
Depth-First vs. est-First Search: New Results *

Weixiong Zhang and Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024

zhang@cs.ucla.edu, korf@cs.ucla.edu

ABSTRACT

Best-first search (BFS) expands the fewest
nodes among all admissible algorithms us-
ing the same cost function, but typically re-
quires exponential space. Depth-first search
needs space only linear in the maximumsearch
depth, but expands more nodes than BFS. Us-
ing a random tree, we analytically show that
the expected number of nodes expanded by
depth-first branch-and-bound (DFBnB) is no
more than O(d s N), where d is the goal depth
and N is the expected number of nodes ex-
panded by BFS. We also show that DFBnB
is asymptotically optimal when BFS runs in
exponential time. We then consider how to
select a linear-space search algorithm, from
among DFBnB, iterative-deepening (ID) and
recursive best first search (RBFS). Our exper-
imental results indicate that DFBnB is prefer-
able on problems that can be represented by
bounded-depth trees and require exponential
computation; and RBFS should be applied
to problems that cannot be represented by
bounded-depth trees, or problems that can be
solved in polynomial time.

1 Introduction and Overview

A major factor affecting the applicability of a search
algorithm is its memory requirement. If a problem
is small, and the available memory is large enough,
then best-first search (BFS) may be used. BFS main-
tains a partially expanded search graph, and expands a
minimum-cost frontier node at each cycle until an opti-
mal goal node is chosen for expansion. One important
property of BFS is that it expands the minimum num-
ber of nodes among all admissible algorithms using the
same cost function [2]. H owever, it typically requires

*This research was supported by NSF Grant No. IRI-
9119825, a grant from Rockwell International, and a GTE
fellowship.

exponential space, making it impractical for most ap-
plications.

Practical algorithms use space that is only linear
in the maximum search depth. Linear-space algo-
rithms include depth-first branch-and-bound (DFBnB),
iterative-deepening [4], and recursive best-first search
[6, 71. DFBnB starts with an upper bound on the cost
of an optimal goal, and then searches the entire state
space in a depth-first fashion. Whenever a new solution
is found whose cost is less than the best one found so far,
the upper bound is revised to the cost of this new solu-
tion. Whenever a partial solution is encountered whose
cost is greater than or equal to the current upper bound,
it is pruned. DFBnB expands more nodes than BFS.
In particular, when the cost function is monotonic, in
the sense that the cost of a child is always greater than
or equal to the cost of its parent, DFBnB may expand
nodes whose costs are greater than the optimal goal
cost, none of which are explored by BFS.

To avoid expanding nodes that are not visited by BFS,
iterative-deepening (ID) [4] may be adopted. It runs
a series of depth-first iterations, each bounded by a
cost threshold. In each iteration, a branch is eliminated
when the cost of a node on that path exceeds the cost
threshold for that iteration. When the cost function
is not monotonic, however, ID may not expand newly
visited nodes in best-first order.

In this case, recursive best-first search (RBFS) [6, 73
may be applied, which always expands unexplored
nodes in best-first order, using only linear space, (cf.
[6, 71 for details.) Another advantage of RBFS over ID
is that the former expands fewer nodes than the latter,
up to tie-breaking, when the cost function is monotonic.
Both ID and RBFS suffer from the overhead of expand-
ing many nodes more than once.

Some of these algorithms have been compared before.
Wah and Yu [14] argued that DFBnB is comparable to
BFS if the cost function is very accurate or very inac-
curate. Using an abstract model in which the num-
ber of nodes with a given cost grows geometrically,
Vempaty et al [13] compared BFS, DFBnB and ID.

Search 769

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Their results are based on the solution density, the ra-
tio of the number of goal nodes to the total number of
nodes with the same cost as the goal nodes, and the
heuristic branching factor, the ratio of the number of
nodes with a given cost to the number of nodes of the
next smaller cost. They concluded that: (a) DFBnB is
preferable when the solution density grows faster than
the heuristic branching factor; (b) ID is preferable when
the heuristic branching factor is high and the solution
density is low; (c) BFS is useful only when both the
solution density and the heuristic branching factor are
very low, provided that sufficient memory is available.
Using a random tree, in which edges have random costs,
and the cost of a node is the sum of the costs of the
edges on the path from the root to the node, Karp and
Pearl[3], and McDiarmid and Provan [lo, 111 showed
that BFS expands either an exponential or quadratic
number of nodes in the search depth, depending on cer-
tain properties. On a random tree with uniform branch-
ing factor and discrete edge costs, we argued in [15] that
DFBnB also runs in polynomial time when BFS runs in
quadratic time. Kumar originally observed that ID per-
forms poorly on the traveling salesman problem (TSP),
compared to DFBnB [13] (cf. Section 4.2 as well).

Although DFBnB is very useful for problems such as
the TSP, it is not known how many more nodes DF-
BnB expands than BFS on average. Using a random
tree, we analytically show that the expected number of
nodes expanded by DFBnB is no more than O(d . N),
where d is the goal depth and N is the expected num-
ber of nodes expanded by BFS (Section 2). We compare
BFS, DFBnB, ID and RBFS under the tree model, and
demonstrate that DFBnB runs faster than BFS in some
cases, even if the former expands more nodes than the
latter (Section 3). The purpose is to provide a guideline
for selecting algorithms for given problems. Finally, we
consider how to choose linear-space algorithms for two
applications, lookahead search on sliding-tile puzzles,
and the asymmetric TSP (Section 4). Our results in
Sections 2 and 3 are included in [16].

2 Analytic Results: DFBnB vs. BFS

Search in a state space is a general model for prob-
lem solving. While a graph with cycles is the most
general model of a state space, depth-first search ex-
plores a state space tree, at the cost of regenerating
the same nodes arrived at via different paths. This
is a fundamental difference between linear-space algo-
rithms, which cannot detect duplicate nodes in general,
and exponential-space algorithms, which can. Associ-
ated with a state space is a cost function that estimates
the cost of a node. Alternatively, a cost can be associ-
ated with an edge, representing the incremental change
to a node cost when the corresponding operator is ap-
plied. A node cost is then computed as the sum of the
edge costs on the path from the root to the node, or the
sum of the cost of its parent node and the cost of the

TJb, d-

T(b,d,c)

c+e J

Figure 1: Recursive structure of a random tree

edge from the parent to the child. Therefore, we intro-
duce the following tree model, which is suitable for any
combinatorial problem with a monotonic cost function.

Definition 2.1 A random tree T(b, d, c) is a tree with
depth d, root cost c, and independent and identi-
caddy distributed random branching factors with mean b.
Edge costs are independently drawn from a non-negative
probability distribution. The cost of a non-root node is
the sum of the edge costs from the root to that node,
plus the root cost c. An optimal goal node is a node of
minimum cost at depth d.

Lemma 2.1 Let NB(b, d) be the expected number of
nodes expanded by BFS, and ND(b,d, a) the expected
number of nodes expanded by DFBnB with initial upper
bound a, on T(b, d, 0). As d 4 00,

No(b, d, oo) 5 (b - 1) E NB(b, i) + (d - 1)
a= 1

Proof: As shown in Figure 1, the root of T(b, d, c) has
X: children, nl, n2, nk, where b is a random variable
with mean b. Let ei be the edge cost from the root of
T(b, d, c) to the root of its i-th subtree Ti(b, d- 1, c+ei),
for i = 1,2, Ic. The children of the root are gener-
ated all at once and sorted in nondecreasing order of
their costs. Thus er 5 e2 5 . . . 5 ek , arranged from
left to right in Figure 1. For convenience of discus-
sion, let ND(~, d, c, QI) be the expected number of nodes
expanded by DFBnB on T(b, d, c) with initial upper
bound a’. We first make the following two observations.

First, subtracting the root cost from all nodes and the
upper bound has no affect on the search. Therefore,
the number of nodes expanded by DFBnB on T(b, d, c)
with initial upper bound o is equal to those expanded
on T(b, d, 0) with initial upper bound o - c. That is

ND(b, d, C, a) = ND (b, d, 0, a - C)
ND@, 4 c, 00) = ND@, 4 km> >

(1)

Secondly, because a larger initial upper bound causes at
least as many nodes to be expanded as a smaller upper
bound, the number of nodes expanded by DFBnB on
T(b, d, c) with initial upper bound Q is no less than the
number expanded with initial upper bound Q’ 5 (x.
That is

No(hd,v') L N~(hd,c,~), for a’ 5 o (2)

770 Zhang

Now consider DFBnB on T(b, d, 0). It first searches
the subtree Tr(b, d - 1, er) (see Figure l), expanding
ND@, d - 1, el , 00) expected number of nodes. Let p
be the minimum goal cost of 2-i (b, d - 1,O). Then the
minimum goal cost of Tl(b, d - 1, el) is p + el, which
is the upper bound after searching Tl(b, d - 1, er). Af-
ter Tr(b, d - 1, ei) is searched, subtree Ts(b, d - 1, e2)
will be explored if its root cost e2 is less than the cur-
rent upper bound p + el, and the expected number of
nodes expanded is ND (b, d - 1, e2, p + ei), which is also
an upper bound on the expected number of nodes ex-
panded in Ti (b, d - 1, ed), for i = 3,4, . . . , k. This is be-
cause the upper bound can only decrease after searching
T2(b, d - 1, e2) and the edge cost ei can only increase
as i increases, both of which cause fewer nodes to be
expanded. Since the root of T(b, d, 0) has b expected
number of children, we write

ND@, 4 O,m) 5 ND@, d- 1, el, m)+
(b-l)Ni&d-1,e2,p+el)+1

where the 1 is for the expansion of the root of T(b, d, 0).
By (l), we have

ND@, 4 0,~) L ND(b, d - l,o, m)+
(b- l)ND(b,d- l,O,p+el -e2)+ 1

Since p + el - ez < p for el < es, by (2), we write

ND(b, 4 O,m) I ND(b, d - 17% co)+
(b - l)ND(b, d - l,O,p) + 1 (3)

Now consider ND (b, d - 1, 0, p), the expected number of
nodes expanded by DFBnB on T(b, d - 1,O) with initial
upper bound p. If T(b, d - 1,O) is searched by BFS, it
will return the optimal goal node whose expected cost
is p, and expand NB(~, d - 1) nodes on average. When
T(b, d - 1,0) is searched by DFBnB with upper bound
p, only those nodes whose costs are strictly less than
p will be expanded, which also must be expanded by
BFS. We thus have

ND(W-- WP) 5 N&d-- 1) (4

Substituting (4) into (3), we then write

N&b, d, 0,~) L ND@, d - ho, ++
(b - l)NB(b, d - 1) + 1

I: ND@, d - 2,0, m) +
(b - l)(NB(b, d - 1) + NB(b, d - 2)) + 2

5 . . .

L ND(b,O,O,~)+
d-l

(b - 1) c N&b, i) + (d - 1) (5)
d=l

This proves the lemma since ND (b, 0, 0,~) = 0. 0

Theorem 2.1 ND(b, d, 00) < O(d.NB(b, d-l)), where
ND and NB are defined in Lemma 2.1.

probability of zero-cost edge, p O
t :

1.0 --

0.8 -

0.6 -

0.4 -

0.2 -

BPS runs in quadratic time.
DFBnB runs in cubic time.

bPc9 1

transition boundary

mean
branching 0.0 1 : 1

I I I I I factor b
0 5 10 15 20
Both BFS and DFBnB are asymptotically
optimal, running in exponential time.

Figure 2: Complexity regions of tree search.

Prooj It directly follows Lemma 2.1 and the fact that
cf..,’ NB(b, i) < (d - l)NB(b, d - l), since NB(b, i) <
NB(b,d - 1) for all i < d - 1. 0

McDiarmid and Provan [lo, 111 showed that if ~0 is the
probability of a zero-cost edge, then the average com-
plexity of BFS on T(b, d, c) is determined by bpo, the
expected number of children of a node whose costs are
the same as their parents. In particular, they proved
that as d + 00, and conditional on the tree not becom-
ing extinct, the expected number of nodes expanded by
BFS is: (a) O(pd) when bpo < 1, where 1 < p < b is a
constant; (b) O(d2) when bpo = 1, and (c) O(d) when
bpo > 1.

Theorem 2.2 The expected number of nodes expanded
by DFBnB on T(b,d,O), as d + 00, conditionat on
T(b, d, 0) being infinite, is: (a) O(pd), when bpo < 1,
where 1 < ,8 < b is a constant; (b) O(d3) when bpo = 1,
and (c) O(d2) when bpo > 1, where po is the probability
of a zero-cost edge.

Proof: To use McDiarmid and Provan’s result on BFS
[lo, 111, we have to consider the asymptotic case when
d + 00. Generally, searching a deep tree is more
difficult than searching a shallow one. In particular,
NB(b, i) < NB(b,2i), for all integers i. Therefore, by
Lemma 2.1 and McDiarmid and Provan’s result, when
bpo < 1 and d + 00,

ND(b, d, 0) < 2(b - 1) 2 NB(b, i) + (d - 1)
a’= Ld/2J

= 2(b - 1) z 0(/3”) + (d - 1) = O(pd)
a’= Ld/2J

Search 771

The other two cases directly follow from Theorem 2.1
and McDiarmid and Provan’s results on BFS. 0

This theorem significantly extends and tightens our
previous result in [15], which stated that the aver-
age complexity of DFBnB is O(dm+l) on a random
tree with constant branching factor, discrete edge costs
m 19% ‘“, m} and bpo 2 1. Theorem 2.2 indicates that
DFBnB is asymptotically optimal as the depth of the
tree grows to infinity when bpo < 1, since it expands the
same order of nodes as BFS in this case, and BFS is op-
timal [2]. In addition, this theorem shows that, similar
to BFS, the average complexity of DFBnB experiences
a transition as the expected number of same-cost chil-
dren bpo of a node changes. Specifically, it decreases
from exponential (bpo < 1) to polynomial (bpo 1 1)
with a transition boundary at bpo = 1. These results
are summarized in Figure 2. -

3 Experimental Results

3.1 Comparison of Nodes Expanded

We now experimentally compare BFS, DFBnB, ID and
RBFS on random trees. We used random trees with
uniform branching factor, and two edge cost distri-
butions. In the first case, edge costs were uniformly
selected from (0, 1,2,3,4}. In the second case, zero
edge costs were chosen with probability po = l/5,
and non-zero edge costs were uniformly chosen from
(1,2,3, . ..216 - 1). The comparison of these algorithms
on trees with continuous edge cost distributions is sim-
ilar to that with the second edge cost distribution and
bpo < 1, because a continuous distribution has po = 0,
and thus bpo < 1. We chose three branching factors
to present the results: b = 2 for an exponential com-
plexity case, b = 5 for the transition case (bpo = l),
and b = 10 for an easy problem. The algorithms were
run to different depths, each with 100 random trials.
The results are shown in Fig. 3. The curves labeled by
BFS, DFBnB, ID, and RBFS are the average numbers
of nodes expanded by BFS, DFBnB, ID, and RBFS,
respectively. The upper bound on DFBnB is based on
Lemma 2.1.

The experimental results are consistent with the ana-
lytical results: BFS expands the fewest nodes among
all algorithms, RBFS is superior to ID, and DFBnB is
asymptotically optimal when bpo < 1 and tree depth
grows to infinity. When bpo > 1 (Fig. 3(c) and 3(f)),
ID and RBFS are comparable to BFS. Moreover, when
bpo 2 1 (Fig. 3(b), 3(c), 3(e) and 3(f)), DFBnB is worse
than both ID and RBFS. In these cases, the overhead of
DFBnB, the number of nodes expanded whose costs are
greater than the optimal goal cost, is larger than the re-
expansion overheads of ID and RBFS. When bpo < 1
(Fig. 3(a) and 3(d)), however, DFBnB outperforms
both ID and RBFS. In addition, when bpo < 1 and
the edge costs are discrete (Fig. 3(a)), the DFBnB,
ID and RBFS curves are parallel to the BFS curve for

large search depth d. Thus DFBnB, ID and RBFS are
asymptotically optimal, and this confirms our analysis
of ID and RBFS in [16]. However, when bpo < 1 and
edge costs are chosen from a large range (Fig. 3(d)),
the slopes of the ID and RBFS curves are nearly twice
the slope of the BFS curve, in contrast to the DFBnB
curve that has the same slope as the BFS curve. This
confirms our analytical result that ID expands O(N2)
nodes on average when edge costs are continuous, where
N is the expected number of nodes expanded by BFS
[16]. This also indicates that in this case, RBFS has
the same unfavorable asymptotical complexity as ID.

In summary, for problems that can be formulated as
a tree with a bounded depth, and require exponential
computation (bpo < l), DFBnB should be used, and
for easy problems (bpo 2 l), RBFS should be adopted.

3.2 Comparison of Running Times

Although BFS expands fewer nodes than a linear-space
algorithm, the former may run slower than the latter.
Fig. 4(a) shows one example where the running time
of BFS increases faster than that of DFBnB: a random
binary tree in which zero edge costs were chosen with
probability po = l/5, and non-zero edge costs were uni-
formly chosen from { 1,2,3, . ..216- 1). The reason is the
following. The running time of DFBnB is proportional
to the total number of nodes generated, since nodes can
be generated and processed in constant time. The other
linear-space algorithms also have this feature. The time
of BFS to process a node, however, increases as the log-
arithm of the total number of nodes generated. To see
this, consider the time per node expansion in BFS as
a function of search depth. BFS has to use a priority
queue to keep all nodes generated but not expanded
yet, which is exponential in the search depth, say yd,
when bpo < 1. To expand a node, BFS first has to se-
lect the node with the minimum cost from the priority
queue, and then insert all newly generated nodes into
the queue. If a heap is used, to insert one node or delete
the root of the heap takes time logarithmic in the total
number of nodes in the heap, which is ln(rd) = O(d).
This means that BFS takes time linear in the search
depth to expand a node. Fig. 4(b) illustrates the av-
erage time per node expansion for both BFS and DF-
BnB in this case. Therefore, for some problems, BFS is
not only unapplicable because of its exponential space
requirement, but also suffers from increasing time per
node expansion.

4 Comparison on Real Problems

4.1 Loolcahead Search on Sliding-Tile Puzzles

A square sliding-tile puzzle consists of a k x k frame
holding k2 - 1 distinct movable tiles, and a blank space.
Any tiles that are horizontally or vertically adjacent to
the blank may move into the blank position. Examples
of sliding-tile puzzles include the 3 x 3 Eight Puzzle, the

772 Zhang

Edge costs uniformly chosen from C&1,2,3,4}
of nodes exnanded

L

0 10 20 30 40 50
(a) b=2

of nodes expanded
I 1 I I

I I search depth
I I

50 100 150 200
(b) b=§

of nodes expanded
I I I I

1 t/ I I search depth I I
0 50 150 200

Edge costs from {0,1,2,3, . . . ,2 16-1} with p ,=1/5
of nodes expanded # of nodes expanded # of nodes expanded

I I I I I I r I I I I I I I I I I

10’

1 -I
I I I

0 10 20 30 40 50 60 0 50 100 150 200 0 50 100 150 200
(cl) b=2 (e) b=5 (f) b=lO

Figure 3: Average number of nodes expanded.

4 x 4 Fifteen Puzzle, the 5 x 5 Twenty-four Puzzle, and
the 10 x 10 Ninety-nine Puzzle. A common cost func-
tion for sliding-tile puzzles is f(n) = g(n) + h(n), where
g(n) is the number of moves from the initial state to
node n, and h(n) is the Manhattan distance from node
n to the goal state, which is the sum of the number of
moves along the grid of all tiles to their goal positions.
Given an initial and a goal state of a sliding-tile puz-
zle, we are asked to find a sequence of moves that maps
the initial state into the final state. To find such a se-
quence with minimum number of moves is NP-complete
for arbitrary size puzzles [12].

In real-time settings, however, we have to make a move
with limited computation. One approach to this prob-
lem, called fixed-depth lookahead search, is to search
from the current state to a fixed depth, and then make
a move toward a minimum cost frontier node at that
depth. This process is then repeated for each move
until a goal is reached [5].

Our experiments show that ID is slightly worse than
RBFS for lookahead search, as expected. Figure 5 com-
pares DFBnB and RBFS. The horizontal axis is the
lookahead depth, and the vertical axis is the number of
nodes expanded, averaged over 200 initial states. The
results show that DFBnB performs better than RBFS
on small puzzles, while RBFS is superior to DFBnB on
large ones. The reason is briefly explained as follows.
Moving a tile either increases or decreases its Manhat-
tan distance h by one. Since every move increases the
g value by one, the cost function f = g + h either in-
creases by two or stays the same. The probability that
the cost of a child state is equal to the cost of its par-
ent is approximately 0.5 initially, i.e. po x 0.5. In
addition, the average branching factors b of the Eight,
Fifteen, Twenty-four, and Ninety-nine Puzzles are ap-
proximately 1.732,2.130,2.368, and 2.790, respectively,
i.e. b grows with the puzzle size. Thus, bpo increases
with the puzzle size as well, and lookahead search is

Search 773

time (sec.)

140
120
100
80
60
40
20
0

20 30 40 50
(a) running time

Figure 4:

(b) time per node expansion

Running time and time per node expansion.

easier on large puzzles by Theorem 2.2. As shown in
Section 3, DFBnB will do better with smaller branching
factors.

Unfortunately, the problem of finding a shortest solu-
tion path cannot be represented by a bounded-depth
tree, since the solution length is unknown in advance.
Without cutoff bounds, DFBnB cannot be applied in
these cases. This limits the applicability of DFBnB,
and distinguishes DFBnB from BFS, ID and RBFS. In
these cases, RBFS is the algorithm of choice, since ID
is worse than RBFS, as verified by our experiments.

4.2 The Asymmetric TSP

Given n cities (1,2, n) and a cost matrix (CQ) that
defines a cost between each pair of cities, the traveling
salesman problem (TSP) is to find a minimum-cost tour
that visits each city once and returns to the starting
city. When the cost from city i to city j is not neces-
sarily equal to that from city j to city i, the problem is
the asymmetric TSP (ATSP). Many NP-complete com-
binatorial problems can be formulated as ATSPs, such
as vehicle routing, no-wait workshop scheduling, com-
puter wiring, etc. [8].

The most efficient approach known for optimally solv-
ing the ATSP is subtour elimination [l], with the solu-
tion to the assignment problem as a lower-bound func-
tion. Given a cost matrix (cd,j), the assignment prob-
lem (AP) [9] t is o assign to each city i another city j,
with ci,j as the cost of this assignment, such that the

of nodes expanded

lo6

lo5

lo4

103

lo2

10
I

search depth
60 80

Figure 5: Lookahead search on sliding-tile puzzles.

total cost of all assignments is minimized. The AP is
a generalization of the ATSP with the requirement of
a single complete tour removed, allowing collections of
subtours, and is solvable in O(n3) time [9]. Subtour
elimination first solves the AP for the n cities. If the
solution is not a tour, it then expands the problem into
subproblems by breaking a subtour (cf. [l] for details),
and searches the space of subproblems. It repeatedly
checks the AP solutions of subproblems and expands
them if they are not complete tours, until an optimal
tour is found. The space of subproblems can be repre-
sented by a tree with maximum depth less than n2.

We ran DFBnB, ID and RBFS on the ATSP with the
elements of cost matrices independently and uniformly
chosen from (0, 1,2,3, r} , where r is an integer. Fig-
ures 6(a) and 6(b) h s ow our results on loo-city and
300-city ATSPs. The horizontal axes are the range of
intercity costs r, and the vertical axes are the num-
bers of tree nodes generated, averaged over 500 trials
for each data point. When the cost range T is small or
large, relative to the number of cities n, the ATSP is
easy or difficult, respectively [15, 171. Figure 6 shows
that ID cannot compete with RBFS and DFBnB, espe-
cially for difficult ATSPs when r is large. RBFS does
poorly on difficult ATSPs, since in this case the node
costs in the search tree are unique [15, 171, which causes
significant node regeneration overhead.

5 Conclusions

We first studied the relationship between the average
number of nodes expanded by depth-first branch-and-
bound (DFBnB), and best-first search (BFS). In par-
ticular, we showed analytically that DFBnB expands
no more than O(Ca . N) nodes on average for finding a
minimum cost node at depth d of a random tree, where
N is the average number of nodes expanded by BFS on

774 Zhang

of nodes generated
I I I I I I I I

llOO-

900 -

700 -

500 -

300 -

loo-
I I I I I

cost range r

1 10 10” 10” 10” 10’ 10” 10’
(a) 1000city ATSP

of nodes generated

1500l- I P --I

1000

500

0
10 10” ld lb’ 10’ lo6 10’

(b) 300-city ATSP

Figure 6: Performance on the ATSPs.

the same tree. We also proved that DFBnB is asymp-
totically optimal when BFS runs in exponential time.
We then considered how to select a linear-space algo-
rithm, from among DFBnB, iterative-deepening (ID)
and recursive best-first search (RBFS). We also showed
that DFBnB runs faster than BFS in some cases, even
if the former expands more nodes than the latter. Our
results on random trees and two real problems, looka-
head search on sliding-tile puzzles and the asymmet-
ric traveling salesman problem, show that (a) DFBnB
is preferable on problems that can be formulated by
bounded-depth trees and require exponential compu-
tation; (b) RBFS should be applied to problems that
cannot be represented by bounded-depth trees, or prob-
lems that can be solved in polynomial time.

References

[l] Balas, E., and P. Toth, “Branch and bound
methods,” The Traveling Salesman Problems, E.L.

PI

PI

PI

PI

PI

PI

PI

PI

Lawler, et al. (eds.) John Wiley and Sons, 1985,
pp.361-401.
Dechter, R., and J. Pearl, “Generalized best-first
search strategies and the optimality of A*,” JACK,
32 (1985) 505-36.
Karp, R.M., and J. Pearl, “Searching for an optimal
path in a tree with random cost,” Artificial InteZEi-
gence, 21 (1983) 99-117.
Korf, R.E., “Depth-first iterative-deepening: An
optimal admissible tree search,” Artificial Intelbi-
gence, 27 (1985) 97-109.
Korf, R.E., “Real-time heuristic search,” Artificial
Intelligence, 42 (1990) 189-211.
Korf, R.E., “Linear-space best-first search: Sum-
mary of results,” Proc. lO-th National Conf. on AI,
AAAI-92, San Jose, CA, July, 1992, pp.533-8.
Korf, R.E., “Linear-space best-first search,” Artifi-
cial Intelligence, to appear.
Lawler, E.L., et ad., The Traveling Salesman Prob-
lems, John Wiley and Sons, 1985.
Martello, S., and P. Toth, “Linear assignment prob-
lems ,” Annab of Discrete Mathematics, 31 (1987)
259-82.

[lo] McDiarmid, C.J.H., “Probabilistic analysis of tree
search,” Disorder in Physical Systems, G.R. Gum-
mett and D.J.A. Welsh (eds), Oxford Science Pub.,
1990, pp.249-60,

[ll] McDiarmid, C.J.H., and G.M.A. Provan, “An
expected-cost analysis of backtracking and non-
backtracking algorithms,” Proc. 1%th Intern. Joint
Conf. on AI, IJCAI-91, Sydney, Australia, Aug.
1991, pp.172-7.

[12] Ratner, D., and M. Warmuth, “Finding a short-
est solution for the NxN extension of the 15-puzzle
is intractable,” Proc. 5th National Conf. on AI,
AAAI-86,) Philadelphia, PA, 1986.

[13] Vempaty, N.R., V. Kumar, and R.E. Korf, “Depth-
first vs best-first search,” Proc. 9-th National Conf.
on AI, AAAI-91,) CA, July, 1991, pp.434-40.

[14] Wah, B.W., and C.F. Yu, “Stochastic model-
ing of branch-and-bound algorithms with best-first
search,” IEEE Trans. on Software Engineering, 11
(1985) 922-34.

[15] Zhang, W., and R.E. Korf, “An average-case anal-
ysis of branch-and-bound with applications: Sum-
mary of results,” Proc. lo-th National Conf. on AI,
AAAI-92,) San Jose, CA, July, 1992, pp.545-50.

[16] Zhang, W., and R.E. Korf, “Performance of linear-
space branch-and-bound algorithms,” submitted to
Artificial Intelligence, 1992.

[17] Zhang, W., and R.E. Korf, “On the asymmetric
traveling salesman problem under subtour elimina-
tion and local search,” submitted, March, 1993.

Search 775

