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Abstract 

This paper discusses the important. issue of knowl- 
edge base comprehensibility and describes a tech- 
nique for comprehensibility improvement. Com- 
prehensibility is often measured by simplicity of 
concept description. Even in the simplest form, 
however, there will be a number of different DNF 
(Disjunctive Normal Form) descriptions possible 
to represent the same concept, and each of these 
will have a different degree of comprehensibility. 
In other words, simplification does not necessarily 
guarantee improved comprehensibility. In this pa- 
per, the authors introduce three new comprehen- 
sibility criteria, similarity, continuity, and confor- 
mity, for use with tabular knowledge bases. In 
addition, they propose an algorithm to convert 
a decision table with poor comprehensibility to 
one with high comprehensibility, while preserv- 
ing logical equivalency. In experiments, the algo- 
rithm generated either the same or similar tables 
to those generated by humans. 

Introduction 
Two major requirements for knowledge base are that 
it contain only correct knowledge and that it, be com- 
prehensible. Several techniques have been reported re- 
garding the verification of correct,ness, including the 
completeness and consistency checking [Cragun 1987, 
Nguyen et al. 19851. However, little work has been re- 
ported concerning the maintenance or improvement of 
comprehensibility. 

Comprehensibility is critical, because it strongly af- 
fects efficiency of construction and maintenance of 
knowledge bases. However, the actual work of modify- 
ing knowledge descriptions so as to improve the com- 
prehensibility can prove to be a serious burden for 
the knowledge engineers who must manage knowledge 
bases. Purpose of this research is to automate such 
tasks. 

In past work [Michalski, Carbonell, & Michell 1983, 
Coulon & Kayser 19781, the one and only method to 
improve the comprehensibility of a knowledge base was 
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to simplify the concept descriptions in it. Even in the 
simplest form, however, there will be a number of dif- 
ferent DNF descriptions possible to represent the same 
concept, and each of these will have a different degree 
of comprehensibility. In other words, simplification 
does not necessarily guarantee improved comprehen- 
sibility. 

Let us compare the following two logic functions of 
attribute-value: 

[Sex Male] V [Sex Female] A [Pregnant? No] 
--+ CanDrinkAlcohol 

[Pregnant? No] V [Pregnant? Yes] A [Sex Mate] 
+ CanDrink-Alcohol 

While these are logically equivalent and have the 
same simplicity, their concept function forms, that 
is formalized by the combination of attribute values, 
conjunctions (A) and disjunctions (V), are different. 
The second description is incomprehensible, because 
it describes a case that never happens: 
Yes] A [Sex Male]. 

[Pregnant P 

In this paper, the authors propose three additional 
comprehensibility criteria for use in concept function 
forms on decision tables: similarity among concept 
functions, continuity in attributes which have ordinal 
values, and conformity between concept functions and 
real cases. The first criterion is developed on the ba- 
sis of an analysis of decision table characteristics. The 
others are developed on the basis of consideration of 
meaning embodied in expressions of knowledge. 

In addition, the authors describe an algorithm to 
convert a decision table with poor comprehensibil- 
ity to one with high comprehensibility, while preserv- 
ing logical equivalency. This conversion is accom- 
plished by using MINI-like logic minimization tech- 
niques [Hong, Cain, & Ostapko 19741, and it involves 
as well the use of a number of different heuristics. 

Decision Table 
With regard to knowledge acquisition, completeness 
checking, and concept comparison, decision tables offer 
advantages over other methods of knowledge represen- 
tation (e.g. production rules and decision trees, etc.) 
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Table 1: Comprehensible expression for bond selection. Table 2: Incomprehensible expression for bond selection. 
Materla.. Usage Hondmg-area 

Paper Lea- Plas- Nor- indus- Large Small 
ther tic ma1 trial ther tic ma1 trial 

[Cragun 1987, Koseki, Nakakuki, SC Tanaka 19911. 
A decision table represents a set of concept func- 

tions, expressed in DNF. This construct enables the 
handling of disjunctive concepts which have multiple- 
value attributes. Each concept function consists of a 
number of disjuncts, called cubes. Each cube consists 
of a set of values for an attribute. The union of the 
vertices in logic space, covered by concept function, is 
called a cozier for the concept. 

An example knowledge base is shown in Table 1. 
Here, each row forms a cube, and a set of cubes for the 
same concept name forms a a concept function. For 
example, the concept function for Bond-B consists of 
three cubes, and each cube consists of t.hree attributes. 
In a cube, the values specified by the circle (0) in an 
attribute are ORed, and all attributes are ANDecl to 
form the cube. Don’t-Care attributes are designated as 
an attribute with all OS. A min-term is a cube which 
has only one 0 in every attribute. 

The decision table facilitates the comparison of dif- 
ferent concepts, due to the following reason. Concept 
comparison means comparing the values of all the at- 
tributes which define concepts. In this context, the 
decision tables, in which description of the same at- 
tribute is represented in the same columns and con- 
cepts are represented by all attributes, can facilitate 
concept comparison. In other knowledge represent a- 
tions, for example in the production rules, the same 
attribute name appears in various positions of each 
rule, and concepts are represented only by attributes 
that are necessary to define concepts. This disturbs 
easy comparison of attribute values. 

This advantage is critical for the knowledge base con- 
structions, because, in the classification problems, it is 
essential to compare and to classify the concepts which 
have the same cover. 

Comprehensibility Criteria 
This section presents four criteria for knowledge base 
comprehensibility. One is simplicity of concept de- 
scription, which is the conventional criterion. The 
other three are concerned with concept function forms. 
Three new criteria are a reflection of the great influence 
of the concept function forms on its comprehensibility. 

Next, compare Bond-B with Bond-C. In the third 
cube (Bond-B) and the fifth cube (Bond-C) in Table 1, 
descriptions of attributes Usage and Bonding-area are 
the same; only those of attribute Material are differ- 
ent. This makes it easy to see that these two concepts 
are discriminated by attribute Material. On the other 
hand, in Table 2, descriptions of most of the attributes 
are different, making the common and different fea- 
tures unclear. 

The second criteria employs general rules to facili- Overall, comprehensibility of Table 1 arises from the 
tate the comparison of different concepts, whereas the high similarity among the concept function forms: the 

last two require some background knowledge, which is 
characteristics of attributes and their values. 

Table Size 

Preference criteria for human comprehensibility are 
commonly based on the knowledge description length 
(for example, [Michalski, Carbonell, St Michell 1983, 
Coulon & Iiayser 19781). Some inductive learn- 
ing algorithms [Michalski, Carbonell, & Michell 1983, 
Quinlan 19861 reduce the knowledge base size to ob- 
tain simple knowledge expressions. 

As the conventional criteria, the aut,hors define ta- 
ble size as one of the comprehensibility factors. Since 
the number of attributes to define concepts is fixed in 
the decision tables, table size can be measured by the 
number of cubes. 

Similarity among CJoncept Functions 

When comparing different concepts, it is desirable to 
be able to easily ascert,ain common and different fea- 
tures in each concept. This requires high similarity 
among concept functions. 

Table 1 and Table 2 are example knowledge bases for 
a bond selection problem. They have the same cover 
and the same table size, but their concept function 
forms (cube shapes) are different. In this example, 
Table 1 is better than Table 2, for the following reasons. 

First, compare Bond-B with Bond-A. -In the first, 
cube (Bond-A) and the second cube (Bond-B) in Ta- 
ble 1, their forms are exactly the same. Using Ta- 
ble 1, the intersection of the two concepts in logic 
space can be determined by looking at just two cubes, 
whereas, using Table 2, this would require considering 
four cubes. 
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Table 3: Comprehensible expression for Scholarship 
Approval. 

School- Student Parent-income 
record earn? (ten thousand dollars) 

tiood l’oor Yes No -6 6- ( i-8 8- 

Approved 0 xxo~ooo 

Approved 0 x0x000x 
Approved X oxoooxx 
Approved X 0 0 x 0 x x x- 

! 

Not-approved 0 xoxxx x 0 

Not-approved X oxoxxoo 

Not-approved X 0 0 x x 0 0 0‘ 

first and the second cubes and the third and the fifth 
cubes. 

Continuity in Attributes which have 
Ordinal Values 
In many knowledge bases, attributes with ordinal val- 
ues are expressed by a range of values (for example, 
material which is harder than aluminum should be 
shaped by grinder-A). Therefore, high continuity of OS 
in such attributes leads to high comprehensibility. 

Two example knowledge bases for a scholarship ap- 
proval are shown in Table 3 and Table 4, which have 
the same cover and the same table size. Values of the 
attribute Parent-income are ordinal values. 

These examples implicitly epbody the meaning that 
students whose parent income is low are granted schol- 
arship, which can be seen clearly in Table 3. By con- 
trast, the first cube in Table 4 shows that some stu- 
dents are granted scholarships, if the parent income is 
less than $60,000 or more than $80,000. This gives 
the initial impression that anyone with an income of 
$60,000-80,000 can not be approved. By examining 
other cubes this can be seen to be false, but this is 
time-consuming; Table 3 is preferable to Table 4. 

Conformity between Concept Functions 
and Real Cases 
In some knowledge bases, there is a dependency re- 
lationship between the attributes, which the authors 
can divide into precondition and constrained attributes. 
Whether the constrained attribute relates to concept 
definition or not depends on the values of the precondi- 
tion attribute. In such a situation, the positions of the 
Don’t-Cares are critical, because cases that never hap- 
pen in the real world may be described in knowledge 
bases. 

Other knowledge bases relating to an earned credit 
at a university are shown in Table 5 and Table 6; they 
have the same cover and the same table size. These ex- 
amples implicitly embody the meaning that only stu- 
dents who failed the first exam are eligible to take 
the makeup exam. There exists an attribute depen- 
dency relationship consisting of the precondition at- 

Table 4: Incomprehensible expression for Scholarship 
Approval. 

t 
School- Student Parent-income 
record earn? (ten thousand dollars) 

Good1 Poor Yes 1 No -6 1 6-‘/ 1 ’ L- 8 1 8- 

Not-approved X 000x x 0 0 
Not-approved X ooxxo x x 

tribute Exam and the constrained attribute Makeup- 
exam: taking the makeup exam depends on the result 
of the exam. 

In this example, Table 5 is more comprehensible 
than Table 6, because of the conformity bet,ween con- 
cept functions and the real cases. In the first cube in 
Table 6, a case that never happens is described: an 
examination result is not less than 60 points and the 
makeup examination result is less t,han 80 points. Ta- 
ble 5, however, represents only the real cases. 

In general, the precondition attributes should not 
be Don’t,-Cares, if the constrained attributes are not 
Don’t-Cares. 

Table 5: Comprehensible expression 
for Credit Earning. 

Lxam Makeup-exam 
>BU <tju >8U <8U - - 

Pass 0 X 0 0 
Pass X 0 0 X 

Fail X 0 X 0 

Table 6: Incomprehensible expression 
for Credit Earning. 

Exam Makeup-exam 
>BU <6U >8U <8U - - 

Pass 0 X X 0 
Pass 0 0 0 X 

Fail X 0 X 0 

Algorithm 
Figure 1 shows an algorithm to improve t.he compre- 
hensibility of a decision table. It convert)s a table with 
poor comprehensibility to one with high comprehensi- 
bility, while preserving logical equivalency. 

Table conversion is accomplished by the tech- 
niques used in logic minimization algorithm MINI: 
disjoint sharp operation, Expansion, and Reduction 
[Hong, Cain, & Ostapko 19741. In these operations, 
attributes are required to be ordered, and this order 
affects concept function forms in a resultant, table. The 
proposed algorithm first determines the attribute or- 
der a, where cr is a list of attributes that specifies the 
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I Notation 

i 
4 
5 
6 

ii 
9 

10 

attribute (1 5 i 5 n) 
list of the cubes for jth concept (1 5 j 5 m) 
precondition attribute on attribute dependence relationship 
constrained attribute on attribute dependence relationship 
set of attributes which have ordinal values 

begin 
/* Determination of attribute order */ 

Calculate n; (1 5 i 2 n) by (U @ (U @C,)) with attribute order (a;, a 
L;,tl t list of a; E S sorted in Increasing order of n; 
List2 t list of ai 4 S sorted in increasing order of ni 
0 i- connect L;,t2 after List1 
for all (p, q) do 

if q is placed after p on o 
then d t list which q is moved to previous position of p 
endif 

endfor 
/* Modification of concept functions */ 

for Cj(1 5 j < m) do 
Cj + (U @ (U @ Cj)) with o 

endfor 
Expand and Reduce the cubes with CT 

Figure 1: Algorithm for improving comprehensibility. 

order, by some heuristics (in Lines 2-10, Fig. l), and 
next modifies the concept function forms by MINI’s 
techniques (in Lines 11-14, Fig. 1). 

The main difference between MINI and the proposed 
algorithm is heuristics to determine the attribute order 
in each algorithm. While the heuristics in MINI al- 
gorithm are mainly for reducing t,he number of cubes, 
those in the proposed algorithm are for improving com- 
prehensibility. 

For the explanation of heuristics here, consider a de- 
cision table constructed solely by min-terms like Ta- 
ble 7. The heuristics for attribute order 0 is due to the 
three out of four comprehensibility criteria: 

1. Table size. 
A small-size table can be obtained by merging as 
many min-terms as possible. The algorithm pre- 
scans t,he table and examines the merging ability of 
each attribute, measured by n;, where the number of 
cubes after merging min-terms for all concepts only 
on attribute a;. For example, ‘T?Bonding--area = 7, as 
shown in Table 8. Also, nn/laterial = 10, nusage = 8. 
Att.ributes are ordered in increasing order of ni (in 
Lines 2-4, Fig. 1). The algorithm merges the cubes, 
one atkibute at a time, in this order. In other words, 
first the cubes are merged on attribut,e with high 
merging ability and last on attribute with low ability. 
Table 1 is generated by merging the cubes in Table 7 
with the 0 = (Bonding-area, Usage, Material). 

2. Continuity in attributes which have ordinal 
values. 
Attributes with ordinal values are placed at the be- 
ginning of cr (in Line 5, Fig. 1). Cubes are first 

merged on those attributes, generating the maxi- 
mum number of OS in those attributes. As a re- 
sult, high continuit#y of OS in those attributes can 
be achieved. 

3. Conformity between concept functions and 
real cases. 
Attribute order is changed so that the constrained 
attribute is placed before the precondition atetribute 
(in Lines 6-10, Fig. 1). This change prevents 
Don’t-Cares being generated in the precondition at- 
tribute, because cubes are merged on the constrained 
attribute before considering the precondition at- 
tribute. In the example of knowledge bases for credit 
earning, Table 5 and Table 6 are generated by c = 
(Makeup-exam, Exam.) and CT = (Exam., Makeup- 
exam,), respectively. 

After determining the attribute order 0, concept 
function forms are modified. In the modificat,ion, t,o 
achieve high Similarity among concept functions, other 
heuristics are applied. 

4. Similarity among concept functions. 
High similarity can be achieved, when cubes for 
many concepts are merged on the same attributes. 
The algorithm merges the cubes in the same order 
of attributes for all concepts. 
If, in the early stage of merging, cubes are merged 
on the attributes, in which the cubes only for the 
specific concepts can be merged, then similarit,y be- 
comes low. In Table 7, if first merged 011 Material, 
cubes mainly for concept Bond-B can be merged. 
Attribute order CT = (Material, Usage, Bonding- 
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Area) leads to Table 2, whose similarity is low. How- 
ever, it is expected that such merging would be pre- 
vented, because the cubes are first merged on the 
attributes which many cubes can be merged (See 
1.). 

If all cubes in the given table were converted 
to min-terms for the pre-scan and the modification, 
the algorithm would take exponential time. To re- 
duce this to a modest amount of computational 
time, it uses disjoint sharp operation F @ G, where 
F and G are lists of cubes (details are shown in 
[Hong, Cain, & Ostapko 19741). 

In the modification, the following feature of the 
@ operation is utilized: U @ G with g generates more 
OS in the attribute placed in the earlier position of 
a, where U is universe. This operation can generate 
almost the same concept function forms, as merging 
min-terms in the attribute order IT. However, since the 
order of the cubes in Cj affects the number of cubes 
generated by U @ Cj, the generated table may be re- 
dundant. To reduce the table size, cubes are Expanded 
and Reduced, using the (T order (in Line 14, Fig. 1). 

Table 7: Table constructed only by min-terms. 
Material 1 Usage IBonding-area 1 

Paper I Lea- 1 k’las-1 Nor- I lndus- I Large I 5mail 
ther tic ma1 trial I 

- 
- 

Bond-C X x 0 0 x 0 X 

Bond-C X x 0 0 x X 0 

Table 8: Table after merging min-terms on 
attribute Bonding-area. 
Material Usage Bonding-area 

Paper Lea- Plas- Nor- Indus- Large Small 
ther tic ma1 trial 

Experimental Results 
To evaluate concept function forms generated by the 
proposed algorithm, the authors experimented on 11 
real knowledge bases. In addition, they evaluated table 
size and computational time, using 1 real knowledge 
base and 24 artificial ones, which are quite large. 

Concept Function forms 
The proposed algorithm is based on MINI. However, 
MINI’s goal is logic minimization, not knowledge base 
modification, and the knowledge bases minimized by 
MINI are incomprehensible. 

To confirm the comprehensibility of the generated 
table, the authors experimented on 11 reaJ knowledge 
bases, which have 3-7 attributes, 5-20 cubes, 2-6 con- 
cepts, and 6-20 columns. Four examples contain at- 
tributes with ordinal values and attribute dependency 
relationships. 

Comprehensibility is evaluated by comparing the 
concept function forms modified by a human with 
those modified by the algorithm. In seven examples, 
concept functions produced by the algorithm exact,ly 
corresponded to those produced by a human. In the 
other four examples, results were different, but they 
were comprehensible to humans. 

This difference is mainly due to the limitation in the 
algorithm: it can only generate cubes which are mu- 
tually disjoint. Moreover, the difference might partly 
be attributed to the heuristics for det,ermining the at- 
tribute order. If the calculated rzi values were equal 
in some attributes, the algorithm would determine the 
order arbitrarily; it is not guaranteed that expected 
concept functions are obtained. This situation was ob- 
served in two knowledge bases. 

Table Size 
Experimental results on 24 artificial knowledge bases 
showed that the algorithm performs logic minimization 
well. These knowledge bases have 1 concept, 10 cubes, 
30 attributes, and 120 columns. 

In 21 knowledge bases, size of the generated tables 
were exactly the same as that by MINI. However, in 
the other three knowledge bases, MINI was able to 
generate one or two cubes less than the proposed al- 
gorithm. This arises from another limitation in the 
algorithm: Don’t-Cares are collected in the specific at- 
tributes, placed in the early position of cr. 

The algorithm was also evaluated on a real knowl- 
edge base for a grinder selection problem, which has 
158 concepts, 1023 cubes, 16 attributes, and 222 
columns. In this experiment, the proposed algorithm 
generated the same number of cubes as MINI. 

Computational Time 
Pre-scan and modification of a table are based on the 
disjoint sharp operation. However, it is difficult to es- 
timate the exact cost for the disjoint sharp operation. 
This is because the cost depends on the concept cover, 
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the attributes order, and the cube order in the right- 
side cube list of the @. 

To confirm the feasibility of the algorithm, the au- 
thors experimented on 24 artificial knowledge bases, 
described in the previous subsection, with a 33 MIPS 
work-station. The tables were generated in 210 seconds 
on an average , which is about 50 % of MINI. 

The authors also experimented on a real knowledge 
base for the grinder selection problem. The resultant 
table can be obtained in 90 seconds (80 seconds by 
MINI). This time is not too long and actually much 
shorter than the time required for modification by a 
knowledge engineer. 

Related Work 
Inductive learning algorithms, like ID3 [Quinlan 19861, 
can also improve the comprehensibility of concept func- 
tions. However, the produced concept functions are 
often incomprehensible, because of the lack of back- 
ground knowledge and the comprehensibility criteria; 
they only use the description length criteria implicitly. 
From another viewpoint, most induction algorithms 
generate decision trees, not decision tables. Generated 
decision trees may have a minimum number of nodes 
and leaves. However, this does not mean a minimum 
number of cubes. 

EG2 [NziGez 19911 uses background knowledge, 
which is IS-A hierarchy of values, to simplify the deci- 
sion tree and to obtain a more comprehensible knowl- 
edge expression. However, EG2 requires much back- 
ground knowledge for such simplification. In the pro- 
posed algorithm, the only background knowledge re- 
quired concerns the attribute dependency relationships 
and the orderings of ordinal attribute values. 

The orderings of the ordinal attribute values is used 
in INDUCE [Michalski, Carbonell, & Michell 19831 to 
generalize concepts. The proposed algorithm does not 
generalize the concepts, but produces the logically- 
equivalent concept functions to those described by 
knowledge engineers. 

Conclusion 
This paper presented new comprehensibility crite- 
ria regarding concept function forms, and an al- 
gorithm for automatically producing comprehensi- 
ble forms of concept functions. This algorithm is 
implemented on an expert-system shell DT, which 
handles classification problems on the decision table 
[Koseki, Nakakuki, & Tanaka 19911; its usefulness has 
been demonstrated in several real problems. Since the 
concept functions on decision table format can be eas- 
ily converted to the one on production rule format, 
this algorithm can be applied to the knowledge bases 
constructed by production rules. 

The new criteria are general ones, which can be ap- 
plied to many knowledge bases. However, comprehen- 
sibility criteria differ according to people and domains, 
and generated tables may not correspond exactly to 

the tables expected by knowledge engineers. This dis- 
agreement, however, can be overcome by a knowledge 
editor on DT. 
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