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Abstract 

In this paper I will describe Polly, a low cost vision- 
based robot that gives primitive tours. The system 
is very simple, robust and efficient, and runs on a 
hardware platform which could be duplicated for 
less than $lOK US. The system was built to ex- 
plore how knowledge about the structure the envi- 
ronment can be used in a principled way to simplify 
both visual and motor processing. I will argue that 
very simple and efficient visual mechanisms can of- 
ten be used to solve real problems in real (unmod- 
ified) environments in a principled manner. I will 
give an overview of the robot, discuss the prop- 
erties of its environment, show how they can be 
used to simplify the design of the system, and dis- 
cuss what lessons can drawn for the design of other 
systems.r 

Introduction 
In this paper, I will describe Polly, a simple artificial 
agent that uses vision to give primitive tours of the 7th 
floor of the MIT AI lab (see figure 1). Polly is built 
from minimalist machinery that is matched to its task 
and environment. It is an example of Agre’s principle 
of machinery parsimony [Agre, 1988], and is intended 
to demonstrate that very simple visual machinery can 
be used to solve real tasks in real, unmodified environ- 
ments in a principled manner. 

Polly roams the hallways of the laboratory looking 
for visitors. When someone approaches the robot, it 
stops and introduces itself and offers the vistor a tour, 
asking them to answer by waving their foot around (the 
robot can only see the person’s legs and feet). When the 
person waves their foot, the robot leads them around 
the lab, recognizing and describing places as it comes 
to them. 

‘Support for this research was provided in part by the 
University Research Initiative under Office of Naval Re- 
search contract N00014-86-K-0685, and in part by the Ad- 
vanced Research Projects Agency under Office of Naval Re- 
search contract N00014-85-K-0124. 
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Polly is very fast and simple. Its sensing and con- 
trol systems run at 15Hz, so all percepts and motor 
commands are updated every 66ms. It also uses very 
little hardware (an equivalent robot could be built for 
approximately $lOK), and consists of less than a thou- 
sand lines of Scheme code. 2 All computation is done 
on-board on a low-cost digital signal processor (a TI 
C30 with 64KW of ram). Polly is also among the best 
tested mobile robots to date, having seen hundreds of 
hours of service, and has a large behavioral repertoire. 

Polly falls within the task-based or active approach 
to vision [Horswill, 1988][Aloimonos, 1990][Ballard, 
1991][Ikeuchi and Herbert, 1990][Blake and Yuille, 
19921. While the work descrived here cannot prove the 
efficacy this approach, it does give an example of a large 
system which performs an interesting high-level task us- 
ing these sorts of techniques. 

Polly’s efficiency is due to its specialization to its task 
and environment. Many authors have argued that sim- 
ple machinery is often sufficient for performing intelli- 
gent behavior because of the special organizing struc- 
tures of the environment (see, for example, [Rosen- 
schein and Kaelbling, 1986][Brooks, 1986][Agre, 19881). 
If we are to use such structures in a routine manner 
to engineer intelligent systems, then we must be able 
to isolate individual structures or properties of the en- 
vironment and explain their computational rammifica- 
tions. In this work, I have used the technique of step- 
wise transformation to draw out the relationships be- 
tween a system specialized to its environment and a 
more general system. We look for a series of trans- 
formations, each of which conditionally preserves be- 
havior given some constraint on the environment, that 
will transform the general system into the specialized 
system. The resulting derivation of the specialized 
system from the general system makes the additional 
assumptions made by the specialized system explicit. 
It also makes their computational rammifications ex- 
plicit by putting them in correspondence with particu- 
lar transformations which simplify particular computa- 
tional subproblems. In effect, we imagine that the gen- 
eral system has been run through a “compiler” that has 

2Not including device drivers and data structures. 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 
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Figure 1: The approximate layout of Polly’s environ- 
ment (not to scale), and its coordinate system. 

used declarations about the environment (constraints) 

In next section, I will discuss some of the useful prop- 

to progressively optimize it until the specialized system 

erties of Polly’s environment and allude to the transfor- 

is obtained. If we can “solve” for the declarations and 
associated optimizations which derive a system from a 

mations which they allow. Then I will discuss the actual 

more general system, then we can reuse those optimiza- 
tions in the design of future systems. Space precludes 

design of the system, including abbreviated forms of the 

either a formal treatment of this approach or detailed 
analyses. See [Horswill, 1993a] or [Horswill, 1993131 for 

constraint derivations for parts of the visual system. Fi- 

detailed discussions. 

nally, I will discusses the performance and failure modes 
of the system in some detail and close with conclusions. 

Computational properties of office 
environments 

Office buildings are actively structured to make nav- 
igation easier [Passini, 19841. The fact that they are 
structured as open spaces connected by networks of cor- 
ridors means that much of the navigation problem can 
be solved by corridor following. In particular, we can 
reduce the problem of finding paths in space to find- 
ing paths in the graph of corridors. The AI lab is even 
simpler because the corridor graph has a grid structure, 
and so we can attach coordinates to the verticies of the 
graph and use difference reduction to get from one pair 
of coordinates to another. 

Determining one’s position in the grid is also made 
easier by special properties of office environments: the 
lighting of ofhces is generally controlled; the very nar- 
rowness of their corridors constrains the possible view- 
points from which an agent can see a landmark within 
the corridors. I will refer to this latter property as 
the constant viewpoint constraint: that the configura- 
tion space of the robot is restricted so that a landmark 
can only be viewed from a small number of directions. 
These properties make the recognition of landmarks in a 
corridor an easier problem than the fully general recog- 
nition problem. Thus very simple mechanisms often 
suffice. 

Another useful property of office buildings is that 
they are generally carpeted and their carpets tend to 

Figure 2: Portion of visual system devoted to naviga- 
tion. 

be either regularly textured or not textured at all. The 
predictability of the texturing of the carpet means that 
any region of the image which isn’t textured like the car- 

Finally, office buildings have the useful property that 

pet is likely an object resting on the ground (or an ob- 
ject resting on an object resting on the ground). Thus 

they have flat floors and so objects which are farther 

obstacle detection can be reduced to carpet detection, 
which may be a simpler problem admitting simpler so- 

away will appear higher in the image, provided that the 

lutions. In the case of the MIT AI lab, the carpet has 
no texture and so a texture dectector suffices for find- 

objects rest on the floor. 

ing obstacles. We will refer to this as the buckground- 

This provides a very simple 

texture constraint (see [Horswill, 1993a] for a more de- 
tailed discussion). 

way of determining the rough depth of such an object. 
We will refer to this as the ground-plane constraint: that 
all obstacles rest on a flat floor (see [Horswill, 1993a]). 

Architecture 

Conceptually, Polly consists of a set of parallel processes 
connected with fixed links (see [Brooks, 1986][Agre and 
Chapman, 1987][R osenschein and Kaelbling, 19861 for 
examples of this type of methodology)). The actual 
implementation is a set of Scheme procedures, roughly 
one per process, with variables used to simulate wires. 
On each clock tick (66ms), the robot grabs a new image, 
runs each process in sequence to recompute all visual 
system outputs, and computes a new motor command 
which is fed to the base computer. 

Physically, the robot consists of an RWI B12 robot 
base which houses the motors and motor control logic, a 
voice synthesizer, a front panel for control, a serial port 
for downloading, a TMS320C30-based DSP board (the 
main computer), a frame grabber, and a microprocessor 
for servicing peripherals. All computation is done on 
board. 

Visual system 
The visual system processes a 64 x 48 image every 66ms 
and generates a large number “percepts” from it (see 
figure 3) which are updated continuously. Most of these 
are related to navigation, although some are devoted 
to person detection or sanity checking of the image. 
Because of space limitations, we will restrict ourselves 
to the major parts of the navigation section. 
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open-left? open-region? person-direction 
open-right? blind? wall-ahead? 
blocked? light-floor? wall-far-ahead? 
left-turn? dark-floor? vanishing-point 
right-turn? person-ahead? farthest-direction 

Figure 3: Partial list of percepts generated by the visual 
system. 

The central pipeline in figure 2 (“smoothing” . . . 
“compress map”) computes depth information. The 
major representation used here is a radial depth map, 
that is, a map from direction to distance, similar to the 
output of a sonar ring. Computing depth is a notori- 
ously difficult problem. The problem is greatly simpli- 
fied for Polly by the use of domain knowledge. By the 
ground plane constraint, we can use height in the image 
plane as a measure of distance. Thus the system3 

can be substituted for any system which computes a 
radial depth map, where F/G is any system which does 
figure/ground separation (labeling of each pixel as fig- 
ure or background), and RDM is a transformation from 
a bitmap to a vector defined by 

RDM(z) = min{ ylthe point (z, y) isn’t floor} 

The effect of this is to reduce the problem of depth 
recovery to the figure-ground problem. The figure- 
ground problem is, if anything, more difficult than 
the depth-recovery problem in the general case so one 
might expect this to be a bad move. However, by the 
background-texture constraint, we can use any oper- 
ator which responds to the presence of texture. Polly 
presently uses a simple edge detector (thresholded mag- 
nitude of the intensity gradient): 

The visual system then compresses the depth map 
into three values, left-distance, right-distance, 
and center-distance, which give the closest distance 
on the left side of the image, right side, and the center 
third, respectively. Other values are then derived from 
these. For example, open-left? and open-right? are 
true when the corresponding distance is over threshold. 
left-turn? and right-turn? are true when the depth 
map is open on the correct side and the robot is aligned 
with the corridor. 

The visual system also generates the vanishing point 
of the corridor. Bellutta et al [Bellutta et al., 19891 
describe a system which extracts vanishing points by 
running an edge finder, extracting straight line seg- 
ments, and performing 2D clustering on the pairwise 

3Here the + y s mbol is used to denote input from the 
sensors, while + denotes signals moving within the system. 

Constraint Computational problem 
Ground plane Depth perception 

Figure 4: Constraints assumed by the visual system 
and the problems they helped to simplify. Note that 
“known camera tilt” is more a constraint on the agent, 
than on the habitat. 

intersections of the edge segments. We can represent it 
schematically as: 

3 edges --+ lines --+ intersect + cluster -+ 

We can simplify the system by making stronger assump- 
tions about the environment. We can remove the step 
of grouping edge pixels into segments by treating each 
edge pixel as its own tiny segment. This will weight 
longer lines more strongly, so the lines of the corridor 
must dominate the scene for this to work properly. If 
the edges are strong, then a simple edge detector will 
suffice. Polly uses a gradient threshold detector. If the 
tilt-angle of the camera is held constant by the camera 
mount, then the vanishing point will always have the 
same y coordinate, so we can reduce the clustering to 
a 1D problem. Finally, if we assume that the positions 
and orientations of the non-corridor edges are uniformly 
distributed, then we can replace the clustering opera- 
tion, which looks for modes, the mean. After all these 
optimizations, we have the following system: 

* 101 --+ y intersect -+ Z -+ 

The system first computes the gradient threshold edges, 
then intersects the tangent line of each edge pixel with 
the horizontal line in which the vanishing point is known 
to lie, then computes the mean of the x coordinate of 
the intersections. The variance is also reported as a 
confidence measure. 

The constraints assumed by these systems are sum- 
marized in figure 4. The discussion here has been nec- 
essarily brief. For a more detailed derivation, see [Hor- 
swill, 1993a]. 

Low-level navigation 
The robot’s motion is controlled by three parallel sys- 
tems. The distance control system drives forward with 
a velocity of a(center-distance-dst,p), where dstop is 
the threshold distance for braking and (Y is a gain pa- 
rameter. Note that it will back up if it overshoots or if it 
is aggressively approached. The corridor follower drives 
the turning motor so as to keep the vanishing point in 
the middle of the screen and keep left-distance and 
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Figure 5: Example place frames. Figure 6: Architecture of the complete navigation sys- 
tem. 

right-distance equal. The corridor follower switches 
into wall-following mode (keeping the wall at a constant 
distance) when only sees one wall. Finally, the turn unit 
drives the base in open-loop turns when instructed to 
by higher-level systems. The corridor follower is over- 
ridden during open-loop turns. During large turns, the 
distance control system inhibits forward motion so as 
to avoid suddenly turning into a wall. For more de- 
tailed of the low-level navigation system discussion, see 
[Horswill, 1993b]. 

all the frames and find the best match at 15Hz using 
only a fraction of the CPU. 

Place recognition 
Polly generally runs in the corridors and open spaces 
of the 7th floor of the AI lab at MIT. It keeps track of 
its position by recognizing landmarks and larger-scale 
“districts,” which are given to it in advance. The lab, 
and some of its landmarks are shown in figure 1. 

The system can also recognize large-scale “districts” 
and correct its position estimate even if it cannot deter- 
mine exactly where it is. There is evidence that humans 
use such information (see [Lynch, 1960]). The robot 
presently recognizes the two long east/west corridors 
as districts. For example, when the robot is driving 
west and sees a left turn, it can only be in the southern 
ew corridor, so its y coordinate must be 10, regardless 
of its x position. This allows to robot to quickly re- 
cover from getting lost. At present, the recognition of 
districts is implemented as a separate computation, but 
I intend to fold it into the frame system. 

igh-level navigation 

The corridors of the lab provide a great deal of 
natural constraint on the recognition of landmarks. 
Since corridors run in only two perpendicular direc- 
tions, which we will arbitrarily designate as north-south 
(ns) and east-west (ew), they form natural coordinate 
axes for representing position. The robot’s base pro- 
vides rough rotational odometry which is good enough 
for the robot to distinguish which of four directions it 
is moving in, and so, in what type of corridor it must 
be. 

Each distinctive place in the lab is identified by a 
pair of qualitative coordinates, shown in the figure. 
These coordinates are not metrically accurate, but they 
do preserve the ordering of places along each of the 
axes. Information about places is stored in an asso- 
ciative memory which is exhaustively searched on ev- 
ery clock tick (66ms). The memory consists of a set 
of frame-like structures, one per possible view of each 
landmark (see figure 5). Each frame gives the ex- 
pected appearance of a place from a particular direc- 
tion (north/south/east/west). Frames contain a place 
name, qualitative coordinates, and a direction and 
some specification of the landmark’s appearance: ei- 
ther a 16 x 12 grey-scale image or a set of qualitative 
features (left-turn, right-turn, wall, dark-floor, light- 
floor). No explicit connectivity information is repre- 
sented. Frames can also be tagged with a speech to 
give during a tour or an open-loop turn to perform. 

By default, the corridor follower is in control of the 
robot at all times. The corridor follower will always 
attempt to go forward and avoid obstacles unless it 
is overridden. Higher-level navigation is implemented 
by a set of independent processes which are parasitic 
upon the corridor follower. These processes control the 
robot by enabling or disabling motion, and by forcing 
open-loop turns. The navigator unit chooses corridors 
by performing difference reduction of the (qualitative) 
goal coordinates and the present coordinates. When 
there is a positive error in the y coordinate, it will at- 
tempt to drive south, or north for negative error, and 
so on. This technique has the advantages of being very 
simple to implement and very tolerant of place recog- 
nition errors. If a landmark is missed, the system need 
not replan its path. When the next landmark in the 
corridor is noticed, it will automatically return to the 
missed landmark. The “unwedger” unit forces the robot 
to turn when the corridor follower is unable to move 
for a long period of time (2 seconds). Finally, a set 
of action-sequencers (roughly plan executives for hand- 
written plans) are used to implement tour giving and 
operations such as docking. The sequencers execute a 
language of high level commands such as “go to place” 
which are implemented by sending commands to lower- 
level modules such as the navigator. 

Performance 
While at first glance, this may seem to be an in- At present the system runs at 15Hz, but is I/O bound. 

efficient mechanism, it is in fact quite compact. The The navigation system can safely run the robot at up 
complete set of frames for the 7th floor requires ap- to 1.5m/s, however, the base becomes unstable at that 
proximately 1KByte of storage. The system can scan speed. The system is very robust, particularly the low- 
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level locomotion system, which has seen hundreds of 
hours of service. The place recognition and navigation 
systems are newer and so less well tested. The fail- 
ure modes of the component systems are summarized 
below. 

Low-level navigation 
All locomotion problems were obstacle detection prob- 
lems. The corridor follower runs on all floors of the 
AI lab building on which it has been tested (floors 3-9) 
except for the 9th floor, which has very shiny floors; 
there the system brakes for the reflections of the over- 
head lights in the floor. The present system also has 
no memory and so cannot brake for an object unless 
it is actually in its field of view. The system’s major 
failure mode is braking for shadows. If shadows are suf- 
ficiently strong they will cause the robot to brake when 
there is in fact no obstacle. This is less of a problem 
than one would expect because shadows are generally 
quite diffuse and so will not necessarily trigger the edge 
detector. Finally, several floors have multiple carpets, 
each with a different color. The boundaries between 
these carpets can thus be mistaken for obstacles. This 
problem was dealt with by explicitly recognizing the 
boundary when directly approaching it and informing 
the edge detector to ignore horizontal lines. 

The system has also been tested recently at Brown 
university. There the robot had serious problems with 
light levels, but performed well where there was suffi- 
cient light for the camera. In some areas the robot had 
problems because the boundary between the floor and 
the walls was too weak to be picked up by the edge 
detector. We would expect any vision system to have 
problems in these cases however. 

Place recognition 
Place recognition is the weakest part of the system. 
While recognition by matching images is quite general, 
it is fragile. It is particularly sensitive to changes in 
the world. If a chair is in view when a landmark tem- 
plate is photographed, then it must continue to be in 
view, and in the same place and orientation, forever. 
If the chair moves, then the landmark becomes unrec- 
ognizable until a new view is taken. Another problem 
is that the robot’s camera is pointed at the floor and 
there isn’t very much interesting to be seen there. For 
these reasons, place recognition is restricted corridor 
intersections represented by feature frames, since they 
are more stable over time. The one exception is the 
kitchen which is recognized using images. In ten trials, 
the robot recognized the kitchen eight times while going 
west, and ten times while going east. Westward recog- 
nition of the kitchen fails completely when the water 
bottles in the kitchen doorway are moved however. 

Both methods consistently miss landmarks when 
there is a person standing the the way. This often leads 
it to miss a landmark immediately after picking up a 
visitor. They also fail if the robot is in the process of 

readjusting its course after driving around an obstacle 
or if the corridor is very wide and has a large amount 
of junk in it. Both these conditions cause the constant- 
viewpoint constraint to fail. The former can sometimes 
cause the robot to hallucinate a turn because one of the 
walls is invisible, although this is rare. 

Recognition of districts is very reliable, although it 
can sometimes become confused if the robot is driven 
in a cluttered open space rather than a corridor. 

High-level navigation 

High-level navigation performance is determined by the 
accuracy of place recognition. In general, the system 
works flawlessly unless the robot gets lost. For exam- 
ple, the robot has often run laps (implemented by alter- 
nately giving opposite corners as goals to the navigator) 
for over an hour without any navigation faults. When 
the robot gets lost, the navigator will generally over- 
shoot and turn around. If the robot gets severely lost, 
the navigator will flail around until the place recogni- 
tion system gets reoriented. The worst failure mode is 
when the place recognition system thinks that it is east 
of its goal when it is actually at the western edge of 
the building. In this case, the navigator unit and the 
unwedger fight each other, making opposite course cor- 
rections. The place recognition system should probably 
be modified to notice that it is lost in such situations so 
that the navigator will stop making course corrections 
until the place recognition system relocks. This has not 
yet been implemented however. 

Getting lost is a more serious problem for the action 
sequencers, since they are equivalent to plans but there 
is no mechanism for replanning which a plan step fails. 
This can be mitigated by using the navigator to exe- 
cute individual plan steps, which amounts to shifting 
responsibility from plan-time to run-time. 

Conclusions 

Many vision-based mobile robots have been devel- 
oped in the past (see for example [Kosaka and Kak, 
1992][Kriegman et al., 871 [Crisman, 1992][Turk et al., 
19871). The unusual aspects of Polly are its relatively 
large behavioral repertoire, simple design, and princi- 
pled use of special properties of its environment. 

Polly’s efficiency and reliability are due to a number 
of factors. Specialization to a task allows the robot to 
compute only the information it needs. Specialization 
to the environment allows the robot to substitute sim- 
ple computations for more expensive ones. The use of 
multiple strategies in parallel reduces the likelihood of 
catastrophic failure (see [Horswill and Brooks, 1988]). 
Thus if the vanishing point computation generates bad 
data, the depth-balancing strategy will compensate for 
it and the distance control system will prevent colli- 
sions until the vanishing point is corrected. Finally, 
the speed of its perception/control allows it to rapidly 
recover from errors. This relaxes the need for perfect 
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perception and allows simpler perceptual and control 
strategies to be used. 

Scalability is a major worry for all approaches to AI. 
We don’t know whether an approach will scale until we 
try to scale it and so the field largely runs on existence 
proofs. Polly is an existence proof that a robust system 
with a large behavioral repertoire can be built using 
simple components which are specialized to their task 
and environment, but it does not show how far we can 
extend the approach. 

One of the benefits of making constraints explicit and 
putting them in correspondence with transformations 
is that it gives us some degree of leverage in generaliz- 
ing our designs. Although space precluded a detailed 
analysis of Polly’s systems, we can see from the brief 
analysis of the low level navigation system that the role 
of the background texture constraint was to simplify 
the figure ground problem by allowing the substitution 
of a edge detector. This tells us several useful things. 
First, any linear filter restricted to the right band will 
do (see [Horswill, 1993a]). Second, if the environment 
does not satisfy the BTC, then any other transforma- 
tion which simplifies figure ground will also do. We 
can even use multiple figure/ground systems and switch 
between them depending on the properties of the envi- 
ronment. Another possibility is two implement both 
the general system and a specialized system and switch 
at the behavioral level. This effectively moves the opti- 
mization from compile-time to run-time and makes the 
specialized system a sort of a hardware accelerator on 
a par with a cache memory. 

Thus specialized systems need not simply be hacks. 
We can learn things from the design of one specialized 
system which are applicable to the designs of other sys- 
tems, even traditional systems. 
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