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Abstract 

We analyze the difficulties in applying Bayesian belief 
networks to language interpretation domains, which 
typically involve many unification hypotheses that 
posit variable bindings. As an alternative, we observe 
that the structure of the underlying hypothesis space 
permits an approximate encoding of the joint distrib- 
ution based on marginal rather than conditional prob- 
abilities. This suggests an implicit binding approach 
that circumvents the problems with explicit unification 
hypotheses, while still allowing hypotheses with al- 
ternative unifications to interact probabilistically. The 
proposed method accepts arbitrary subsets of hypothe- 
ses and marginal probability constraints, is robust, and 
is readily incorporated into standard unification-based 
and frame-based models. 

1 Introduction 
The application of Bayesian belief networks (Pearl 1988) 
to natural language disambiguation problems has recently 
generated some interest (Goldman & Charniak 1990; Char- 
niak & Goldman 1988, 1989; Burger & Connolly 1992). 
There is a natural appeal to using the mathematically con- 
sistent probability c&ulus to combine quantitative degrees 
of evidence for alternative interpretations, and even to help - 
resolve parsing decisions. 

However, to formulate disambiguation problems using 
belief networks requires an unusual form of hypothesis 
nodes. Natural language interpretation models (as well 
as many others) employ the unification operation to com- 
bine schemata; this is realized alternatively as slot-filling, 
role-binding, or attribute co-indexing in feature structures. 
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N00039-88-C-0292, the Office of Naval Research under N00014- 
89-J-3205, the Sloan Foundation under grant 86-10-3, and the 
National Science Foundation under CDA-8722788. 

Specifically, in this paper we are concerned with the class 
of problems where the input context introduces a number of 
possible conceptual entities but the relationships between 
them must be inferred. This phenomenon is ubiquitous 
in language, for example in prepositional and adverbial at- 
tachment, adjectival modification, and nominal compounds. 
The process of resolving such an ambiguity corresponds to 
unifying two variables (or role binding.s or slot fillers). 

In extending the models to Bayesian belief networks, 
unification operations are translated to hypothesis nodes- 
for example (patient g3)=r2 in figure l-that sit alongside 
“regular” hypotheses concerning the features of various con- 
ceptual entities. The incorporation of binding hypotheses 
introduces a modelling difficulty in the context of belief net- 
works. The strength of the unification-based paradigm rests 
precisely in the relatively symmetric role binding, which is 
subject to no constraints other than those explicitly given 
by the linguist or knowledge engineer. However, we ar- 
gue in section 2 that this same characteristic directly resists 
models based on the notion of conditional independence, in 
particular belief networks. 

In section 3 we re-analyze the structure of the underlying 
hypothesis space and its joint distribution. This formulation 
leads to an alternative approach to approximation, proposed 
in section 4. A natural language application dealing with 
nominal compound interpretation is outlined in section 5. 

2 Unification Resists Conditional 
Independence 

In conditional independence networks, the values of some 
hypotheses are permitted to influence others but the paths of 
influence are restricted by the graph, thus providing compu- 
tational leverage. In the extreme, a completely connected 
graph offers no computational shortcuts; instead, to im- 
prove performance a distribution should be graphed with 
the lowest possible connectivity. In general, conditional 
independence networks have been applied in highly struc- 
tured domains where low-connectivity approximations can 
be accurate. The types of domains that invite unification- 
oriented representations, however, resist low-connectivity 
approximations, because binding hypotheses have a high 
inherent degree of interdependence. 

Typically in such a domain, there will be some number 
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Figure 1: Example belief net from Goldman & Chamiak (1991). 

n of “free” variables a, b, c . . . that are potentially unifiable 
with others. A unification hypothesis is of the form a = b, 
and there are m = ( 2 ) such hypotheses. A priori knowl- 

\-I 

edge, like selectional restrictio&may help rule out some of 
these hypotheses, but many bindings will remain possible 
and we’ll assume here that all unification hypotheses have 
nonzero probability. A joint hypothesis is an assignment of 
truth values to each of the m unification hyp0theses.l The 
number of legal joint hypotheses is less than 2” because of 
the dependence between-hypotheses. For example, if a = c 
and b = c are true, then a = b must also be true. In fact 
the number of legal joint hypotheses is equal to the number 
of possible partitionings of a set of n elements. Figure 2 
shows the legal joint hypotheses when n = 4. 

Hypotheses Legal assignments 
a=b 000000100100111 
U=C 000001001001011 
a=d 000010010001101 
b=c 000100010010011 
b=d 001000001010101 
c=d 010000000111001 

Figure 2: The legal joint hypotheses for n = 4. Each column 
shows a permissible t&h value assignment. 

Now consider the dependence relationships between uni- 
fication hypotheses. The probabilities of a = c and b = c 
are not independent since they may be affected by the value 

. of a = b ; if a # b then all events where a = c-and b = c 
are ruled out. However, it is possible for a = c and b = c 
to be conditionally independent given a = b, which can be 
modelled by 

a= c-a=b- b=c 

By symmetry, all three hypotheses must be connected. This 
extends to larger n, so if n = 4, then if a = d and b = d 
are conditionally independent, it must also be conditioned 
ona = b: 

‘We ignore 
analysis. 

all other types of hypotheses in this section’s 

a=c b=c ’ 

a= d b=d 

In general, any pair of unification hypotheses that involve 
a common variable must be connected. Thus for n variables, 
the total number of links is 

1~ n . (” 2 ‘) = n(n - l)(n - 2) 
2 

= m(n - 2) 

which is O(n3) or O( m3i2). This is better than a completely 
connected network which would be O(n4) or O(m2) but 
there are many loops nonetheless, so evaluation will be 
expensive. By symmetry, each of the m hypotheses is of 
degree 

2d = 2(n - 2) 
m 

and any clustering of variables will be subject to this bound. 
We conclude that in domains where unification hypothe- 

ses are relatively unconstrained, the connectivity of con- 
ditional independence networks is undesirably high. This 
means that it is difficult to find efficient conditional probabil- 
ity representations that accurately approximate the desired 
joint probability distributions. Therefore, in the next sec- 
tion we reconsider the event space that underlies the joint 
distribution. 

3 
Since conditional probabilities do not lend themselves well 
to representations involving unification hypotheses, we now 
examine the structure of the joint hypothesis space. Before, 
we considered the unification hypotheses in explicit form 
because we sought conditional independence relationships 
between them. Having abandoned that objective, here we 
instead consider the feature structures (or frames) that result 
from assigning truth values to the unification hypotheses. In 
other words, the unification hypotheses are left implicit, re- 
flected by co-indexed variables (roles) in feature structures. 

Figure 3 depicts the qualitative structure of the joint hy- 
pothesis space, which forms a semilattice hierarchy. We 
now take into consideration not only the implicit unification 
hypotheses, but also implicit hypotheses that specialize the 
features on the variables; for example, a variable of type 
a may be specialized to the subtype b. Each box denotes 
the feature structure that results from some combination of 
truth values over a subset of unification hypotheses and spe- 
cialization hypotheses. Each small shaded box denotes a 
joint hypothesis specifying the truth values over all unifi- 
cation and specialization hypotheses. Thus the distinction 
between the shaded and non-shaded boxes is a kind of type- 
token distinction where the shaded boxes are tokens. Notice 
furthermore that role specialization and unification are in- 
tertwined: a role of type z results when a type II: role and a 
type y role are conjoined by unifying their fillers. 
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Figure 3: Simplified partial abstraction lattice for feature structures. The type b is a subtype of a; the role type z is a composite role 
equivalent to the conjunction xy. A dashed line indicates that the variables are “free” to be unified. 

In principle, the joint distribution would be completely 
specified if we could enumerate the probabilities over the 
(shaded) tokens. We saw in the previous section that con- 
ditional probabilities are not well suited for approximately 
summarizing distributions over this space, because there is 
no way to discard large numbers of binding dependencies in 
the general case. However, there is another straightforward 
way to store distributional information, namely to record 
marginal probabilities over the abstract (non-shaded) types, 
i.e., the sums of probabilities over all descendant leaves. To 
summarize the distribution approximately, a selected subset 
of the marginal probabilities can be stored. Theoretically, 
a set of marginal probabilities induces an equivalent set of 
conditional probabilities over the same lattice, though it may 
be an unreasonably large set. If there are any independence 
relationships to be exploited, equivalently a subset of mar- 
ginal probabilities can be omitted and the maximum-entropy 
principle (Jaynes 1979) can be applied to reconstruct the 
joint distribution. 

The advantages of this formulation are: (1) fewer parame- 
ters are required since it does not encode redundant distrib- 
utional information in multiple dependent conditional prob- 
abilities, (2) consistency is easier to maintain because the 
interdependent unification hypotheses are not explicit, (3) 
it facilitates an alternative structural approximation method 
for computing a conditional distribution of interest, as dis- 
cussed in the next section. 

4 An Approximation Based on Marginal 
Constraints 

By itself, the marginal probability formulation can reduce 
probability storage requirements but does not improve com- 
putation cost. Computing maximum entropy distributions 
subject to largenumbers of marginal constraints is infeasible 
in the general case. However, in many applications, includ- 
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ing language interpretation, the input cues are sufficient to 
eliminate all but a relatively small number of hypotheses. 
Only the distribution over these hypotheses is of interest. 
Moreover, the input cues may suffice to preselect a subset 
of relevant marginal probability constraints. 

The proposed method takes advantage of these factors 
by dynamically creating a secondary marginal probability 
formulation of the same form as that above, but with far 
fewer constraints and hypotheses, thereby rendering the en- 
tropy maximization feasible. In the secondary formulation, 
only details within the desired hypothesis and constraint 
space are preserved. Outside this space, the minimum pos- 
sible number of “dummy” events are substituted for mul- 
tiple hypotheses that are not of interest. It turns out that 
one dummy event is required for each marginal constraint. 
Let Q be the set of token feature structures and G is the 
set of type feature structures, and F sf G U &. Suppose 
7-1 = {hI ,... ,hi,.. . , hH} C & are the candidate hy- 
potheses,andsupposeM = {ml,. . . , mj, . . . , mM> c G 
are the abstract class types that have been preselected 
as being relevant, with associated marginal probabilities 
Pmj = P( rnj ) . Denote by c the partial ordering induced 
on ‘FI U M by the subsumption semilattice on f-structure 
space. 

Then we define the secondary formulation as follows. Let 
thesetofdummyeventsbeD = {dr ,..., dj ,..., dm}, 

one for each marginal constraint. Define ? gf ti U M U 23 
to be the approximate event space, and define G gf ti U 2, 
to be the approximate hypothesis space. We construct the 
approximate ordering relation c over ? according to: 

aCc;c=mj;b=dj 



Let hmj be the marginal probability constraints on 3. 
We use Pmj as estimators for P, j. (Of course, since the 
event space has been distorted by the structural dummy 
event approximation, actually Pmj # Pmj .) 

To estimate the distribution over the hypotheses of inter- 
est, along with the dummy events, we compute i)h, and pd, 
such that 

while maximizing the entropy 

(2) 

subject to the marginal constraints 

(3) c Pq = Pm, 

Technical details of the solution are given in Appendix A. 
Note that unlike methods for finding maximum a posteri- 

ori assignments (Charniak & Santos Jr. 1992) which returns 
the probability for the most probable joint assignment, the 
objective here is to evaluate the conditional distribution over 
a freely chosen set of joint hypothesis assignments and mar- 
ginal constraints. 

One of the strengths of AME is robustness when arbi- 
trarily chosen marginals are discarded. Arithmetic incon- 
sistencies do not arise because the dummy events absorb 
any discrepancies arising from the approximation. For 
example, if C through F are discarded from figure 4(a), 
then P(A) + P(B) < P(G), but the remaining probabil- 
ity weight is absorbed by G’s dummy event in (b). The 
ability to handle arbitrary subpartitions of the knowledge 
base is important in practical applications, where many dif- 
ferent heuristics may be used to preselect the constraints 
dynamically. In contrast, when there are dependent unifica- 
tion hypotheses in a belief network, discarding conditional 
probability matrices can easily lead to networks that have 
no solution. 

0 03 0 03 0 

05 

(4 (b) 

5 A Nominal Compound hte 
Example 

In this section we summarize an example from the language 
interpretation domain that drove the development of AME, 
a more detailed discussion of which is found in the compan- 
ion paper @Vu 1993a). Space does not permit a description 
of the semantics and lexical models; see Wu (1992,1993b). 
Although our modelling objectives arise solely from dis- 
ambiguation problems, we believe the foregoing discussion 
applies nonetheless to other structured domains involving 
highly interdependent variable bindings with uncertainty. 

The example task here is to interpret the nominal com- 
pound coast road,2 which in null context most likely means 
a road in coastal area but, particularly in other contexts, can 
also mean other things including a road leading to coastal 
area, a coasting road amenable to coasting, and Highway 1. 
As is typical with novel nominal compounds, interpretation 
requires a wide range of knowledge. Figure 5 shows the 
fairly standard feature-structure notation we use to encode 
such knowledge; the marginal probabilities in (a) and (b) 
are the primary representational extension. 

During interpretation, a hypothesis network as in fig- 
ure 6 is dynamically constructed. Each node cor- 
responds to a marginal constraint from the knowl- 
edge base, of the form figure 5(a)-(b). Ignor- 
ing the boldface marginals for now, the probabilities 
P(coast and road) and P(coast and coastal road) indi- 
cate that when thinking about roads, it is the sub- 
category of roads running along the coast that is fre- 
quently thought of. Similarly P(coasta1 road) and 
P(Highway I) model a non-West Coast resident who 
does not frequently specialize coastal roads to High- 
way 1. Together, P(L:coast), P(C:coast:seacoast), 
and P(C:coast:coasting accomplishment) indicate that the 
noun coast more frequently designates a seacoast rather than 
an unpowered movement. Finally, P( C:NN:containment) 
indicates that the noun-noun construction signifies contain- 
ment twice as often as P( C:NN:Zinear order locative). 

Figure 6 summarizes the results of the baseline run and 
four variants, from a C implementation of AME. In the 
base run labelled “O:“, the AME estimate of the conditional 
distribution assigns highest probabilities to road in coastal 
area and road along coastline (features distinguishing these 
two hypotheses have been omitted). The next run “1:” 
demonstrates what would happen if “coast” more often sig- 
nified coasting accomplishment rather than seacoast: tie 
coasting road hypothesis dominates instead. In “2:” the 
noun-noun construction is assumed to signify linear order 
locatives more frequently than containment. The margin- 
als in “3:” effectively reduce the conditional probability of 
thinking of roads along the seacoast, given one is thinking 
of roads in the context of seacoasts. The West Coast res- 

Figure 4: Robust handling of discarded marginal constraints. 
(a) Original KB fragment. (b) Dummy event (black) absorbing 
discrepancy caused by discarding marginals. 

2From the Brown corpus (KuEera & Francis 1967). Our ap- 
proach to nominal compounds is discussed in Wu (1990), which 
proposes the use of probability to address long-standing problems 
from the linguistics literature (e.g., Lees 1963; Downing 1977; 
Levi 1978; Warren 1978; McDonald 1982). 
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(a) 

FRAME: 1 [ TYPE: seacoast] 

09 

fB#z f”‘$N:containment 

ISA: : hWconstr1 
ISA: NN 

sm CONSTl: ’ 1 
LCONST2: ’ 1 

sm 4 

1 
ISA: containment 

FRAME: LM: 3 1 
LTR: 4 1 
TISA: N-constr 1 

SYN: ‘[ISA: N] 
SEM: “[ISA: thing] 
ISA: N-constr 
SYN: 2[ ISA: N] 
SEW “[ ISA: thing] 1 

(4 

NN-constr 

p&T;; “1 

[ 

ISA: N-constr 
SYN: ’ [ ISA: “coast”-N] 1 
ISA: N-constr 
SYN: 2[ ISA: “road”-N] I 
road in coastal area 

SEM: 4 

rnME [ ;g :;“““““‘I 

r ISA: coast-constrl 

Figure 5: Feature-structures for (a) the noun coast signifying a seacoast, (b) a noun-noun construction signifying a containment schema, 
(c) an input form, and (d) a full interpretation hypothesis (the floor brackets indicate a token as opposed to type). 

SYN: ’ [ ISA: “coast”-N] 
SEM: 3 [ ISA: coastal-area-container] 
ISA: road-constrl 
SYN: 2[ ISA: “road’‘-N] 
SEM: “[ISA: road] 1 

area coastline 
0: 0.046524 0.37215 0.37215 0.00025822 0.074419 0.074419 0.060089 
1: 0.015757 0.12605 0.12605 0.00061625 0.02521 0.02521 0.6811 
2: 0.38339 0.15336 0.15336 0.0010636 0.030672 0.030672 0.24748 
3: 0.40849 0.20422 0.20422 0.00056666 0.025527 0.025527 0.13145 
4: 0.010205 0.081579 0.081579 0.00028371 0.40657 0.40657 0.01321 

Figure 6: Estimated conditional distributions for five runs on coast road with varying marginal constraints. Dummy events have been 
omitted. 

ident is modelled in “4:” by an increase in the marginal 
P(Highway 1). 

6 Conclusion 
We have discussed the difficulties encountered in applying 
Bayesian belief networks to domains like language inter- 
pretation, which involve unification hypotheses over “free” 
variables. We observed that the structure of the underly- 
ing joint hypothesis space permits an alternative approxi- 
mate encoding based on marginal rather than conditional 
probabilities. This implicit binding formulation facilitates 

a structural approximation method. For many applications, 
language interpretation in particular, the structural approx- 
imation is adequate and flexibility in handling unification 
hypotheses is quite important, whereas exact probability 
distribution computation is unnecessary. The method is 
robust and incorporates readily into unification- or frame- 
based models. 
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A et&Is of the Entropy 
To solve the constrained maximization problem in equa- 
tions (l)-(3), we define a new energy function with La- 
grange multipliers, J, to be maximized: 

j=l q:qE3i,mjCq 

M 

qE7-i j=l q:qEti,m, Iin 

This method is a modified version of Cheeseman’s (1987) 
method, which applied only to feature vectors. Observe that 
setting the gradients to zero gives the desired conditions: 

VxJ=O + E=O;l<j<M 
* expresses all marginal constraints 

VpJ=O j $=O;& 

* makmizes entropy 

Since the partials with respect to * are 
dJ 

izy 

_ -1Og Pq - >: xj 

j:mjCQ 

then at Vp J = 0, 

log Fq = - ): Xj 

j:mjCq 

Defining wj = e def -A, , 

Pq = wj 
j:m,Cq 

the original marginal constraints become 

P-, = C “Jk 

q:mjCq k:mkeq 

which can be rewritten 

P-j - C 
wk = 0 

q:m,Cq k:mkCq 

The last expression is solved using a numerical algorithm 
of the following form: 

1. Start with a constraint system X + { } and an estimated 
w vector () of length zero. 

2. For each constraint equation, 
(a) Add the equation to X and its corresponding wi term 

to (WI,. . . ) wi-1, Wi). 
(b) Repeat until (WI, . . . , wi) settles, i.e., the change be- 

tween iterations falls below some threshold: 
1. For each equation in X constraining Pm,, solve for 

the corresponding wj assuming all other w values have 
their current estimated values. 
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