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ABSTRACT 

Best-first search (BFS) expands the fewest 
nodes among all admissible algorithms us- 
ing the same cost function, but typically re- 
quires exponential space. Depth-first search 
needs space only linear in the maximumsearch 
depth, but expands more nodes than BFS. Us- 
ing a random tree, we analytically show that 
the expected number of nodes expanded by 
depth-first branch-and-bound (DFBnB) is no 
more than O(d s N), where d is the goal depth 
and N is the expected number of nodes ex- 
panded by BFS. We also show that DFBnB 
is asymptotically optimal when BFS runs in 
exponential time. We then consider how to 
select a linear-space search algorithm, from 
among DFBnB, iterative-deepening (ID) and 
recursive best first search (RBFS). Our exper- 
imental results indicate that DFBnB is prefer- 
able on problems that can be represented by 
bounded-depth trees and require exponential 
computation; and RBFS should be applied 
to problems that cannot be represented by 
bounded-depth trees, or problems that can be 
solved in polynomial time. 

1 Introduction and Overview 

A major factor affecting the applicability of a search 
algorithm is its memory requirement. If a problem 
is small, and the available memory is large enough, 
then best-first search (BFS) may be used. BFS main- 
tains a partially expanded search graph, and expands a 
minimum-cost frontier node at each cycle until an opti- 
mal goal node is chosen for expansion. One important 
property of BFS is that it expands the minimum num- 
ber of nodes among all admissible algorithms using the 
same cost function [2]. H owever, it typically requires 
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exponential space, making it impractical for most ap- 
plications. 

Practical algorithms use space that is only linear 
in the maximum search depth. Linear-space algo- 
rithms include depth-first branch-and-bound (DFBnB), 
iterative-deepening [4], and recursive best-first search 
[6, 71. DFBnB starts with an upper bound on the cost 
of an optimal goal, and then searches the entire state 
space in a depth-first fashion. Whenever a new solution 
is found whose cost is less than the best one found so far, 
the upper bound is revised to the cost of this new solu- 
tion. Whenever a partial solution is encountered whose 
cost is greater than or equal to the current upper bound, 
it is pruned. DFBnB expands more nodes than BFS. 
In particular, when the cost function is monotonic, in 
the sense that the cost of a child is always greater than 
or equal to the cost of its parent, DFBnB may expand 
nodes whose costs are greater than the optimal goal 
cost, none of which are explored by BFS. 

To avoid expanding nodes that are not visited by BFS, 
iterative-deepening (ID) [4] may be adopted. It runs 
a series of depth-first iterations, each bounded by a 
cost threshold. In each iteration, a branch is eliminated 
when the cost of a node on that path exceeds the cost 
threshold for that iteration. When the cost function 
is not monotonic, however, ID may not expand newly 
visited nodes in best-first order. 

In this case, recursive best-first search (RBFS) [6, 73 
may be applied, which always expands unexplored 
nodes in best-first order, using only linear space, (cf. 
[6, 71 for details.) Another advantage of RBFS over ID 
is that the former expands fewer nodes than the latter, 
up to tie-breaking, when the cost function is monotonic. 
Both ID and RBFS suffer from the overhead of expand- 
ing many nodes more than once. 

Some of these algorithms have been compared before. 
Wah and Yu [14] argued that DFBnB is comparable to 
BFS if the cost function is very accurate or very inac- 
curate. Using an abstract model in which the num- 
ber of nodes with a given cost grows geometrically, 
Vempaty et al [13] compared BFS, DFBnB and ID. 
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Their results are based on the solution density, the ra- 
tio of the number of goal nodes to the total number of 
nodes with the same cost as the goal nodes, and the 
heuristic branching factor, the ratio of the number of 
nodes with a given cost to the number of nodes of the 
next smaller cost. They concluded that: (a) DFBnB is 
preferable when the solution density grows faster than 
the heuristic branching factor; (b) ID is preferable when 
the heuristic branching factor is high and the solution 
density is low; (c) BFS is useful only when both the 
solution density and the heuristic branching factor are 
very low, provided that sufficient memory is available. 
Using a random tree, in which edges have random costs, 
and the cost of a node is the sum of the costs of the 
edges on the path from the root to the node, Karp and 
Pearl[3], and McDiarmid and Provan [lo, 111 showed 
that BFS expands either an exponential or quadratic 
number of nodes in the search depth, depending on cer- 
tain properties. On a random tree with uniform branch- 
ing factor and discrete edge costs, we argued in [15] that 
DFBnB also runs in polynomial time when BFS runs in 
quadratic time. Kumar originally observed that ID per- 
forms poorly on the traveling salesman problem (TSP), 
compared to DFBnB [13] (cf. Section 4.2 as well). 

Although DFBnB is very useful for problems such as 
the TSP, it is not known how many more nodes DF- 
BnB expands than BFS on average. Using a random 
tree, we analytically show that the expected number of 
nodes expanded by DFBnB is no more than O(d . N), 
where d is the goal depth and N is the expected num- 
ber of nodes expanded by BFS (Section 2). We compare 
BFS, DFBnB, ID and RBFS under the tree model, and 
demonstrate that DFBnB runs faster than BFS in some 
cases, even if the former expands more nodes than the 
latter (Section 3). The purpose is to provide a guideline 
for selecting algorithms for given problems. Finally, we 
consider how to choose linear-space algorithms for two 
applications, lookahead search on sliding-tile puzzles, 
and the asymmetric TSP (Section 4). Our results in 
Sections 2 and 3 are included in [16]. 

2 Analytic Results: DFBnB vs. BFS 

Search in a state space is a general model for prob- 
lem solving. While a graph with cycles is the most 
general model of a state space, depth-first search ex- 
plores a state space tree, at the cost of regenerating 
the same nodes arrived at via different paths. This 
is a fundamental difference between linear-space algo- 
rithms, which cannot detect duplicate nodes in general, 
and exponential-space algorithms, which can. Associ- 
ated with a state space is a cost function that estimates 
the cost of a node. Alternatively, a cost can be associ- 
ated with an edge, representing the incremental change 
to a node cost when the corresponding operator is ap- 
plied. A node cost is then computed as the sum of the 
edge costs on the path from the root to the node, or the 
sum of the cost of its parent node and the cost of the 

TJb, d- 

T(b,d,c) 

c+e J 

Figure 1: Recursive structure of a random tree 

edge from the parent to the child. Therefore, we intro- 
duce the following tree model, which is suitable for any 
combinatorial problem with a monotonic cost function. 

Definition 2.1 A random tree T(b, d, c) is a tree with 
depth d, root cost c, and independent and identi- 
caddy distributed random branching factors with mean b. 
Edge costs are independently drawn from a non-negative 
probability distribution. The cost of a non-root node is 
the sum of the edge costs from the root to that node, 
plus the root cost c. An optimal goal node is a node of 
minimum cost at depth d. 

Lemma 2.1 Let NB(b, d) be the expected number of 
nodes expanded by BFS, and ND(b,d, a) the expected 
number of nodes expanded by DFBnB with initial upper 
bound a, on T(b, d, 0). As d 4 00, 

No(b, d, oo) 5 (b - 1) E NB(b, i) + (d - 1) 
a= 1 

Proof: As shown in Figure 1, the root of T(b, d, c) has 
X: children, nl, n2, . . . . nk, where b is a random variable 
with mean b. Let ei be the edge cost from the root of 
T(b, d, c) to the root of its i-th subtree Ti(b, d- 1, c+ei), 
for i = 1,2, . . . . Ic. The children of the root are gener- 
ated all at once and sorted in nondecreasing order of 
their costs. Thus er 5 e2 5 . . . 5 ek , arranged from 
left to right in Figure 1. For convenience of discus- 
sion, let ND(~, d, c, QI) be the expected number of nodes 
expanded by DFBnB on T(b, d, c) with initial upper 
bound a’. We first make the following two observations. 

First, subtracting the root cost from all nodes and the 
upper bound has no affect on the search. Therefore, 
the number of nodes expanded by DFBnB on T(b, d, c) 
with initial upper bound o is equal to those expanded 
on T(b, d, 0) with initial upper bound o - c. That is 

ND(b, d, C, a) = ND (b, d, 0, a - C) 
ND@, 4 c, 00) = ND@, 4 km> > 

(1) 

Secondly, because a larger initial upper bound causes at 
least as many nodes to be expanded as a smaller upper 
bound, the number of nodes expanded by DFBnB on 
T(b, d, c) with initial upper bound Q is no less than the 
number expanded with initial upper bound Q’ 5 (x. 
That is 

No(hd,v') L N~(hd,c,~), for a’ 5 o (2) 
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Now consider DFBnB on T(b, d, 0). It first searches 
the subtree Tr(b, d - 1, er) (see Figure l), expanding 
ND@, d - 1, el , 00) expected number of nodes. Let p 
be the minimum goal cost of 2-i (b, d - 1,O). Then the 
minimum goal cost of Tl(b, d - 1, el) is p + el, which 
is the upper bound after searching Tl(b, d - 1, er). Af- 
ter Tr(b, d - 1, ei) is searched, subtree Ts(b, d - 1, e2) 
will be explored if its root cost e2 is less than the cur- 
rent upper bound p + el, and the expected number of 
nodes expanded is ND (b, d - 1, e2, p + ei), which is also 
an upper bound on the expected number of nodes ex- 
panded in Ti (b, d - 1, ed), for i = 3,4, . . . , k. This is be- 
cause the upper bound can only decrease after searching 
T2(b, d - 1, e2) and the edge cost ei can only increase 
as i increases, both of which cause fewer nodes to be 
expanded. Since the root of T(b, d, 0) has b expected 
number of children, we write 

ND@, 4 O,m) 5 ND@, d- 1, el, m)+ 
(b-l)Ni&d-1,e2,p+el)+1 

where the 1 is for the expansion of the root of T(b, d, 0). 
By (l), we have 

ND@, 4 0,~) L ND(b, d - l,o, m)+ 
(b- l)ND(b,d- l,O,p+el -e2)+ 1 

Since p + el - ez < p for el < es, by (2), we write 

ND(b, 4 O,m) I ND(b, d - 17% co)+ 
(b - l)ND(b, d - l,O,p) + 1 (3) 

Now consider ND (b, d - 1, 0, p), the expected number of 
nodes expanded by DFBnB on T(b, d - 1,O) with initial 
upper bound p. If T(b, d - 1,O) is searched by BFS, it 
will return the optimal goal node whose expected cost 
is p, and expand NB(~, d - 1) nodes on average. When 
T(b, d - 1,0) is searched by DFBnB with upper bound 
p, only those nodes whose costs are strictly less than 
p will be expanded, which also must be expanded by 
BFS. We thus have 

ND(W-- WP) 5 N&d-- 1) (4 

Substituting (4) into (3), we then write 

N&b, d, 0,~) L ND@, d - ho, ++ 
(b - l)NB(b, d - 1) + 1 

I: ND@, d - 2,0, m) + 
(b - l)(NB(b, d - 1) + NB(b, d - 2)) + 2 

5 . . . 

L ND(b,O,O,~)+ 
d-l 

(b - 1) c N&b, i) + (d - 1) (5) 
d=l 

This proves the lemma since ND (b, 0, 0,~) = 0. 0 

Theorem 2.1 ND(b, d, 00) < O(d.NB(b, d-l)), where 
ND and NB are defined in Lemma 2.1. 

probability of zero-cost edge, p O 
t : 

1.0 -- 

0.8 - 

0.6 - 

0.4 - 

0.2 - 

BPS runs in quadratic time. 
DFBnB runs in cubic time. 

bPc9 1 

transition boundary 

mean 
branching 0.0 1 : 1 

I I I I I factor b 
0 5 10 15 20 
Both BFS and DFBnB are asymptotically 
optimal, running in exponential time. 

Figure 2: Complexity regions of tree search. 

Prooj It directly follows Lemma 2.1 and the fact that 
cf..,’ NB(b, i) < (d - l)NB(b, d - l), since NB(b, i) < 
NB(b,d - 1) for all i < d - 1. 0 

McDiarmid and Provan [lo, 111 showed that if ~0 is the 
probability of a zero-cost edge, then the average com- 
plexity of BFS on T(b, d, c) is determined by bpo, the 
expected number of children of a node whose costs are 
the same as their parents. In particular, they proved 
that as d + 00, and conditional on the tree not becom- 
ing extinct, the expected number of nodes expanded by 
BFS is: (a) O(pd) when bpo < 1, where 1 < p < b is a 
constant; (b) O(d2) when bpo = 1, and (c) O(d) when 
bpo > 1. 

Theorem 2.2 The expected number of nodes expanded 
by DFBnB on T(b,d,O), as d + 00, conditionat on 
T(b, d, 0) being infinite, is: (a) O(pd), when bpo < 1, 
where 1 < ,8 < b is a constant; (b) O(d3) when bpo = 1, 
and (c) O(d2) when bpo > 1, where po is the probability 
of a zero-cost edge. 

Proof: To use McDiarmid and Provan’s result on BFS 
[lo, 111, we have to consider the asymptotic case when 
d + 00. Generally, searching a deep tree is more 
difficult than searching a shallow one. In particular, 
NB(b, i) < NB(b,2i), for all integers i. Therefore, by 
Lemma 2.1 and McDiarmid and Provan’s result, when 
bpo < 1 and d + 00, 

ND(b, d, 0) < 2(b - 1) 2 NB(b, i) + (d - 1) 
a’= Ld/2J 

= 2(b - 1) z 0(/3”) + (d - 1) = O(pd) 
a’= Ld/2J 
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The other two cases directly follow from Theorem 2.1 
and McDiarmid and Provan’s results on BFS. 0 

This theorem significantly extends and tightens our 
previous result in [15], which stated that the aver- 
age complexity of DFBnB is O(dm+l) on a random 
tree with constant branching factor, discrete edge costs 
m 19% ‘“, m} and bpo 2 1. Theorem 2.2 indicates that 
DFBnB is asymptotically optimal as the depth of the 
tree grows to infinity when bpo < 1, since it expands the 
same order of nodes as BFS in this case, and BFS is op- 
timal [2]. In addition, this theorem shows that, similar 
to BFS, the average complexity of DFBnB experiences 
a transition as the expected number of same-cost chil- 
dren bpo of a node changes. Specifically, it decreases 
from exponential (bpo < 1) to polynomial (bpo 1 1) 
with a transition boundary at bpo = 1. These results 
are summarized in Figure 2. - 

3 Experimental Results 

3.1 Comparison of Nodes Expanded 

We now experimentally compare BFS, DFBnB, ID and 
RBFS on random trees. We used random trees with 
uniform branching factor, and two edge cost distri- 
butions. In the first case, edge costs were uniformly 
selected from (0, 1,2,3,4}. In the second case, zero 
edge costs were chosen with probability po = l/5, 
and non-zero edge costs were uniformly chosen from 
(1,2,3, . ..216 - 1). The comparison of these algorithms 
on trees with continuous edge cost distributions is sim- 
ilar to that with the second edge cost distribution and 
bpo < 1, because a continuous distribution has po = 0, 
and thus bpo < 1. We chose three branching factors 
to present the results: b = 2 for an exponential com- 
plexity case, b = 5 for the transition case (bpo = l), 
and b = 10 for an easy problem. The algorithms were 
run to different depths, each with 100 random trials. 
The results are shown in Fig. 3. The curves labeled by 
BFS, DFBnB, ID, and RBFS are the average numbers 
of nodes expanded by BFS, DFBnB, ID, and RBFS, 
respectively. The upper bound on DFBnB is based on 
Lemma 2.1. 

The experimental results are consistent with the ana- 
lytical results: BFS expands the fewest nodes among 
all algorithms, RBFS is superior to ID, and DFBnB is 
asymptotically optimal when bpo < 1 and tree depth 
grows to infinity. When bpo > 1 (Fig. 3(c) and 3(f)), 
ID and RBFS are comparable to BFS. Moreover, when 
bpo 2 1 (Fig. 3(b), 3(c), 3(e) and 3(f)), DFBnB is worse 
than both ID and RBFS. In these cases, the overhead of 
DFBnB, the number of nodes expanded whose costs are 
greater than the optimal goal cost, is larger than the re- 
expansion overheads of ID and RBFS. When bpo < 1 
(Fig. 3(a) and 3(d)), however, DFBnB outperforms 
both ID and RBFS. In addition, when bpo < 1 and 
the edge costs are discrete (Fig. 3(a)), the DFBnB, 
ID and RBFS curves are parallel to the BFS curve for 

large search depth d. Thus DFBnB, ID and RBFS are 
asymptotically optimal, and this confirms our analysis 
of ID and RBFS in [16]. However, when bpo < 1 and 
edge costs are chosen from a large range (Fig. 3(d)), 
the slopes of the ID and RBFS curves are nearly twice 
the slope of the BFS curve, in contrast to the DFBnB 
curve that has the same slope as the BFS curve. This 
confirms our analytical result that ID expands O(N2) 
nodes on average when edge costs are continuous, where 
N is the expected number of nodes expanded by BFS 
[16]. This also indicates that in this case, RBFS has 
the same unfavorable asymptotical complexity as ID. 

In summary, for problems that can be formulated as 
a tree with a bounded depth, and require exponential 
computation (bpo < l), DFBnB should be used, and 
for easy problems (bpo 2 l), RBFS should be adopted. 

3.2 Comparison of Running Times 

Although BFS expands fewer nodes than a linear-space 
algorithm, the former may run slower than the latter. 
Fig. 4(a) shows one example where the running time 
of BFS increases faster than that of DFBnB: a random 
binary tree in which zero edge costs were chosen with 
probability po = l/5, and non-zero edge costs were uni- 
formly chosen from { 1,2,3, . ..216- 1). The reason is the 
following. The running time of DFBnB is proportional 
to the total number of nodes generated, since nodes can 
be generated and processed in constant time. The other 
linear-space algorithms also have this feature. The time 
of BFS to process a node, however, increases as the log- 
arithm of the total number of nodes generated. To see 
this, consider the time per node expansion in BFS as 
a function of search depth. BFS has to use a priority 
queue to keep all nodes generated but not expanded 
yet, which is exponential in the search depth, say yd, 
when bpo < 1. To expand a node, BFS first has to se- 
lect the node with the minimum cost from the priority 
queue, and then insert all newly generated nodes into 
the queue. If a heap is used, to insert one node or delete 
the root of the heap takes time logarithmic in the total 
number of nodes in the heap, which is ln(rd) = O(d). 
This means that BFS takes time linear in the search 
depth to expand a node. Fig. 4(b) illustrates the av- 
erage time per node expansion for both BFS and DF- 
BnB in this case. Therefore, for some problems, BFS is 
not only unapplicable because of its exponential space 
requirement, but also suffers from increasing time per 
node expansion. 

4 Comparison on Real Problems 

4.1 Loolcahead Search on Sliding-Tile Puzzles 

A square sliding-tile puzzle consists of a k x k frame 
holding k2 - 1 distinct movable tiles, and a blank space. 
Any tiles that are horizontally or vertically adjacent to 
the blank may move into the blank position. Examples 
of sliding-tile puzzles include the 3 x 3 Eight Puzzle, the 
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Figure 3: Average number of nodes expanded. 

4 x 4 Fifteen Puzzle, the 5 x 5 Twenty-four Puzzle, and 
the 10 x 10 Ninety-nine Puzzle. A common cost func- 
tion for sliding-tile puzzles is f(n) = g(n) + h(n), where 
g(n) is the number of moves from the initial state to 
node n, and h(n) is the Manhattan distance from node 
n to the goal state, which is the sum of the number of 
moves along the grid of all tiles to their goal positions. 
Given an initial and a goal state of a sliding-tile puz- 
zle, we are asked to find a sequence of moves that maps 
the initial state into the final state. To find such a se- 
quence with minimum number of moves is NP-complete 
for arbitrary size puzzles [12]. 

In real-time settings, however, we have to make a move 
with limited computation. One approach to this prob- 
lem, called fixed-depth lookahead search, is to search 
from the current state to a fixed depth, and then make 
a move toward a minimum cost frontier node at that 
depth. This process is then repeated for each move 
until a goal is reached [5]. 

Our experiments show that ID is slightly worse than 
RBFS for lookahead search, as expected. Figure 5 com- 
pares DFBnB and RBFS. The horizontal axis is the 
lookahead depth, and the vertical axis is the number of 
nodes expanded, averaged over 200 initial states. The 
results show that DFBnB performs better than RBFS 
on small puzzles, while RBFS is superior to DFBnB on 
large ones. The reason is briefly explained as follows. 
Moving a tile either increases or decreases its Manhat- 
tan distance h by one. Since every move increases the 
g value by one, the cost function f = g + h either in- 
creases by two or stays the same. The probability that 
the cost of a child state is equal to the cost of its par- 
ent is approximately 0.5 initially, i.e. po x 0.5. In 
addition, the average branching factors b of the Eight, 
Fifteen, Twenty-four, and Ninety-nine Puzzles are ap- 
proximately 1.732,2.130,2.368, and 2.790, respectively, 
i.e. b grows with the puzzle size. Thus, bpo increases 
with the puzzle size as well, and lookahead search is 
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(b) time per node expansion 

Running time and time per node expansion. 

easier on large puzzles by Theorem 2.2. As shown in 
Section 3, DFBnB will do better with smaller branching 
factors. 

Unfortunately, the problem of finding a shortest solu- 
tion path cannot be represented by a bounded-depth 
tree, since the solution length is unknown in advance. 
Without cutoff bounds, DFBnB cannot be applied in 
these cases. This limits the applicability of DFBnB, 
and distinguishes DFBnB from BFS, ID and RBFS. In 
these cases, RBFS is the algorithm of choice, since ID 
is worse than RBFS, as verified by our experiments. 

4.2 The Asymmetric TSP 

Given n cities (1,2, . . . . n) and a cost matrix (CQ) that 
defines a cost between each pair of cities, the traveling 
salesman problem (TSP) is to find a minimum-cost tour 
that visits each city once and returns to the starting 
city. When the cost from city i to city j is not neces- 
sarily equal to that from city j to city i, the problem is 
the asymmetric TSP (ATSP). Many NP-complete com- 
binatorial problems can be formulated as ATSPs, such 
as vehicle routing, no-wait workshop scheduling, com- 
puter wiring, etc. [8]. 

The most efficient approach known for optimally solv- 
ing the ATSP is subtour elimination [l], with the solu- 
tion to the assignment problem as a lower-bound func- 
tion. Given a cost matrix (cd,j), the assignment prob- 
lem (AP) [9] t is o assign to each city i another city j, 
with ci,j as the cost of this assignment, such that the 

# of nodes expanded 

lo6 

lo5 

lo4 

103 

lo2 

10 
I 

search depth 
60 80 

Figure 5: Lookahead search on sliding-tile puzzles. 

total cost of all assignments is minimized. The AP is 
a generalization of the ATSP with the requirement of 
a single complete tour removed, allowing collections of 
subtours, and is solvable in O(n3) time [9]. Subtour 
elimination first solves the AP for the n cities. If the 
solution is not a tour, it then expands the problem into 
subproblems by breaking a subtour (cf. [l] for details), 
and searches the space of subproblems. It repeatedly 
checks the AP solutions of subproblems and expands 
them if they are not complete tours, until an optimal 
tour is found. The space of subproblems can be repre- 
sented by a tree with maximum depth less than n2. 

We ran DFBnB, ID and RBFS on the ATSP with the 
elements of cost matrices independently and uniformly 
chosen from (0, 1,2,3, . . . . r} , where r is an integer. Fig- 
ures 6(a) and 6(b) h s ow our results on loo-city and 
300-city ATSPs. The horizontal axes are the range of 
intercity costs r, and the vertical axes are the num- 
bers of tree nodes generated, averaged over 500 trials 
for each data point. When the cost range T is small or 
large, relative to the number of cities n, the ATSP is 
easy or difficult, respectively [15, 171. Figure 6 shows 
that ID cannot compete with RBFS and DFBnB, espe- 
cially for difficult ATSPs when r is large. RBFS does 
poorly on difficult ATSPs, since in this case the node 
costs in the search tree are unique [15, 171, which causes 
significant node regeneration overhead. 

5 Conclusions 

We first studied the relationship between the average 
number of nodes expanded by depth-first branch-and- 
bound (DFBnB), and best-first search (BFS). In par- 
ticular, we showed analytically that DFBnB expands 
no more than O(Ca . N) nodes on average for finding a 
minimum cost node at depth d of a random tree, where 
N is the average number of nodes expanded by BFS on 
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Figure 6: Performance on the ATSPs. 

the same tree. We also proved that DFBnB is asymp- 
totically optimal when BFS runs in exponential time. 
We then considered how to select a linear-space algo- 
rithm, from among DFBnB, iterative-deepening (ID) 
and recursive best-first search (RBFS). We also showed 
that DFBnB runs faster than BFS in some cases, even 
if the former expands more nodes than the latter. Our 
results on random trees and two real problems, looka- 
head search on sliding-tile puzzles and the asymmet- 
ric traveling salesman problem, show that (a) DFBnB 
is preferable on problems that can be formulated by 
bounded-depth trees and require exponential compu- 
tation; (b) RBFS should be applied to problems that 
cannot be represented by bounded-depth trees, or prob- 
lems that can be solved in polynomial time. 
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