new 
token each time the procedure “succeeds”. For brevity, we will 
not further discuss these condition elements. 

assertion which match different occurrences of the same 
variable are equal. 

When assertions contain only ground terms the discrim- 
ination nodes perform part of the unification by testing for 
equality between constants in the pattern and constants in 
the assertion. Therefore, the code at a match.node may 
omit these tests. 

Similarly, the tests at the join nodes can be reduced to 
checking that variables shared between the parents of the 
join are bound to equal values. Hashing (or other forms 
of indexing) may be used to speed up the join computa- 
tion. Each parent of a join node maintains a hash-table of 
tokens; the key for this table is a list of the values of the 
shared variables. 

In the semi-unification case, a hash probe will find the 
precise set of unifiable tokens; therefore, no other code is 
needed at the join nodes. 

Finally, in the semi-unification case, the state tokens 
need not contain a variable binding environment; each vari- 
able can be identified with a particular term from one of 
the mat thing assertions. 

These optimizations are not fully available in the full- 
unification case. 

We have described the Rete algorithm in a very general 
context, that of computing and extending unifications. 
The semi-unification case allows a variety of optimizations 
to be made by replacing unification with equality tests. 
To extend the traditional Rete algorithm to support the 
full-unification case we must undo these optimizations, re- 
placing equality checks by unifications. 

The following questions must be addressed: 

How are logic variables represented? 

What code is compiled to conduct the unification 
mat thing? 

Row are state-tokens represented and computed? 

How do auxiliary indices (e.g. hash-tables at join 
nodes) handle logic variables? 

Having made these choices we will then need to see what 
impact they have on the components of the Rete network. 

3.1 ata Structures and asic 
Operations 

3. I. I Represent at ion of Logic Variables 
We adopt a representation for logic variables based on 

the Prolog oriented techniques of the Warren Abstract Ma 
chine [8]. 

Logic variables are represented as pointers to their val- 
ues; an unbound logic variable points to itself. An unbound 
logic variable is unified with a value by making it to point 
to the value; this value might be another unbound logic- 
variable which might later be bound to a value, leading to 
a chain of logic-variable pointers as shown in figure 3. 

To find the value of a logic variable one must follow the 
chain of pointers until encountering either a value which 
is not a logic variable or a logic variable which points to 

Rde-Based Reasoning 711 



(lambda (assertion) 
(with-unification 
(with-unbound-logic-variables (?x) 
(unify ‘P (dcreference (pop assertion))) 
(unify ?x (dcreference (pop assertion))) 
(unify ‘a (dereferencc (pop assertion))) 
(unify (dereference TX) (dereference (pop assertion))) 
(unify ‘b (dereference (pop assertion))) 
. . . code to be executed upon success . ..))) 

Figure 2: Full Unification Code Corresponding to [P ?x a 
?x b] 

itself. This operation is referred to as dereferencing. A 
logic variable must be dereferenced before its use. 

When a logic variable is bound, an entry consisting of the 
logic variable is made on a stack called the trail. Before a 
pattern matching operation is begun, the level of the trail is 
saved. To return to the binding state which obtained at the 
beginning of the operation (e.g. when the unification fails) 
each logic variable above the marked point on the trail is 
reset to point to itself and the trail level is reset to the 
marked point. This operation is usually called unwinding 
the trail, or untrailing. 

3.1.2 Implementation of Unification 
The match compiler is responsible for emitting the uni- 

fication code corresponding to a pattern. When given an 
assertion to match, the code must fair if the pattern and 
the assertion are not unifiable; otherwise it must succeed 
and bind the logic-variables of the pattern to the values 
implied by the unification. 

Figure 2 shows the code emitted for the pattern [P ?x a 
?x b]. 

In this code, With-unification establishes a unification 
context (i.e. it notes the level of the trail on entry and 
unwinds the trail to that level upon exit. Also it establishes 
a catch tag which is thrown to in the event of failure. With- 
unbound-l&k-variables creates a set of new logic-variables 
(typically these are stack allocated). Notice that each term 
of the assertion must be dereferenced before the call to 
Unify since the term might be a logic variable. 

Unify is called with atomic elements (including logic 
variables) as the first argument; when the pattern contains 
compound terms, the match compiler must recurse into the 
substructure of these terms. For simplicity of presentation 
we omit the details, see [8]. The behavior of Unify is as 
follows: 

o If neither argument is a logic-variable, then UNIFY 
succeeds if the arguments are EQUAL and otherwise 
fails. 

o If exactly one argument is a logic-variable, UNIFY 
succeeds, the logic-variable is bound to the other ar- 
gument and a trail entry is made.4 

o If both arguments are logic-variables then one is 
bound to the other a trail entry is made and UNIFY 
succeeds. (If both logic-variables are stored on the 
stack, then the one pushed more recently must point 
to the one more deeply nested). 

*The unification is only allowed if the variable does not occur 
within the structure of the other arguments. Prolog implemen- 
tations typically skip this “free-for” check for efficiency as do 
we in our implementation. 

Pattern: 

rp 7x w w 11 
Aoorrtzon: 
[P (?a . ?b) ?a ?b ?bI 

Most Conwcal 
[P (1 . 1) 1 

Unifier 

1 11 

Unifyxng Subotrtutxcma 

?A -1 
?B -1 

Figure 3: A Unification and its Implementation Level View 

Failing is accomplished by throwing the value NIL to a 
catch-tag for FAIL. This is normally established by with- 
unification; this causes the trail to be unwound.5 

3.1.3 Saving the Binding State in Tokens 
The code emitted by the Rete network compiler for a 

match node tests whether the triggering assertion can be 
unified with the rule pattern; if so it produces a state-token 
containing the bindings of the pattern’s logic variables. 

Consider the unification shown in figure 3. The vari- 
able ?x of the rule’s pattern is unified with the list (?a . 
?b) of the assertion; this list contains variables which are 
bound to ground terms (e.g. 1). The value of ?x is valid, 
therefore, only as long as ?a and ?b continue to be bound 
to 1. However, ?a and ?b are contained in a database 
assertion whose intent is to state a universal quantifica- 
tion. Therefore, the binding of ?a and ?b must be untrailed 
and the values of their current bindings must be preserved 
elsewhere.6 Notice that this is quite a bit more expen- 
sive than the semi-unification case where the assertion can 
serve as an adequate representation of the binding state as 
explained in 2.1. 

To preserve the volatile binding state over a longer 
duration, state-tokens maintain an environment of logic- 
variable values with a slot for each variable in the pattern. 
Each slot is filled with the unified-value of its correspond- 
ing logic-variable. The unified value of a logic-variable is 
computed as follows: 

o The logic-variable is dereferenced. 

o If the variable is unbound, its unified value is a new 
logic-variable. All occurrence of a particular unbound 
logic-variable have 
unified-value.? 

the same new logic-variable as their 

51n the implemen tations of Joshua on Symbolics equipment, 
Dereference is a microcoded instruction. In implementations on 
more conventional machines it would be implemented either as 
subroutines or an inline code fragment; either approach is both 
slower and consumes more instructions. Our measurements are 

made on Symbolics equipment, yielding more favorable results 
for the full-unification case than would result on more conven- 
tional machines. 

61.e. our implementation uses a shallow binding scheme for 
logic variables but needs to preserve their values beyond the 
dynamic extent. 

‘Unbound logic-variables are replaced by new variables to 

712 Shrobe 



~iri& i.u bound and the bound value 
trtrilictd-value is the bound-value. 

is atomic, 

o II’ t.h(* i)c)utld value is a compound data-structure, then 
tlrr. sub-slructure is traversed replacing each term by 
its trnilicad value. 

111 t.hct caxsmple of figure 3 the logic-variable ?x is bound 
to the pair (?a . ?b). But ?a is bound to ?b which is in 
turn bound to 1; so the unified value of ?x is (1 . l), a 
value which persists even after unwinding the trail. 

3.2 Extending the Algorithm 
3.2.1 The Discrimination Network 

We begin with the discrimination nodes of the Match 
network. Each discrimination node dispatches on the value 
of a term in the assertion, see figurel. For large branching 
factors, a hash table is an appropriate implementation. If 
the term being dispatched on is a constant then it serves as 
the hash-key. The value retrieved is the next discrimina- 
tion node to visit. If there is a branch for the key *variable* 
(indicating a rule pattern with a variable at this position), 
this must also be followed. 

Notice that the term being discriminated on may itself 
be a logic-variable. In this case all outgoing branches must 
be followed, since a variable can match anything.s 

3.2.2 The Match Nodes 
The discrimination network search discards most match 

nodes that don’t unify with the assertion; however, some 
non-unifiable match nodes may still be reached. For ex- 
ample: 

Rule Pattern: (P a ?c b ?c) 
Assertion: (P ?x c ?x c) 

The discrimination network treats each occurrence of ?x 
in the assertion as independent, allowing this assertion to 
reach the match node although it isn’t unifiable with the 
pattern. Notice that the inconsistency between the asser- 
tion and the pattern occurs at constant terms in the pat- 
tern. As mentioned in section 2.1, this can never happen 
in the semi unification case and the match code need only 
check the positions corresponding to variables. 

In contrast, the full unification match code must per- 
form the entire unification as explained in section 3.1.2 
(i.e. tests must be generated for both constant and vari- 
able positions). It must also save the results in a binding 
vector by copying out the unified values, as explained in 
section3.1.3. The match compiler, therefore, emits code 
containing two sections: The first conducts the unifica- 
tions, the second creates the binding vector and fill it with 
the unified values of the logic variables. 

3.2.3 The Join Nodes 
Join nodes are extended in a similar manner. The rule 

compiler generates a map for each join node specifying 

prevent sharing of logic-variables held in state tokens with those 
in assertions (or other state-tokens). Were this not done, the 
unifications performed at join nodes would unintentionally bind 
the variables in the assertions. Resolution systems rename vari- 
ables in the resolvent for the same reason. 

‘We do not a tt m e p t to carry along the variable bindings 
while traversing the discrimination network. 

l’s ?Y 
?x ?y ?z) environment ?x - 1 ?y - 2 ?z -L 3 

?z ?w) environment ?y - 1 ?z - 2 ?w - 3 

(lambda (token-l token-2) 
(with-unification 
;; unify ?y from 1 with ?y from 2 
(unify (token-slot token-l 2) (token-slot token-2 1)) 
;; unify ?z from 1 with ?z from 2 
(unify (token-slot token-l 3) (token-slot token-2 2)) 
(let ((new-token (make-new-token :n-variables 3))) 
;; copy ?x 
(setf (token-slot new-token 1) (copy-unified-value (token-slot token-l 1))) 
;; COPY ?Y 
(setf (token-slot new-token 2) (copy-unified-value (token-slot token-l 2))) 
;; copy ?z 
(setf (token-slot new-token 3) (copy-unified-value (token-slot token-l 3))) 
;; copy ?w 
(setf (token-slot new-token 4) (copy-unified-value (token-slot token-2 3))) 
new-token))) 

Figure 4: Join Code for The F’ull Unification Case 

which variables from the two parent nodes are to be uni- 
fied. The compiler emits code to perform these unifications 
and to copy the unified values of all the variables into a new 
state-token. Figure 4 shows a join to be performed and the 
corresponding code generated by the rule compiler. 

Many Rete network implementations use hashing (or 
other indexing) to speed up the join computation, as ex- 
plained in section 2.1. In the full unification case, any of 
the shared variables in either token might be an unbound 
logic-variable. Unlike ground terms, two distinct logic vari- 
ables might match; a list of the values of the shared vari- 
ables is, therefore, not an adequate retrieval key. A simple 
extension which solves this problem is as follows: 

e When storing a new token in a node: 

- If any of the shared variables are unbound, then 
hash the token under a special key: *unbound- 
variable *. 

- Otherwise 
ues as the 

the list of the shared variable val- 

When looking for stored tokens to’ join with a new 
token: 

- If any of the new token’s shared variables are un- 
bound then look at every token stored in the other 
parent node. 

- Otherwise form a key which is the list of shared 
variables and attempt to join with every stored 
token hashed in the other parent node under this 
key. Also attempt to join with every token hashed 
under the key *unbound-variable*. 

3.2.4 Compiling Rule Bodies 

Forward rule bodies may contain normal procedural 
code which references the logic variables of the patterns. In 
the full unification case, variables referenced in the body 
of a rule may be left unbound by the matching process; 
they therefore must be treated as logic variables and be 
dereferenced before being used. 

The values of the logic-variables are stored in the envi- 
ronment of the triggering state token. The rule compiler, 
therefore, first emits a prologue which fetches the variable 
values from the environment into local variables. The rest 
of the rule body’code is transformed so that every reference 
to a logic-variable is wrapped within a call to dereference. 

Rule-Based Reasoning 713 



example 

Natural Deduction 
Troubleshooting 
Cryptarithmetic 
Planning 

Time in Rete Network Total Run Time 
Semi F 11 Semi Full 

14,114 84,7u25 167,816 360,740 
79,353 346,726 645,634 943,602 

851,288 2,872,276 3,489,086 7,309,309 
209,308 739,605 891,742 1,413,495 

Table 1: Run Times of Full and Semi Unification Code 

4 Full Unification Support is 
Costly 

These extensions lead to semantically correct behavior in 
the full unification case. However, as can also be seen, each 
extension removes a constraint of the semi-unification case 
which was used in optimizing the original algorithm. 

Table 1 shows the relative performance of the match- 
ing and merging portions of a a number of demonstration 
systems. Table 2 shows the relative sizes of the generated 
code for a variety of systems. 

The following are among the causes of this difference: 

0 

e 

e 

e 

e 

e 

e 

5 

Equality tests in the match and join code are replaced 
by unification. 

The discrimination network in the match network acts 
only as a partial filter in the full unification case (due 
to the possibility of logic-variables in the assertions, 
see section 3.2.1). The match code generator cannot 
assume that every constant has already been checked 
and must generate checks for the constants as well as 
the variables. 

Hashing alone is a sufficient join test in the semi- 
unification case. In the full-unification case this is 
not true. A rather bulky merge procedure must be 
still be generated and called, see section 3.2.3. 

The code generated for rule bodies must replace vari- 
able references by calls to dereference. This incurs 
both increased code size and slower performance. 

In the semi-unification case, state tokens need not con- 
tain environments. In the full unification case environ- 
ments must be built and values copied between them. 

Calls to copy-unified-vahe must be used to copy logic- 
variable values to new state tokens. If variables are 
bound to compound data-structures this incurs the 
cost of traversing and incrementally rebuilding those 
sub-structures containing logic-variables. 

In the semi-unification case, match procedures typ- 
ically check only the terms corresponding to vari- 
ables in the pattern; constants in the pattern are ig- 
nored since the discrimination nodes check them. This 
means that two match nodes which have the same 
pattern of variable occurrences but distinct constants 
may nevertheless share match procedures. This is not 
the case for the full unification case, only variant pat- 
terns may share match procedures. 

ynamic Optimizations 
The programming style of typical knowledge based sys- 
tems infrequently employs the full unification case. Un- 
fortunately, the expressiveness of the full unification case 
leads to code with much worse run-time performance. 

This section addresses one approach to this problem: 
optimizations performed at run-time. 

We have extended the rete network compiler to gener- 
ate two sets of procedures for each of the match and join 
nodes. The first of these is the less efficient but more gen- 
eral code capable of handling the full unification case; the 
second procedure handles only the semi-unification case, 
but is considerably more efficient. The rete network inter- 
preter is responsible for dispatching to the semi-unification 
procedure if allowable, otherwise it must call the full uni- 
fication procedure. 

To make this decision, our system checks each newly 
created assertion for the presence of logic-variables and 
stores the result in the data-structure representing the as- 
sertion. (The check must be made in any event, since all 
logic-variables in a database assertion must be copied so 
as to be unique to that assertion). At a match node, the 
rete interpreter uses this information to determine which 
procedure to call. 

When a new state-token is created, a we check whether 
any element of the environment is an unbound logic vari- 
able; the token is marked with the result of this check. At 
a join node the semi-unification code is called if both input 
tokens are marked as logic-variable free. Notice that only 
the full unification procedures need to check for the pres- 
ence of unbound logic-variables in the output token since 
in the semi unification case the output will necessarily con- 
tain only ground terms. 

The crucial question for a dynamic optimization is 
whether the cost of detecting the opportunity swamps out 
the resulting benefit. In this case, the detection cost is 
that incurred in checking assertions for non-ground terms 
and (if we’re running a full-unification procedure) the cost 
of a similar check on any newly generated token. Metering 
indicates that this consumes about 1.5% of total run time. 

To test the efficacy of dynamic optimization, we ran 
a rule-based natural deduction system on three versions 
of the same problem. The first version uses only ground 
terms, the second has a mix of ground terms and terms 
with variables and the third version is completely quan- 
tified. In the first case, all matches and joins used the 
semi-unification code and ran the problem 6.9 times faster 
than would the full-unification code. In the second case, 
86% of the matches and 59% of the joins used the semi- 
unification code with a resulting speedup of 2.4. In the 
last case, of course, all matches and joins used the full- 
unification code. These results show that the system is 
highly effective in dynamically identifying when the semi 
unification code can be utilized. 

pt imizat ions 
The dynamic optimizations incur the additional cost of 
generating two procedures at each node. A traditional pro- 
duction system would generate only the semi unification 
code; but our system also generates code to support the 
rarer case of full unification. As table 2 indicates this code 
is considerably larger. Furthermore, we generate only a 
single version of the code for rule bodies which is required 
to be the slower and bulkier code capable of handling full 
unification. 

In this section, we discuss how we use information avail- 

714 Shrobe 



example 

Circuits 
Cryptarithmetic 
Midsummer 
Discrete Event 
Ht Atms 
Ht Ltms 
NatDed 
All Rules 

Matchers 
Rllle Size 

10 2 37 
59 7 188 

7 3 56 
7 4 81 
7 4 82 

15 5 120 
7 6 266 

123 36 950 

Semi Unification 
Mergers Proc- 

Size edures 
2 44 0 

34 979 307 
3 68 46 
4 94 20 
3 66 64 
6 146 80 
4 109 0 

50 1380 587 

Rule Matchers 
Body Size 

212 7 364 
2251 14 703 

124 6 264 
237 7 361 
153 8 412 
391 15 754 
425 8 508 

4009 74 3797 

Full Unification 
Mergers Proc- RUIC 

Size edures Body 
2 260 0 214 

34 6816 628 2269 
3 372 73 124 
4 544 36 237 
3 390 120 153 
6 849 169 397 
4 672 0 425 

50 9186 1102 4035 

Table 2: Compiled Code Size of Full and Semi Unification Code 

able at compile time to help the rule compiler determine 
which nodes of the network (as well as which rule bodies) 
will never encounter the full-unification case. This lets us 
generate only the more efficient semi unification code at 
any node or rule body so classified. 

In the Joshua system, all operations of the system (in- 
cluding the operations of the rule compiler) are driven by 
the class of the assertion (or pattern) being processed. The 
classes are identified with the predicate of the assertion and 
are, in fact, CLOS classes; see [5] for details. The data 
structures used to represent rule patterns and data-base 
assertions are instances of these CLOS classes. 

One such predicate class (which can be “mixed in” to 
any other assertion class) is no-variables-in-data-mixin. 
If one tries to enter an assertion of this type into the 
database, an error is signalled. Rule patterns which are in- 
stances of this class can therefore reliably assume that any 
triggering assertion will contain only ground terms. This 
information is used at rule compilation time to determine 
that a match node will be “semi unification only”. A join 
node whose parent nodes are both “semi unification only” 
will also be “semi unification only”. If a terminal node of 
the rete network is “semi unification only” then all rule 
bodies connected to that node are also “semi unification 
only” . ’ 

Table 2 shows the relative sizes of the full-unification 
and semi-unification code for 7 systems. In aggregate the 
full unification matchers are 4 times larger than the semi- 
unification matchers; the full unification mergers are 6.7 
times larger. With static optimizations applied, our sys- 
tem generates no full unification code for most of the sys- 
tems (this is optimum, these systems never use the full 
unification capability). The system is forced to generate 
both versions of the code for the one subsystem which does 
take advantage of the full unification. In aggregate, this 
save 86% of the matching code and 92% of the merging 
code. 

7 iscussion 
We have shown that the expressiveness of full unification 
can be supported with very limited cost in efficiency. This 
result depends on the statistics of assertion usage: most as- 
sertions contain only ground terms. This allows us to gen- 
erate optimized procedures for the semi unification case. If 
the triggering assertions all contain only ground terms then 
the more efficient semi unification case is called; this is very 

‘Our system also supports user supplied procedural condi- 
tion elements. If such a node’s parent is semi-unification only 
and it introduces no new logic variables, then the node itself is 
semi-unification only. 

frequently the case. The system’s performance gracefully 
degrades as universally quantified assertions are entered in 
the database. 

Also we have shown that when extra information is con- 
veyed to the system at compile time, we can avoid generat- 
ing the bulkier code for the general case. Furthermore, we 
have indicated that in many practical cases, this a priori 
information is obtainable. 

eferences 
PI 

PI 

PI 

PI 

PI 

bl 

VI 

PI 

C. Forgy. Rete: A fast algorithm for the many pat- 
tern/many object pattern match problem. Ar-tificiul 
Intelligence, 19117-38, 1982. 

C.E. Hewitt. Description and theoretical analysis (us- 
ing schemata) of planner: A language for proving the- 
orems and manipulating models in a robot. Technical 
Report AI-TR-258, MIT Artificial Intelligence Labora- 
tory, 1972. 

G.J. McDermott, D.V.and Sussman. The conniver ref- 
erence manual. Technical Report Memo 259, MIT Ar- 
tificial Intelligence Laboratory, 1972. 
Daniel P. Miranker. TREAT: A New and Eficient 
Match Algorithm for AI Production Systems. Morgan 
Kaufmann, San Mateo, California, 1990. 

S. Rowley, H. Shrobe, R. Cassels, and W. Hamscher. 
Joshua: Uniform access to heterogeneous knowledge 
structures (or why joshing is better than conniving or 
planning). In National Conference on Artificial Intel- 
ligence, pages 48-52. AAAI, 1987. 

G.J. Sussman and D.V. McDermott. Why conniving 
is better than planning. Technical Report AI Memo 
255A, MIT Artificial Intelligence Laboratory, Cam- 
bridge Mass., 1972. 

G.J. Sussman, T. Winograd, and E. Charniak. The 
micro-planner reference manual. Technical Report 
AI Memo 203, MIT Artificial Intelligence Laboratory, 
Cambridge, MA, 1970. 
D.H.D Warren. An abstract prolog instruction set. 
Technical Report SRI Technical Note 309, SRI Inter- 
national, October 1983. 

Rule-Based Reasoning 715 


