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Abstract 
Knowledge-based natural language processing systems have 
achieved good success with certain tasks but they are of- 
ten criticized because they depend on a domain-specific 
dictionary that requires a great deal of manual knowledge 
engineering. This knowledge engineering bottleneck makes 
knowledge-based NLP systems impractical for real-world 
applications because they cannot be easily scaled up orported 
to new domains. In response to this problem, we devel- 
oped a system called AutoSlog that automatically builds a 
domain-specific dictionary of concepts for extracting infor- 
mation from text. Using AutoSlog. we constructed a dictio- 
nary for the domain of terrorist event descriptions in only 5 
person-hours. We then compared the AutoSlog dictionary 
with a hand-crafted dictionary that was built by two highly 
skilled graduate students and required approximately 1500 
person-hours of effort. We evaluated the two dictionaries 
using two blind test sets of 100 texts each. Overall, the 
AutoSlog dictionary achieved 98% of the performance of 
the hand-crafted dictionary. On the first test set, the Auto- 
Slog dictionary obtained 96.3% of the perfomlance of the 
hand-crafted dictionary. On the second test set, the over- 
all scores were virtually indistinguishable with the AutoSlog 
dictionary achieving 99.7% of the performance of the hand- 
crafted dictionary. 

Introduction 
Knowledge-based natural language processing (NLP) sys- 
tems have demonstrated strong performance for informa- 
tion extraction tasks in limited domains [Lehnert and Sund- 
heim, 1991; MUC-4 Proceedings, 19921. But enthusiasm 
for their success is often tempered by real-world concerns 
about portability and scalability. Knowledge-based NLP 
systems depend on a domain-specific dictionary that must 
be carefully constructed for each domain. Building this dic- 
tionary is typically a time-consuming and tedious process 
that requires many person-hours of effort by highly-skilled 
people who have extensive experience with the system. Dic- 
tionary construction is therefore a major knowledge engi- 
neering bottleneck that needs to be addressed in order for 
information extraction systems to be portable and practical 
for real-world applications. 

We have developed a program called AutoSlog that au- 
tomatically constructs a domain-specific dictionary for in- 
formation extraction. Given a training corpus, AutoSlog 

proposes a set of dictionary entries that are capable of ex- 
tracting the desired information from the training texts. If 
the training corpus is representative of the targeted texts, the 
dictionary created by AutoSlog will achieve strong perfor- 
mance for information extraction from novel texts. Given 
a training set from the WC-4 corpus, AutoSlog created a 
dictionary for the domain of terrorist events that achieved 
98% of the performance of a hand-crafted dictionary on 2 
blind test sets. We estimate that the hand-crafted diction- 
ary required approximately 1.500 person-hours to build. In 
contrast, the AutoSlog dictionary was constructed in only 
5 person-hours. Furthermore, constructing a dictionary 
by hand requires a great deal of training and experience 
whereas a dictionary can be constructed using AutoSlog 
with only minimal training. L 

We will begin with an overview of the information extrac- 
tion task and the MUC-4 performance evaluation that moti- 
vated this work. Next, we will describe AutoSlog, explain 
how it proposes dictionary entries for a domain, and show 
examples of dictionary definitions that were constructed by 
AutoSlog. Finally, we will present empirical results that 
demonstrate AutoSlog’s success at automatically creating a 
dictionary for the domain of terrorist event descriptions. 

Information Extraction from ‘I’ext 
Extracting information from text is a challenging task for 
natural language processing researchers as well as a key 
problem for many real-world applications. In the last few 
years, the NLP community has made substantial progress 
in developing systems that can achieve good performance 
on information extraction tasks for limited domains. As op- 
posed to in-depth natural language processing, information 
extraction is a more focused and goal-oriented task. For 
example, the MUC-4 task was to extract information about 
terrorist events, such as the names of perpetrators, victims, 
instruments, etc. 

Our approach to information extraction is based on a tech- 
nique called selective concept extraction. Selective concept 
extraction is a form of text skimming that selectively pro- 
cesses relevant text while effectively ignoring surrounding 
text that is thought to be irrelevant to the domain. The work 
presented here is based on a conceptual sentence analyzer 
called CIRCUS [Lehnert, 19901. 
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To extract information from text, CIRCUS relies on a 
domain-specific dictionary of concept nodes. A concept 
node is essentially a case frame that is triggered by a lexical 
item and activated in a specific linguistic context. Each 
concept node definition contains a set of enabling condi- 
tions which are constraints that must be satisfied in order 
for the concept node to be activated. For example, our 
dictionary for the terrorism domain contains a concept node 
called $k.idnap-passive$ that extracts information about kid- 
napping events. This concept node is triggered by the word 
“kidnapped” and has enabling conditions that allow it to 
be activated only in the context of a passive construction. 
As a result, this concept node is activated by phrases such 
as “was kidnapped”, “were kidnapped”, etc. Similarly, the 
dictionary contains a second concept node called $kidnap- 
active$ which is also triggered by the word “kidnapped” 
but has enabling conditions that allow it to be activated only 
in the context of an active construction, such as “terrorists 
kidnapped the mayor”. 

In addition, each concept node definition contains a set of 
slots to extract information from the surrounding context. 
In the terrorism domain, concept nodes have slots for perpe- 
trators, victims, instruments, etc. Each slot has a syntactic 
expectation and a set of hard and soft constraints for its 
filler. The syntactic expectation specifies where the filler is 
expected to be found in the linguistic context. For example, 
$k.idnap-passive$ contains a victim slot that expects its filler 
to be found as the subject of the clause, as in “the mayor was 
kidnapped”. The slot constraints are selectional restrictions 
for the slot filler. The hard constraints must be satisfied in 
order for the slot to be filled, however the soft constraints 
suggest semantic preferences for the slot filler so the slot 
may be filled even if a soft constraint is violated. 

Given a sentence as input, CIRCUS generates a set of 
instantiated concept nodes as its output. If multiple trigger- 
ing words appear in a sentence then CIRCUS can generate 
multiple concept nodes for that sentence. However, if no 
triggering words are found in a sentence then CIRCUS will 
generate no output for that sentence. 

The concept node dictionary is at the heart of selective 
concept extraction. Since concept nodes are CIRCUS’ only 
output for a text, a good concept node dictionary is crucial 
for effective information extraction. The UMass/MUC- 
4 system [Lehnert et al., 1992al used 2 dictionaries: a 
part-of-speech lexicon containing 5436 lexical definitions, 
including semantic features for domain-specific words and 
a dictionary of 389 concept node definitions for the domain 
of terrorist event descriptions. The concept node dictionary 
was manually constructed by 2 graduate students who had 
extensive experience with CIRCUS and we estimate that it 
required approximately 1500 person-hours of effort to build 

c 

The MUC-4 Task and Corpus 
In 1992, the natural language processing group at the Uni- 
versity of Massachusetts participated in the Fourth Message 
Understanding Conference (MUC-4). MUC-4 was a com- 
petitive performance evaluation sponsored by DARPA to 
evaluate the state-of-the-art in text analysis systems. Sev- 

enteen sites from both industry and academia participated in 
MUC-4. The task was to extract information about terror- 
ist events in Latin America from newswire articles. Given 
a text, each system was required to fill out a template for 
each terrorist event described in the text. If the text de- 
scribed multiple terrorist events, then one template had to 
be completed for each event. If the text did not mention any 
terrorist events, then no templates needed to be filled out. 

A template’is essentially a large case frame with a set of 
pre-defined slots for each piece of information that should be 
extracted from the text. For example, the MUC-4 templates 
contained slots for perpetrators, human targets, physical 
targets, etc. A training corpus of 1500 texts and instantiated 
templates (answer keys) for each text were made available to 
the participants for development purposes. The texts were 
selected by keyword search from a database of newswire 
articles. Although each text contained a keyword associated 
with terrorism, only about half of the texts contained a 
specific reference to a relevant terrorist incident. 

Behind the Design of AutoSlog 
Two observations were central to the design of AutoSlog. 
The first observation is that news reports follow certain 
stylistic conventions. In particular, the most important facts 
about a news event are typically reported during the ini- 
tial event description, Details and secondary information 
are described later. It follows that the first reference to a 
major component of an event (e.g., a victim or perpetra- 
tor) usually occurs in a sentence that describes the event. 
For example, a story about a kidnapping of a diplomat will 
probably mention that the diplomat was kidnapped before 
it reports secondary information about the diplomat’s fam- 
ily, etc. This observation is key to the design of AutoSlog. 
AutoSlog operates under the assumption that thefirst refer- 
ence to a targeted piece of information is most likely where 
the relationship between that information and the event is 
made explicit. 

Once we have identified the first sentence that contains 
a specific piece of information, we must determine which 
words or phrases should activate a concept node to ex- 
tract the information. The second key observation behind 
AutoSlog is that the immediate linguistic context surround- 
ing the targeted information usually contains the words or 
phrases that describe its role in the event. For example, 
consider the sentence “A U.S. diplomat was kidnapped by 
FMLN guerrillas today”. This sentence contains two impor- 
tant pieces of information about the kidnapping: the victim 
(“U.S. diplomat”) and the perpetrator (“FMLN guerrillas”). 
In both cases, the word “kidnapped” is the key word that 
relates them to the kidnapping event. In its passive form, 
we expect the subject of the verb “kidnapped” to be a victim 
and we expect the prepositional phrase beginning with “by” 
to contain a perpetrator. The word “kidnapped” specifies 
the roles of the people in the kidnapping and is therefore the 
most appropriate word to trigger a concept node. 

AutoSlog relies on a small set of heuristics to determine 
which words and phrases are likely to activate useful con- 
cept nodes. In the next section, we will describe these 

812 RilOff 



heuristics and explain how AutoSlog generates complete 
concept node definitions. 

Automated Dictionary Construction 
Given a set of training texts and their associated answer 
keys, AutoSlog proposes a set of concept node definitions 
that are capable of extracting the infomlation in the answer 
keys from the texts. Since the concept node definitions 
are general in nature, we expect that many of them will be 
useful for extracting information from novel texts as well. 
The algorithm for constructing concept node definitions is 
as follows. Given a targeted piece of information as a 
string from a template, AutoSlog finds the first sentence 
in the text that contains the string. This step is based on 
the observation noted earlier that the first reference to an 
object is likely to be the place where it is related to the 
event. The sentence is then handed over to CIRCUS which 
generates a conceptual analysis of the sentence. Using this 
analysis, AutoSlog identifies the first clause in the sentence 
that contains the string. A set of heuristics are applied to 
the clause to suggest a good conceptual anchor point for a 
concept node definition. If none of the heuristics is satisfied 
then AutoSlog searches for the next sentence in the text 
that contains the targeted information and the process is 
repeated. 

The conceptual anchor point heuristics are the most im- 
portant part of AutoSlog. A conceptual anchor point is a 
word that should activate a concept; in CIRCUS, this is 
a triggering word. Each heuristic looks for a specific lin- 
guistic pattern in the clause surrounding the targeted string. 
The linguistic pattern represents a phrase or set of phrases 
that are likely to be good for activating a concept node. If 
a heuristic successfully identifies its pattern in the clause 
then it generates two things: (1) a conceptual anchor point 
and (2) a set of enabling conditions to recognize the com- 
plete pattern. For example, suppose AutoSlog is given 
the clause “the diplomat was kidnapped” along with “the 
diplomat” as the targeted string. The string appears as the 
subject of the clause and is followed by a passive verb “kid- 
napped” so a heuristic that recognizes the pattern <subject> 
passive-verb is satisfied. The heuristic returns the word 
“kidnapped” as the conceptual anchor point along with en- 
abling conditions that require a passive construction. 

To build the actual concept node definition, the concep- 
tual anchor point is used as its triggering word and the 
enabling conditions are included to ensure that the concept 
node is activated only in response to the desired linguistic 
pattern. For the example above, the final concept node will 
be activated by phrases such as “was kidnapped”, “were 
kidnapped”, “have been kidnapped”, etc. 

The current version of AutoSlog contains 13 heuristics, 
each designed to recognize a specific linguistic pattern. 
These patterns are shown below, along with examples that 
illustrate how they might be found in a text. The bracketed 
item shows the syntactic constituent where the string was 
found which is used for the slot expectation (cdobj> is the 
direct object and urp> is the noun phrase following a prepo- 
sition). In the examples on the right, the bracketed item is a 
slot name that might be associated with the filler (e.g., the 

subject is a victim). The underlined word is the conceptual 
anchor point that is used as the triggering word. 
Linguistic Pattern Example 

<subject> passive-verb <victim> was murdered 
<subject> active-verb <perpetrator> bombed 
<subject > verb infinitive <perpetrator> attempted to ki.lJ 
<subject> auxiliary noun <victim> was victim 

passive-verb <dobj>’ killed <victim > 
active-verb <dobj> bombed <target > 
infinitive <dobj > to &.lJ <victim> 
verb infinitive <dobj > threatened to attack <target > 
gerund <dobj > killing <victim> 
noun auxiliary <dobj> fatality was <victim> 

noun prep <np > bomb against <target> 
active-verb prep <np > killed with <instrument> 
passive-verb prep <np > was aimed at <target > 

Several additional parts of a concept node definition must 
be specified: a slot to extract the information2, hard and soft 
constraints for the slot, and a type. The syntactic constituent 
in which the string was found is used for the slot expectation. 
In the previous example, the string was found as the subject 
of the clause so the concept node is defined with a slot that 
expects its tiller to be the subject of the clause. 

The name of the slot (e.g., victim) comes from the tem- 
plate slot where the information was originally found. In 
order to generate domain-dependent concept nodes, Auto- 
Slog requires three domain specifications. One of these 
specifications is a set of mappings from template slots to 
concept node slots. For example, information found in the 
human target slot of a template maps to a victim slot in a 
concept node. The second set of domain specifications are 
hard and soft constraints for each type of concept node slot, 
for example constraints to specify a legitimate victim. 

Each concept node also has a type. Most concept nodes 
accept the event types that are found in the template (e.g., 
bombing, kidnapping, etc.) but sometimes we want to use 
special types. The third set of domain specifications are 
mappings from template types to concept node types. In 
general, if the targeted information was found in a kidnap- 
ping template then we use “kidnapping” as the concept node 
type. However, for the terrorism domain we used special 
types for information from the perpetrator and instrument 
template slots because perpetrators and instruments often 
appear in sentences that do not describe the nature of the 
event (e.g., “The FMLN claimed responsibility”could refer 
to a bombing, kidnapping, etc.). 

Sample Concept Node Definitions 
To illustrate how this whole process comes together, we 
will show some examples of concept node definitions gen- 

‘In principle, passive verbs should not have objects. However, 
we included this pattern because CIRCUS occasionally confused 
active and passive constructions. 

21n principle, concept nodes can have multiple slots to extract 
multiple pieces of information. However, all of the concept nodes 
generated by AutoSlog have only a single slot. 
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erated by AutoSlog. Figure 1 shows a relatively simple 
concept node definition that is activated by phrases such as 
“was bombed”, “were bombed”, etc. AutoSlog created this 
definition in response to the input string “public buildings” 
which was found in the physical target slot of a bombing 
template from text DEV-MUC4-0657. Figure 1 shows the 
first sentence in the text that contains the string “public 
buildings”. When CIRCUS analyzed the sentence, it iden- 
tified “public buildings” as the subject of the first clause. 
The heuristic for the pattern <subject> passive-verb then 
generated this concept node using the word “bombed” as its 
triggering word along with enabling conditions that require 
a passive construction. The concept node contains a single 
variable slot3 which expects its filler to be the subject of 
the clause (*S*) and labels it as a target because the string 
came from the physical target template slot. The constraints 
for physical targets are pulled in from the domain specifica- 
tions. Finally, the concept node is given the type bombing 
because the input string came from a bombing template. 

CONCEPT NODE 
Name: target-subject-passive-verb-bombed 
Trigger: bombed 
Variable Slots: (target (*S* 1)) 
Constraints: (class phys-target *S*) 
Constant Slots: (type bombing) 
Enabling Conditions: ((passive)) 

Figure 1: A good concept node definition 

Figure 2 shows an example of a good concept node that 
has more complicated enabling conditions. In this case, 
CIRCUS found the targeted string “guerrillas” as the sub- 
ject of the first clause but this time a different heuristic 
tied. The heuristic for the pattern <subject> verb infhi- 
tive matched the phrase “threatened to murder” and gener- 
ated a concept node with the word “murder” as its trigger 
combined with enabling conditions that require the preced- 
ing words “threatened to” where “threatened” is in an active 
construction. The concept node has a slot that expects its 
filler to be the subject of the clause and expects it to be a 
perpetrator (because the slot filler came from a perpetrator 
template slot). The constraints associated with perpetra- 
tors are incorporated and the concept node is assigned the 
type “perpetrator” because our domain specifications map 
the perpetrator template slots to perpetrator types in con- 
cept nodes. Note that this concept node does not extract 
the direct object of “threatened to murder” as a victim. We 
would need a separate concept node definition to pick up 
the victim. 

3 Variable slots are slots that extract information. Constant slots 
have pre-defined values that are used by AutoSlog only to specify 
the concept node type. 

CONCEPT NODE 
Name: perpetrator-subject-verb-infinitive-threatened-to-murder 
Trigger : murder 
Variable Slots: (perpetrator (*S* 1)) 
Constraints: (class perpetrator *S*) 
Constant Slots: 0-w perpetrator) 
Enabling Conditions: ((active) 

(trigger-preceded-by? ‘to ‘threatened)) 

Figure 2: Another good concept node definition 

Although the preceding definitions were clearly useful 
for the domain of terrorism, many of the definitions that 
AutoSlog generates are of dubious quality. Figure 3 shows 
an example of a bad definition. AutoSlog finds the input 
string, “gilberto molasco”, as the direct object of the first 
clause and constructs a concept node that is triggered by the 
word “took” as an active verb. The concept node expects 
a victim as the direct object and has the type kidnapping. 
Although this concept node is appropriate for this sentence, 
in general we do not want to generate a kidnapping concept 
node every time we see the word “took”. 

Id: DEV-MUC4- 1192 Slot filler: “gilberto molasco” 
Sentence: (they took 2-year-old gilberto molasco, son of 

patricio rodriguez, and 17-year-old andres argueta, son of 
emimesto argueta.) 

CONCEPT NODE 
Name: victim-active-verb-dobj-took 
Trigger: took 
Variable Slots: (victim (*DOBJ* 1)) 
Constraints: (class victim *DOBJ*) 
Constant Slots: (type kidnapping) 
Enabling Conditions: ((active)) 

Figure 3: A bad concept node definition 

AutoSlog generates bad definitions for many reasons, 
such as (a) when a sentence contains the targeted string 
but does not describe the event (i.e., our first observation 
mentioned earlier does not hold), (b) when a heuristic pro- 
poses the wrong conceptual anchor point or (c) when CIR- 
CUS incorrectly analyzes the sentence. These potentially 
dangerous definitions prompted us to include a human in 
the loop to weed out bad concept node definitions. In the 
following section, we explain our evaluation procedure and 
present empirical results. 

To evaluate AutoSlog, we created a dictionary for the do- 
main of terrorist event descriptions using AutoSlog and 
compared it with the hand-crafted dictionary that we used 
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in MUC-4. As our training data, we used 1500 texts and 
their associated answer keys from the MUC-4 corpus. Our 
targeted information was the slot fillers from six MUC-4 
template slots that contained string tills which could be eas- 
ily mapped back to the text. We should emphasize that 
AutoSlog does not require or even make use of these com- 
plete template instantiations. AutoSlog needs only an an- 
notated corpus of texts in which the targeted information 
is marked and annotated with a few semantic tags denoting 
the type of information (e.g., victim) and type of event (e.g., 
kidnapping). 

The 1258 answer keys for these 1500 texts contained 
4780 string fillers which were given to AutoSlog as input 
along with their corresponding texts.4 In response to these 
strings, AutoSlog generated 1237 concept node definitions. 
AutoSlog does not necessarily generate a definition for ev- 
ery string filler, for example if it has already created an 
identical definition, if no heuristic applies, or if the sentence 
analysis goes wrong. 

As we mentioned earlier, not all of the concept node 
definitions proposed by AutoSlog are good ones. Therefore 
we put a human in the loop to filter out definitions that 
might cause trouble. An interface displayed each dictionary 
definition proposed by AutoSlog to the user and asked him 
to put each definition into one of two piles: the “keeps” or 
the “edits”. The “keeps” were good definitions that could 
be added to the permanent dictionary without alteration.5 
The “edits” were definitions that required additional editing 
to be salvaged, were obviously bad, or were of questionable 
value. It took the user 5 hours to sift through all of the 
definitions. The “keeps” contained 450 definitions, which 
we used as our final concept node dictionary. 

Finally, we compared the resulting concept node 
dictionary6 with the hand-crafted dictionary that we used 
for MUC-4. To ensure a clean comparison, we tested 
the AutoSlog dictionary using the official version of our 
UMass/MUC-4 system. The resulting “AutoSlog” system 
was identical to the official UMass/MUC-4 system except 
that we replaced the hand-crafted concept node dictionary 
with the new AutoSlog dictionary. We evaluated both sys- 
tems on the basis of two blind test sets of 100 texts each. 
These were the TST3 and TST4 texts that were used in the 
final MUC-4 evaluation. We scored the output generated 
by both systems using the MUC-4 scoring program. The 
results for systems are shown in Table 1.7 

Recall refers to the percentage of the correct answers 

4Many of the slots contained several possible strings (“dis- 
juncts”), any one of which is a legitimate filler. AutoSlog finds the 
first sentence that contains any of these strings. 

‘The only exception is that the user could change the concept 
node type if that was the only revision needed. 

6We augmented the AutoSlog dictionary with 4 meta-level 
concept nodes from the hand-crafted dictionary before the final 
evaluation. These were special concept nodes that recognized 
textual cues for discourse analysis only. 

7The results in Table 1 do not correspond to our official MUC-4 
results because we used “batch” scoring and an improved version 
of the scoring program for the experiments described here. 

that the system successfully extracted and precision refers 
to the percentage of answers extracted by the system that 
were actually correct. The F-measure is a single measure 
that combines recall and precision, in this case with equal 
weighting. These are all standard measures used in -the 
information retrieval community that were adopted for the 
final evaluation in MUC-4. 

Table 1: Comparative Results 

The official UMass/MUC-4 system was among the top- 
performing systems in MUC-4 [Lehnert er al., 1992bl and 
the results in Table 1 show that the AutoSlog dictionary 
achieved almost the same level of performance & the hand- 
crafted dictionary on both test sets. Comparing F-measures, 
we see that the AutoSlog dictionary achieved 96.3% of the 
performance of our hand-crafted dictionary on TST3, and 
99.7% of the performance of the official MUC-4 system 
on TST4. For TST4, the F-measures were virtually indis- 
tinguishable and the AutoSlog dictionary actually achieved 
better precision than the original hand-crafted dictionary. 
We should also mention that we augmented the hand-crafted 
dictionary with 76 concept nodes created by AutoSlog be- 
fore the final MUC-4 evaluation. These definitions im- 
proved the performance of our official system by filling gaps 
in its coverage. Without these additional concept nodes, the 
AutoSlog dictionary would likely have shown even better 
performance relative to the MUC-4 dictionary. 

Conclusions 
In previous experiments, AutoSlog produced a concept node 
dictionary for the terrorism domain that achieved 90% of 
the performance of our hand-crafted dictionary [Riloff and 
Lehnert, 19931. There are several possible explanations for 
the improved performance we see here. First, the previ- 
ous results were based on an earlier version of AutoSlog. 
Several improvements have been made to AutoSlog since 
then. Most notably, we added 5 new heuristics to recognize 
additional linguistic patterns. We also made a number of 
improvements to the CIRCUS interface and other parts of 
the system that eliminated many bad definitions’ and gener- 
ally produced better results. Another important factor was 
the human in the loop. We used the same person in both 
experiments but, as a result, he was more experienced the 
second time. As evidence, he finished the filtering task in 
only 5 hours whereas it took him 8 hours the first time.’ 

*The new version of AutoSlog generated 119 fewer definitions 
than the previous version even though it was given 794 additional 
string fillers as input. Even so, this smaller dictionary produced 
better results than the larger one constructed by the earlier system. 

‘For the record, the user had some experience with CIRCUS 
but was not an expert. 
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AutoSlog is different from other lexical acquisition sys- 
tems in that most techniques depend on a “partial lexicon” 
as a starting point (e.g., [Carbonell, 1979; Granger, 1977; 
Jacobs and Zemik, 19881). These systems construct a def- 
inition for a new word based on the definitions of other 
words in the sentence or surrounding context. AutoSlog, 
however, constructs new dictionary definitions completely 
from scratch and depends only on a part-of-speech lexicon, 
which can be readily obtained in machine-readable form. 

Since AutoSlog creates dictionary entries from scratch, 
our approach is related to one-shot learning. For exam- 
ple, explanation-based learning (EBL) systems [DeJong and 
Mooney, 1986; Mitchell et al., 19861 create complete con- 
cept representations in response to a single training instance. 
This is in contrast to learning techniques that incremen- 
tally build a concept representation in response to multi- 
ple training instances (e.g., [Cardie, 1992; Fisher, 1987; 
Utgoff, 19881). However, explanation-based learning sys- 
tems require an explicit domain theory which may not be 
available or practical to obtain. AutoSlog does not need any 
such domain theory, although it does require a few simple 
domain specifications to build domain-dependent concept 
nodes. 

On the other hand, AutoSlog is critically dependent on a 
training corpus of texts and targeted information. We used 
the MUC-4 answer keys as training data but, as we noted 
earlier, AutoSlog does not need these complete template 
instantiations. AutoSlog would be just as happy with an 
“annotated” corpus in which the information is marked and 
tagged with event and type designations. NLP systems 
often rely on other types of tagged corpora, for example 
part-of-speech tagging or phrase structure bracketing (e.g., 
the Brown Corpus [Francis and Kucera, 19821 and the Penn 
Treebank [Marcus et al.]). However, corpus tagging for 
automated dictionary construction is less demanding than 
other forms of tagging because it is smaller in scope. For 
syntactic tagging, every word or phrase must be tagged 
whereas, for AutoSlog, only the targeted information needs 
to be tagged. Sentences, paragraphs, and even texts that are 
irrelevant to the domain can be effectively ignored. 

We have demonstrated that automated dictionary con- 
struction is a viable alternative to manual knowledge en- 
gineering. In 5 person-hours, we created a dictionary that 
achieves 98% of the performance of a hand-crafted dictio- 
nary that required 1500 person-hours to build. Since our 
approach still depends on a manually encoded training cor- 
pus, we have not yet eliminated the knowledge engineering 
bottleneck. But we have significantly changed the nature of 
the bottleneck by transferring it from the hands of NLP ex- 
perts to novices. Our knowledge engineering demands can 
be met by anyone familiar with the domain. Knowledge- 
based NLP systems will be practical for real-world appli- 
cations only when their domain-dependent dictionaries can 
be constructed automatically. Our approach to automated 
dictionary construction is a significant step toward making 
information extraction systems scalable and portable to new 
domains. 
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