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Abstract 

In this paper, we present a method for improving 
search efficiency in the area of Constraint- 
Satisfaction-Problems in finite domains. This method 
is based on the analysis of the “micro-structure” of a 
CSP. We call micro-structure of a CSP, the graph 
defined by the compatible relations between variable- 
value pairs: vertices are these pairs, and edges are 
defined by pairs of compatible vertices. Given the 
micro-structure of a CSP, we can realize a pre- 
processing to simplify the problem with a 
decomposition of the domains of variables. So, we 
propose a new approach to problem decomposition in 
the field of CSPs, well adjusted in cases such as 
classical decomposition methods are without interest 
(i.e. when the constraint graph is complete). The 
method is described in the paper and a complexity 
analysis is presented, given theoretical justifications 
of the approach. Furthermore, two polynomial classes 
of CSPs are induced by this approach, the recognition 
of them being linear in the size of the instance of 
CSP considered. 

Introduction 

Constraint-satisfaction problems (CSPs) involve the 
assignment of values to variables which are subject to a 
set of constraints. Examples of CSPs are map coloring, 
conjunctive queries in a relational databases, line drawings 
understanding, pattern matching in production rules 
systems, combinatorial puzzles.. . 

In the general case, finding a solution or testing if a 
CSP admits a solution is a NP-complete problem. A well 
known method for solving CSP is the Backtrack 
procedure. If n is the number of variables, d the size of the 
domains of variables, and m the number of constraints, the 
complexity of this procedure is O(m.#). A better bound is 
given using decomposition methods as tree-clustering 
(Dechter & Pearl 1989) or cycle-cutset method (Dechter 
1990). The complexity is then of the order of dK, K being 
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a parameter function of the structure of the CSP (the 
constraint graph). If the constraint network is a complete 
graph, then K = n. The decomposition methods are based 
on the structure of the CSP, i.e. the structure of the 
constraint graph. 

In this paper, we present a decomposition method based 
on the “micro-structure” of the CSP. We call micro- 
structure of a CSP, the graph defined by the compatible 
relations between variable-value pairs: vertices are these 
pairs, and edges are defined by pairs of compatible vertices 
(compatible values). Given the graph associated to the 
micro-structure of a CSP, the problem of finding a 
solution to the CSP is equivalent to the problem of 
finding a n-clique (a set of vertices that induces a complete 
subgraph with these n vertices) in the micro-structure. 
Considering this property, we use triangulation of graphs 
(Kjzrulff 1990) and clustering of values driven by 
maximal cliques in the micro-structure to decompose the 
micro-structure associated to the CSP 3, to solve. This 
approach is motivated by the good algorithmic properties 
of triangulated graph, particularly to find maximal cliques. 
Every maximal clique induces a domains decomposition, 
and so, generates a collection of problems 5i’ 1, 9 2,. . . 
Pp, equivalent to the initial problem 9. Each problem 
Pi, corresponds to a sub-problem of 9 with a size of 
domains equal to Si, with the inequality Si Id. So the 
complexity of solving 9, is now the sum of the 
complexities O(m.Sin), for i = I, 2,... p. The complexity 
of the decomposition is linear in the size of the problem 
P, and the number of new sub-problems is at most linear 
in the size of 9. The quality of the decomposition is 
related to the value of each &: more the value Si is small, 
more the decomposition is good. For example, if 6i = 1 or 
2, the complexity of the problem Pi is now polynomial. 

The second section introduces some preliminaries about 
CSPs while the third section defines formally the micro- 
structure. The method of domains decomposition is 
presented in the next section. This is followed by a 
theoretical analysis of the method, concerning a 
complexity analysis, and showing some polynomial 
classes of problems associated to the method. 
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Preliminaries 

A finite CSP (Constraint Satisfaction Problem) is defined 
as a set X of n variables XI, X2,... Xn, a set D of finite 
domains DI, Dz,... Dn, and a set C of M constraints Cl, 
C2,...Cm. A constraint Ci is defined on a set of variables 
(Xil,..,XGi> by a subset of the Cartesian product DilX... 
DQi; we note this subset Ri (Ri specifies which values of 
the variables are compatible with each other). R is the set 
of all Ri, for i=l...m. So, we denote a CSP 9 = 
(X,D,C,R). A solution is an assignment of value to all 
variables which satisfies all the constraints. For a CSP ‘3, 
the hypergraph (X,C) is called the constraint hypergraph. 
A binary CSP is one in which all the constraints are 
binary, i.e. they involve only pairs of variables, so (X,C) 
is then a graph (called constraint graph) associated to 
(X,D,C,R). This paper deals only with binary CSPs. To 
simplify notations for binary CSPs, a constraint between 
variables Xi and Xj is denoted C’ij, and the associated 
relation Rij. For a given CSP, the problem is either to 
find all solutions or one solution, or to know if there 
exists any solution; the last problem is known to be NP- 
complete. 
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Figure 1. Binary CSP with complete constraint graph. 

CSPs are normally solved by different versions of 
backtrack search. In this case, if d is the size of domains 
(maximum number of values in domains Di), the 
theoretical time complexity of search is then O(m.dn). 
Consequently, many works try to improve the search 
efficiency. They mainly deal with binary CSPs. In 
(Freuder 1982), Freuder, considering the problem of 
finding one solution, gives a preprocessing procedure for 
selecting a good variable ordering prior to running the 
search. One of his main results is a sufficient condition for 
backtrack-free search. This condition concerns on one hand 
a structural property of the constraint graph, and on the 
other hand a local consistencies. After (Freuder 1982), 
Dechter and Pearl (Dechter and Pearl 1988) give two 
classes of polynomially solvable CSPs. For example, 
they define a property: if a binary CSP is arc-consistent, 
and if its constraint graph is acyclic, then the CSP admits 
a solution and there is a backtrack-free search order. This 
property holds for n-ary CSPs with hypergraphs (Janssen 
et al 1989). - 

Some methods use decomposition techniques based on 
structural properties of the CSP. These methods exploit 
the fact that the tractability of CSPs is intimately 
connected to the topological structure of their underlying 
constraint graphs. Moreover, these methods give an upper 

bound to the complexity of the problem, therefore, an 
upper bound to the search. The adove property gives the 
goal of the transformation: given a CSP, the result must 
be an other CSP, equivalent to the first one, whose the 
structure is a tree. Two methods are based on this 
principle: the cycle-cutset method (Decther 1990) and tree- 
clustering scheme (Decther & Pearl 1989). 

The cycle-cutset method (CCM) is based on the notion 
of cycle-cutset. The cycle-cutset of a graph, is a set of 
vertices such as the deletion of these vertices induces an 
acyclic graph. CCM is based on the fact that variables 
assignments changes the effective connectivity of the 
constraint graph. So, as soon as all the variables of the 
cycle-cutset are assigned, all the cycles of the constraint 
graph are cut. Therefore, the resulting problem is tree- 
structured and Freuder’s theorem (Freuder 1982) can be 
applied to solve it. A property summarizes the method: if 
all the variables belonging to the cycle-cutset are 
instantiated, and if the resulting CSP is arc-consistent, 
then the problem admits solutions and a backtrack-free 
order. So, searching a solution, we can consider that the 
size of cycle-cutset corresponds to the height of the 
backtracking. More precisely, if K is the size of the cycle- 
cutset, the complexity of CCM is O(m.dK+2). 

Tree-clustering (TC) consists in forming clusters of 
variables such as the interactions between the clusters is 
tree structured. The hyper-edges of the induced constraint 
hypergraph are defined by the clusters of variables. The 
new CSP is equivalent to the first one, but the associated 
constraint hypergraph is acyclic. So, the property 
concerning acyclic n-ary CSPs holds for this CSP. If E is 
the size of the maximal cluster, the complexity of TC is 
then O(n.E.dE). 

If the constraint network is a complete graph, we have 
the equality E = K+2 = n. So, the complexity of 
decomposition methods is the same than for classical 
backtracking, of the order of dn. Consequently, complete 
constraint graphs (n-cliques) can be considered as hard 
instances of CSP for decomposition methods. The 
decomposition method described in this paper proposes a 
solution to handle these hard CSPs, but can also be used 
on incomplete constraints graph. It is based on a 
decomposition of the micro-structure of a CSP. 

Microstructure of GSPs 

We call micro-structure of a CSP, the graph defined by the 
compatible relations between variable-value pairs: vertices 
are these pairs, and edges are defined by pairs of 
compatible vertices. 

Definition 1. Given a binary CSP 9 = (X,D,C,R) such 
as (X,C) is a complete graph, p( 9) is called micro- 
structure of 3, and it is a n-partite graph defined by 
*XD= ((Xi,a)/XiEXandaEDi) 
* CR = ( I (Xi.a),(Xj,b) I / (XiXj) =CGE C and (a,b)E Rg) 
’ P(p) = (XDecR) 
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(x4’@ o< 3’ e) 

Figure 2. Micro-structure of the CSP given in figure 1. 

Necessary, &p) is a n-partite graph because it can not 
exist edges between vertices of a same domain. In the 
example in figure 2, we have sets {(Xl ,a),(Xl,b)) , 
((X~J),(X~JOL WQd9~Wl) and I(X4~dGdOl with 
no one edge between vertices associated to the same 
variable, i.e. a set ((Xi,@, (Xi,/?),. . . ) . 

If (X,C) is not a complete graph, i.e. there are two 
variables Xi and Xi such as the constraint Cij does not 
exist between variables Xi and Xj, p( 9) can be completed 
adding the universal relation between these variables. The 
universal relation is the relation Rg = Di x Dj (all pairs of 
values are compatible). In this paper we always consider 
CSPs with complete constraint graph. 

Given a CSP 3, = (X,D,C,R) and its micro-structure 
p(p), we can derive a basic property. 

Property 2. Given a CSP 9 = (X,D,CR) and its micro- 
structure /1( 3’) we have: 

(al 42,. . . an) is a solution of 3) 

KbaMX;!,a2),... (x,~)l * is a n-clique of p( 9) 

Proof: (al,a;Z,... an) is a solution of 9 
e Vi, j, 1 li < jln, (Ui,aj) E Rij 
W Vi, j, 1 I i < j ,< n, {(Xi,ai),(Xj,aj)] E CR 
e {(Xl ,al),. . . (Xn,an)] is a n-clique Of p.( 9) n 

We remark that a solution of 3) corresponds to a 
covering of n vertices in the constraint graph (XC): there 
is exactly one vertex (Xi,a) for each domain Di, for i = I, 
2 ,. . . n. So, solving a CSP can be considered as the 
problem of finding a n-clique in its microstructure. The 
method we present for the decomposition of domains is 
based on the topological analysis of the microstructure, 
related to the existence of n-cliques. 

Solving CSPs by domains decomposition 

We seen that solving a CSP (finding one solution) can be 
considered as the problem of finding a n-clique in its 
microstructure. This problem is known to be NP-hard 
(Karp 1972), but there are classes of graphs such as 
polynomial (linear) algorithms have been defined. The 

method we present is based on one of these classes: 
triangulated graphs. So, some definitions and properties 
must be recalled. 

Definition 3. A graph is triangulated iff every cycle of 
length at least four has a chord, i.e. an edge joining two 
non-consecutive vertices along the cycle. 

Property 4. (Fulkerson & Gross 1965) A triangulated 
graph on n vertices has at most n maximal cliques (a 
clique is maximal iff it is not included in an other clique). 

Property 5. (Gavril 1972) The problem of finding all 
maximal cliques in a triangulated graph (X,C) is in 
O(n+m) if n = /X/ and m = /C/. 

Given the micro-structure of any CSP, it is not possible 
to immediately use these properties because any micro- 
structure is not necessary a triangulated graph (eg. the 
micro-structure in the figure 2). 

Nevertheless, it is possible to use these results: given 
any graph G = (XC), it is possible to add new edges in C 
to obtain C’, such as the graph T(G) = (X,C’) is a 
triangulated graph. This addition of edges is called 
triangulation, and can be realized in a linear time in the 
size of the graph (Kjzrulff 1990). 

(x 1. a) 

(X 4’ g) 

Figure 3. Triangulation of the micro-structure of figure 2. 
Added edges are given by the dotted lines. 

After a triangulation, it is possible to apply the property 
5. We show how this approach can be used here. 

Suppose we have a CSP 3, = (X,D,C,R) and its micro- 
structure & 9) = (Xg ,CR). Consider a triangulated graph 
defined by a triangulation of (X~,CR). There are three 
classes of edges in T(XD,CR): 
a edges {(Xid),(Xj,b)) already in & 3’), i.e. (a,b) is in Rij 
9 edges ((Xip),(Xj,b)) / i f j : adding this edge corresponds 

to add the tuple (a,b) in Rij 
e edges { (Xid),(Xi,b)) : adding this edge has no semantic 

Since T(XD,CR). is a triangulated graph, we know that 
there are no more than n.d maximal cliques in this graph 
(by property 4) and that it is possible to find them with a 
linear algorithm (by property 5). Furthermore, we know 
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that if there exist solutions, anyone is in a maximal clique 
of this triangulated graph, and consequently, the search of 
solutions of Ep will be limited to the search of solutions 
on separated problems, each one associated to a maximal 
clique. 

r 
Consider Y, a maximal clique in the triangulated 
(XDCR); two possibilities must be considered: 

graph 

l Y is not a covering of all domains: there is at least one 
variable Xi of X that does not appear in the vertices (Xi,a) 
of Y. Consequently, the clique Y does not contain a n- 
clique that is a covering of all domains, and so there is no 
solution in Y. 

0 Y is a covering of all domains. Given Y, we can induce a 
new CSP,. by the projection of vertices in Y on each 
domains. So, we obtain a collection of domains DY,i such 
as DY,i C Di, each new domain DY,i being induced by 
the vertices (Xi,a) in Y. The constraints of the new CSP 
associated to Y are the old constraints, restricted to the 
values in new domains. Searching a solution can be 
realized on this new CSP. Nevertheless, the fact that Y is 
a covering of all domains does not guarantee that there is a 
solution, because the triangulation adds some new edges 
that connect vertices corresponding to incompatible 
values. 

Theoretical foundations of the method are given below. 

Definition 6. Given a binary CSP 9 =(X,D,C,R), its 

micro-structure /L( .Y)=(XD,CR), and Y a subset of Xg. 
The CSP induced by Y on 9, denoted p(Y) is defined 
by: 
l DY = {DY,l,..DY,n) such as Dy,i = {aEDi /(Xi,a)EY) 
l RY,~ = ( Ca b ) E Rij I (Xi,a ), (Xj,b ) E Y 1  

* %�I = (XDy,C☺y) 

The theorem below define the principle driving the 
domain decomposition: 

Theorem 7. Given a binary CSP 9 = (X,D,C,R), its 
micro-structure & 9) and QJ = ( YI ,. . . Yk) , the set of the 
maximal cliques of roL( 3))) , we have: 

Solutions(P) = I & Solutions( 3, (Yi)) -- 

Proof: 
9 With property 2. we know that any solution of the 
problem 3, is associated to a n-clique. So, this n-clique is 
necessary included in one set Yi because in a graph, each 
clique belongs necessary to a maximal clique of the 
considered graph. Consequently, the considered solution of 
9 is necessary a solution of P(Yi). 
a Every solution of a problem P(Yi) is a clique in pL( P) 
because all the edges of this clique are edges induced by 

compatible values in 9. Consequently, every solution of 
P(Yi) is a solution of .9. D 

We remark that a solution of 3,(Yi) can appear as a 
solution of an other 3’(Yi). In the figure 4, we present the 
applying of theorem 7 to the example. 

Maximal cliques 

YI = ((Xl,a),(X2,c),(Xq,h)) 

Y2 = {(Xl,b),(X2,c),(X3,e),(Xq,g)) 

y3 = ((x1,6),(X2,6),(X3,e),(x3f) 

Y4 = ((X;!,c),(X3,e),(Xq.h)) 

Y.5 = 1 (Xl bMX3 ,eMX3 JMX4,g) 

Decomposed domains 

Dr,,l = ia), DY,,z = Id, Dy1,3 = 0, DyI,4 = {h} 

DY~,I = @~JY,,z = kIDy2,3 = kl,Dy2,4 = {g) 

DYJ,I = @), Dy3,2 = M, Dy3,3 = {ef), Dy3,4 = 0 

DY4,1 = 09y4,2 = k),Dy4,3 = klJy4,4 = (h) 

Dy5.1 = {h Dr,,2 = 0, Dy5,3 = {ef), Dy+ = (g) 

Figure 4. Applying theorem 7 to the CSP of figure 1. The 
cliques Y,, YJ, Y, and Ys do not cover all the domains; so the 
induced sub-problem are not consistent. On the other hand, 
the cliques Yz induces a consistent sub-problem. 

Algorithm: 

1 - generation of p( ZP) 

2 - triangulation of p( .P); we obtain r@( 9)) 

3 - research of all maximal cliques in r@( 3’)); the result 
of this step is QJ = { Yl,. . . Yk) 

4 - for all Yi in Y do 
if Yi is a covering of all the domains in D 
then solve 3’(Yi) else 3) (Yi) has no solution 

The first step is realized first with an enumeration of the 
values of all the domains to obtain the vertices of p( P), 
and secondly, with an enumeration of all the compatible 
tuples of relations to obtain the edges of p( 9). If the 
problem 9 has not a complete constraint graph, it is 
possible to transform it with the addition of the universal 
constraint between non-connected variables. The second 
step can be realized using triangulation algorithms - see 
(Kjaerulff 1990). The maximal cliques can be obtained by 
the algorithm of Gavril (Gavril 1972)(Golumbic 1980). 
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The last step is first realized with the generation of the 
problem ?(Yi): it is sufficient to define new domains 
based on the vertices in Yi. Finally, solving 9 (Yi) is 
possible with a any classical method such as standard 
backtracking for example. 

Theoretical analysis 

Complexity analysis 

We first give some notations. Given 9 = (X,D,C,R) and 
its micro-structure pL( 9) = (XD,CR). 
= n is the number of variables 
0 d is the maximal number of values in domains, 

i.e. Vi, I li In, /Di/ ,<d 

0 N the number of vertices in p( 3)); N = 1 cfcnlDd 5n.d -- 
9 m is the number of constraints Two trivial polynomial classes 

0 M is the number of edges in p( 3’): h4 = 

and M < N.(N-I)/2 c n2.d2 
. p is the number of maximal cliques in r@( 9)) 

The cost of step 1 of the algorithm is 0 (N +M). 
Nevertheless, if (X,C) is not a complete graph, we have 
O(n2.d2). Triangulation step (step 2) is linear is the size 
of the resultant graph: O(N+M’), if M’ is the new set of 
edges after triangulation. Necessary, M IM’ < n2.d2. The 
cost of finding all maximal cliques in r(p( 9)) is also 
linear: O(N+M’). By property 4, we know that the number 
of maximal cliques p satisfies the inequality p IN. 

For the last step, we first evaluate the cost of solving 
one problem p<Yj); it can be bounded by: 

So, the cost of the last step, i.e. the cost of solving all 
sub-problems F(Yj), for j = I, 2, . . . p, is: 

o(m ( ' ( = /owl>)) ’ lsj<p 1liSn J, 

The comparison of this cost with respect to the cost of 
standard backtracking on the initial problem is necessary. 
The cost of backtracking on 3) is 

If we consider d = IDi/ and 6 = lDYj,d, for i = I, 2,.. . n 
and j = I, 2,. . . p, the comparison between standard 
backtracking and domains decomposition is now 

or 
m.d* VS m.p.Sn 

dn VS p.6” 

We know that p is bounded by n.d (cf. property 4). So 
we give comparison of exponential terms, dn and 6n. 
Suppose that the decomposition induces a simplification 
of domains, such as we have for example d = 2.6. The 
comparison is now 

dn VS $ .dn 

because p.Sn = p.(d/2)n = p.(l/2)n.dn I [n.d.(l/2)n].dn. 

Consequently, the decomposition can be very interesting 
on the instances of problems such as these kind of 
hypothesis on d and 6 hold, i.e. for the problems such as 
we have [n.d.(l/2)n] <<I. 

CSBs with triangulated micro-structures. A first 
polynomial class induced by the domains decomposition is 
naturally the class of CSPs such as their micro-structure is 
already triangulated: 

Property 8. Let 3, be a CSP, and its micro-structure 
p( 9). If p( 9) is a triangulated graph, then the number of 
solutions of 9 is linear in the size of 3, and there is a 
linear algorithm to find all solutions. 

Proof. Applying the algorithm, the first step is linear in 
the size of 9. The second step does not add new edges in 
the micro-structure JL( 9) because /.L( 9) is already 
triangulated graph. The number of maximal cliques is 
linear in the size of M 9), and in the size of 9. Finding 
all these maximal cliques Yl, Yz,... Yp, is linear in the 
size of P . Finally, all the induced sub-problems Y(Y$ 
have at most one value in all the domains DYj,i, for j = 1, 
2,. . . p and i = I, 2,. . . n. Consequently, a search for any 
solution will be linear in the number of variables, that is 
exactly in O(m). 0 

The interest of this polynomial class is principally that 
checking for the adherence to it will be linear in the size of 
any checked instance. 

CSPs such as the triangulation of their micro- 
structures induces domains of size 1 or 2. W e 
now consider the class of CSPs 3, such as the 
triangulation of their micro-structure p(3)) connects at 
most two values belonging to the same domain in every 
obtained maximal cliques. 

Property 9. Let 9 be a CSP, and its micro-structure 
HP). If in r(p( 9 )) there is at most one new edge 
((Xi,a),(Xi,b)) per domain Di in every new maximal 
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cliques then, there is a polynomial algorithm to solve 3, 
(searching for one solution). 

Proof. After applying the algorithm for tiangulation of 
the micro-structure M3)), the size of domains in all the 
induced sub-problems P( Yj) is at most two. 
Consequently, all induced sub-problems can be solved 
applying the result given in (Dechter 1992). One corollary 
of this theorem deals for binary CSPs with bivalent 
domains, and provides a polynomial method to solve this 
class of CSPs. R 

For the same reasons than for the first polynomial class, 
the interest of this class is also that checking for the 
adherence will be linear in the size of any checked 
instance. Moreover, one can observe that the fist class is 
a subclass of the second: already triangulated graphs are 
graphs such as their triangulation do not add any edge, and 
consequently, the size of domains induces by maximal 
cliques is so necessary equal to 1. 

Conchsion 

We proposed a new method to reduce domains in 
constraint satisfaction problems. This method is based on 
the analysis of the micro-structure of CSP, i.e. the 
structure of the relations between compatibles values of 
the domains. Given the micro-structure of a CSP, we 
present a scheme to decompose domains of variables, 
forming a set of sub-problems such as they have necessary 
less values than domains in the initial problem. This 
decomposition is driven by combinatorial properties of 
triangulated graphs. The complexity analysis of the 

. method shown the theoretical advantages of the approach. 
Indeed, given a CSP p, if d is the size of domains of the 
n variables, and if this problem is defined on m 
constraints, the complexity of any search like standard 
backtracking, is O(m.dn). We shown that the method 
induces the complexity O(m.p. 6n) with p being the 
number of induced sub-problems - p is necessary linear 
in the size of the problem 9 - and 6 is the size of new 
domains, always satisfying 6 5 d. Furthermore, two 
polynomial classes of CSPs has been defined, the 
recognition of their elements being linear in the size of 
instances. Nevertheless, an experimental analysis must 
now be realized to see practical interest of the approach. 

The decomposition method is at present only defined on 
binary CSPs. Nevertheless, an extension to n-ary CSPs is 
possible. A way to realize this extension consists in using 
primal constraint graph. Suppose we have a n-ary CSP 
with a constraint Cl between three variables; that is Cl = 
(Xi,Xj,XkJ. To generate the microstructure, we consider 
three binary constraints: Cu, Cik and C’jk. The associated 
relations are R@ = Rl[(Xi,Xj)I, Rik = Rl[(Xi,Xk)J and Rjk 
= Rl[(Xj,Xk)I. This primal representation is not equivalent 
to the initial n-ary CSP because the new problem is less 

constrained. But it is sufficient to realize domains 
decomposition, since the constraints finally considered to 
solve the initial CSP will be the initial n-ary constraints, 
with possibly, smallest domains. 
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