
Polly: A Visisn- ased Artificial Agent

Ian Horswill
MIT AI Lab

545 Technology Square
Cambridge, MA 02139

ian@ai.mit.edu

Abstract

In this paper I will describe Polly, a low cost vision-
based robot that gives primitive tours. The system
is very simple, robust and efficient, and runs on a
hardware platform which could be duplicated for
less than $lOK US. The system was built to ex-
plore how knowledge about the structure the envi-
ronment can be used in a principled way to simplify
both visual and motor processing. I will argue that
very simple and efficient visual mechanisms can of-
ten be used to solve real problems in real (unmod-
ified) environments in a principled manner. I will
give an overview of the robot, discuss the prop-
erties of its environment, show how they can be
used to simplify the design of the system, and dis-
cuss what lessons can drawn for the design of other
systems.r

Introduction
In this paper, I will describe Polly, a simple artificial
agent that uses vision to give primitive tours of the 7th
floor of the MIT AI lab (see figure 1). Polly is built
from minimalist machinery that is matched to its task
and environment. It is an example of Agre’s principle
of machinery parsimony [Agre, 1988], and is intended
to demonstrate that very simple visual machinery can
be used to solve real tasks in real, unmodified environ-
ments in a principled manner.

Polly roams the hallways of the laboratory looking
for visitors. When someone approaches the robot, it
stops and introduces itself and offers the vistor a tour,
asking them to answer by waving their foot around (the
robot can only see the person’s legs and feet). When the
person waves their foot, the robot leads them around
the lab, recognizing and describing places as it comes
to them.

‘Support for this research was provided in part by the
University Research Initiative under Office of Naval Re-
search contract N00014-86-K-0685, and in part by the Ad-
vanced Research Projects Agency under Office of Naval Re-
search contract N00014-85-K-0124.

824 Horswill

Polly is very fast and simple. Its sensing and con-
trol systems run at 15Hz, so all percepts and motor
commands are updated every 66ms. It also uses very
little hardware (an equivalent robot could be built for
approximately $lOK), and consists of less than a thou-
sand lines of Scheme code. 2 All computation is done
on-board on a low-cost digital signal processor (a TI
C30 with 64KW of ram). Polly is also among the best
tested mobile robots to date, having seen hundreds of
hours of service, and has a large behavioral repertoire.

Polly falls within the task-based or active approach
to vision [Horswill, 1988][Aloimonos, 1990][Ballard,
1991][Ikeuchi and Herbert, 1990][Blake and Yuille,
19921. While the work descrived here cannot prove the
efficacy this approach, it does give an example of a large
system which performs an interesting high-level task us-
ing these sorts of techniques.

Polly’s efficiency is due to its specialization to its task
and environment. Many authors have argued that sim-
ple machinery is often sufficient for performing intelli-
gent behavior because of the special organizing struc-
tures of the environment (see, for example, [Rosen-
schein and Kaelbling, 1986][Brooks, 1986][Agre, 19881).
If we are to use such structures in a routine manner
to engineer intelligent systems, then we must be able
to isolate individual structures or properties of the en-
vironment and explain their computational rammifica-
tions. In this work, I have used the technique of step-
wise transformation to draw out the relationships be-
tween a system specialized to its environment and a
more general system. We look for a series of trans-
formations, each of which conditionally preserves be-
havior given some constraint on the environment, that
will transform the general system into the specialized
system. The resulting derivation of the specialized
system from the general system makes the additional
assumptions made by the specialized system explicit.
It also makes their computational rammifications ex-
plicit by putting them in correspondence with particu-
lar transformations which simplify particular computa-
tional subproblems. In effect, we imagine that the gen-
eral system has been run through a “compiler” that has

2Not including device drivers and data structures.

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

100

N’”

t
10

0 LO 30 40 60 70 80 90 loo

Figure 1: The approximate layout of Polly’s environ-
ment (not to scale), and its coordinate system.

used declarations about the environment (constraints)

In next section, I will discuss some of the useful prop-

to progressively optimize it until the specialized system

erties of Polly’s environment and allude to the transfor-

is obtained. If we can “solve” for the declarations and
associated optimizations which derive a system from a

mations which they allow. Then I will discuss the actual

more general system, then we can reuse those optimiza-
tions in the design of future systems. Space precludes

design of the system, including abbreviated forms of the

either a formal treatment of this approach or detailed
analyses. See [Horswill, 1993a] or [Horswill, 1993131 for

constraint derivations for parts of the visual system. Fi-

detailed discussions.

nally, I will discusses the performance and failure modes
of the system in some detail and close with conclusions.

Computational properties of office
environments

Office buildings are actively structured to make nav-
igation easier [Passini, 19841. The fact that they are
structured as open spaces connected by networks of cor-
ridors means that much of the navigation problem can
be solved by corridor following. In particular, we can
reduce the problem of finding paths in space to find-
ing paths in the graph of corridors. The AI lab is even
simpler because the corridor graph has a grid structure,
and so we can attach coordinates to the verticies of the
graph and use difference reduction to get from one pair
of coordinates to another.

Determining one’s position in the grid is also made
easier by special properties of office environments: the
lighting of ofhces is generally controlled; the very nar-
rowness of their corridors constrains the possible view-
points from which an agent can see a landmark within
the corridors. I will refer to this latter property as
the constant viewpoint constraint: that the configura-
tion space of the robot is restricted so that a landmark
can only be viewed from a small number of directions.
These properties make the recognition of landmarks in a
corridor an easier problem than the fully general recog-
nition problem. Thus very simple mechanisms often
suffice.

Another useful property of office buildings is that
they are generally carpeted and their carpets tend to

Figure 2: Portion of visual system devoted to naviga-
tion.

be either regularly textured or not textured at all. The
predictability of the texturing of the carpet means that
any region of the image which isn’t textured like the car-

Finally, office buildings have the useful property that

pet is likely an object resting on the ground (or an ob-
ject resting on an object resting on the ground). Thus

they have flat floors and so objects which are farther

obstacle detection can be reduced to carpet detection,
which may be a simpler problem admitting simpler so-

away will appear higher in the image, provided that the

lutions. In the case of the MIT AI lab, the carpet has
no texture and so a texture dectector suffices for find-

objects rest on the floor.

ing obstacles. We will refer to this as the buckground-

This provides a very simple

texture constraint (see [Horswill, 1993a] for a more de-
tailed discussion).

way of determining the rough depth of such an object.
We will refer to this as the ground-plane constraint: that
all obstacles rest on a flat floor (see [Horswill, 1993a]).

Architecture

Conceptually, Polly consists of a set of parallel processes
connected with fixed links (see [Brooks, 1986][Agre and
Chapman, 1987][R osenschein and Kaelbling, 19861 for
examples of this type of methodology)). The actual
implementation is a set of Scheme procedures, roughly
one per process, with variables used to simulate wires.
On each clock tick (66ms), the robot grabs a new image,
runs each process in sequence to recompute all visual
system outputs, and computes a new motor command
which is fed to the base computer.

Physically, the robot consists of an RWI B12 robot
base which houses the motors and motor control logic, a
voice synthesizer, a front panel for control, a serial port
for downloading, a TMS320C30-based DSP board (the
main computer), a frame grabber, and a microprocessor
for servicing peripherals. All computation is done on
board.

Visual system
The visual system processes a 64 x 48 image every 66ms
and generates a large number “percepts” from it (see
figure 3) which are updated continuously. Most of these
are related to navigation, although some are devoted
to person detection or sanity checking of the image.
Because of space limitations, we will restrict ourselves
to the major parts of the navigation section.

Vision Processing 825

open-left? open-region? person-direction
open-right? blind? wall-ahead?
blocked? light-floor? wall-far-ahead?
left-turn? dark-floor? vanishing-point
right-turn? person-ahead? farthest-direction

Figure 3: Partial list of percepts generated by the visual
system.

The central pipeline in figure 2 (“smoothing” . . .
“compress map”) computes depth information. The
major representation used here is a radial depth map,
that is, a map from direction to distance, similar to the
output of a sonar ring. Computing depth is a notori-
ously difficult problem. The problem is greatly simpli-
fied for Polly by the use of domain knowledge. By the
ground plane constraint, we can use height in the image
plane as a measure of distance. Thus the system3

can be substituted for any system which computes a
radial depth map, where F/G is any system which does
figure/ground separation (labeling of each pixel as fig-
ure or background), and RDM is a transformation from
a bitmap to a vector defined by

RDM(z) = min{ ylthe point (z, y) isn’t floor}

The effect of this is to reduce the problem of depth
recovery to the figure-ground problem. The figure-
ground problem is, if anything, more difficult than
the depth-recovery problem in the general case so one
might expect this to be a bad move. However, by the
background-texture constraint, we can use any oper-
ator which responds to the presence of texture. Polly
presently uses a simple edge detector (thresholded mag-
nitude of the intensity gradient):

The visual system then compresses the depth map
into three values, left-distance, right-distance,
and center-distance, which give the closest distance
on the left side of the image, right side, and the center
third, respectively. Other values are then derived from
these. For example, open-left? and open-right? are
true when the corresponding distance is over threshold.
left-turn? and right-turn? are true when the depth
map is open on the correct side and the robot is aligned
with the corridor.

The visual system also generates the vanishing point
of the corridor. Bellutta et al [Bellutta et al., 19891
describe a system which extracts vanishing points by
running an edge finder, extracting straight line seg-
ments, and performing 2D clustering on the pairwise

3Here the + y s mbol is used to denote input from the
sensors, while + denotes signals moving within the system.

Constraint Computational problem
Ground plane Depth perception

Figure 4: Constraints assumed by the visual system
and the problems they helped to simplify. Note that
“known camera tilt” is more a constraint on the agent,
than on the habitat.

intersections of the edge segments. We can represent it
schematically as:

3 edges --+ lines --+ intersect + cluster -+

We can simplify the system by making stronger assump-
tions about the environment. We can remove the step
of grouping edge pixels into segments by treating each
edge pixel as its own tiny segment. This will weight
longer lines more strongly, so the lines of the corridor
must dominate the scene for this to work properly. If
the edges are strong, then a simple edge detector will
suffice. Polly uses a gradient threshold detector. If the
tilt-angle of the camera is held constant by the camera
mount, then the vanishing point will always have the
same y coordinate, so we can reduce the clustering to
a 1D problem. Finally, if we assume that the positions
and orientations of the non-corridor edges are uniformly
distributed, then we can replace the clustering opera-
tion, which looks for modes, the mean. After all these
optimizations, we have the following system:

* 101 --+ y intersect -+ Z -+

The system first computes the gradient threshold edges,
then intersects the tangent line of each edge pixel with
the horizontal line in which the vanishing point is known
to lie, then computes the mean of the x coordinate of
the intersections. The variance is also reported as a
confidence measure.

The constraints assumed by these systems are sum-
marized in figure 4. The discussion here has been nec-
essarily brief. For a more detailed derivation, see [Hor-
swill, 1993a].

Low-level navigation
The robot’s motion is controlled by three parallel sys-
tems. The distance control system drives forward with
a velocity of a(center-distance-dst,p), where dstop is
the threshold distance for braking and (Y is a gain pa-
rameter. Note that it will back up if it overshoots or if it
is aggressively approached. The corridor follower drives
the turning motor so as to keep the vanishing point in
the middle of the screen and keep left-distance and

826 Horswill

Figure 5: Example place frames. Figure 6: Architecture of the complete navigation sys-
tem.

right-distance equal. The corridor follower switches
into wall-following mode (keeping the wall at a constant
distance) when only sees one wall. Finally, the turn unit
drives the base in open-loop turns when instructed to
by higher-level systems. The corridor follower is over-
ridden during open-loop turns. During large turns, the
distance control system inhibits forward motion so as
to avoid suddenly turning into a wall. For more de-
tailed of the low-level navigation system discussion, see
[Horswill, 1993b].

all the frames and find the best match at 15Hz using
only a fraction of the CPU.

Place recognition
Polly generally runs in the corridors and open spaces
of the 7th floor of the AI lab at MIT. It keeps track of
its position by recognizing landmarks and larger-scale
“districts,” which are given to it in advance. The lab,
and some of its landmarks are shown in figure 1.

The system can also recognize large-scale “districts”
and correct its position estimate even if it cannot deter-
mine exactly where it is. There is evidence that humans
use such information (see [Lynch, 1960]). The robot
presently recognizes the two long east/west corridors
as districts. For example, when the robot is driving
west and sees a left turn, it can only be in the southern
ew corridor, so its y coordinate must be 10, regardless
of its x position. This allows to robot to quickly re-
cover from getting lost. At present, the recognition of
districts is implemented as a separate computation, but
I intend to fold it into the frame system.

igh-level navigation

The corridors of the lab provide a great deal of
natural constraint on the recognition of landmarks.
Since corridors run in only two perpendicular direc-
tions, which we will arbitrarily designate as north-south
(ns) and east-west (ew), they form natural coordinate
axes for representing position. The robot’s base pro-
vides rough rotational odometry which is good enough
for the robot to distinguish which of four directions it
is moving in, and so, in what type of corridor it must
be.

Each distinctive place in the lab is identified by a
pair of qualitative coordinates, shown in the figure.
These coordinates are not metrically accurate, but they
do preserve the ordering of places along each of the
axes. Information about places is stored in an asso-
ciative memory which is exhaustively searched on ev-
ery clock tick (66ms). The memory consists of a set
of frame-like structures, one per possible view of each
landmark (see figure 5). Each frame gives the ex-
pected appearance of a place from a particular direc-
tion (north/south/east/west). Frames contain a place
name, qualitative coordinates, and a direction and
some specification of the landmark’s appearance: ei-
ther a 16 x 12 grey-scale image or a set of qualitative
features (left-turn, right-turn, wall, dark-floor, light-
floor). No explicit connectivity information is repre-
sented. Frames can also be tagged with a speech to
give during a tour or an open-loop turn to perform.

By default, the corridor follower is in control of the
robot at all times. The corridor follower will always
attempt to go forward and avoid obstacles unless it
is overridden. Higher-level navigation is implemented
by a set of independent processes which are parasitic
upon the corridor follower. These processes control the
robot by enabling or disabling motion, and by forcing
open-loop turns. The navigator unit chooses corridors
by performing difference reduction of the (qualitative)
goal coordinates and the present coordinates. When
there is a positive error in the y coordinate, it will at-
tempt to drive south, or north for negative error, and
so on. This technique has the advantages of being very
simple to implement and very tolerant of place recog-
nition errors. If a landmark is missed, the system need
not replan its path. When the next landmark in the
corridor is noticed, it will automatically return to the
missed landmark. The “unwedger” unit forces the robot
to turn when the corridor follower is unable to move
for a long period of time (2 seconds). Finally, a set
of action-sequencers (roughly plan executives for hand-
written plans) are used to implement tour giving and
operations such as docking. The sequencers execute a
language of high level commands such as “go to place”
which are implemented by sending commands to lower-
level modules such as the navigator.

Performance
While at first glance, this may seem to be an in- At present the system runs at 15Hz, but is I/O bound.

efficient mechanism, it is in fact quite compact. The The navigation system can safely run the robot at up
complete set of frames for the 7th floor requires ap- to 1.5m/s, however, the base becomes unstable at that
proximately 1KByte of storage. The system can scan speed. The system is very robust, particularly the low-

Vision Processing 827

level locomotion system, which has seen hundreds of
hours of service. The place recognition and navigation
systems are newer and so less well tested. The fail-
ure modes of the component systems are summarized
below.

Low-level navigation
All locomotion problems were obstacle detection prob-
lems. The corridor follower runs on all floors of the
AI lab building on which it has been tested (floors 3-9)
except for the 9th floor, which has very shiny floors;
there the system brakes for the reflections of the over-
head lights in the floor. The present system also has
no memory and so cannot brake for an object unless
it is actually in its field of view. The system’s major
failure mode is braking for shadows. If shadows are suf-
ficiently strong they will cause the robot to brake when
there is in fact no obstacle. This is less of a problem
than one would expect because shadows are generally
quite diffuse and so will not necessarily trigger the edge
detector. Finally, several floors have multiple carpets,
each with a different color. The boundaries between
these carpets can thus be mistaken for obstacles. This
problem was dealt with by explicitly recognizing the
boundary when directly approaching it and informing
the edge detector to ignore horizontal lines.

The system has also been tested recently at Brown
university. There the robot had serious problems with
light levels, but performed well where there was suffi-
cient light for the camera. In some areas the robot had
problems because the boundary between the floor and
the walls was too weak to be picked up by the edge
detector. We would expect any vision system to have
problems in these cases however.

Place recognition
Place recognition is the weakest part of the system.
While recognition by matching images is quite general,
it is fragile. It is particularly sensitive to changes in
the world. If a chair is in view when a landmark tem-
plate is photographed, then it must continue to be in
view, and in the same place and orientation, forever.
If the chair moves, then the landmark becomes unrec-
ognizable until a new view is taken. Another problem
is that the robot’s camera is pointed at the floor and
there isn’t very much interesting to be seen there. For
these reasons, place recognition is restricted corridor
intersections represented by feature frames, since they
are more stable over time. The one exception is the
kitchen which is recognized using images. In ten trials,
the robot recognized the kitchen eight times while going
west, and ten times while going east. Westward recog-
nition of the kitchen fails completely when the water
bottles in the kitchen doorway are moved however.

Both methods consistently miss landmarks when
there is a person standing the the way. This often leads
it to miss a landmark immediately after picking up a
visitor. They also fail if the robot is in the process of

readjusting its course after driving around an obstacle
or if the corridor is very wide and has a large amount
of junk in it. Both these conditions cause the constant-
viewpoint constraint to fail. The former can sometimes
cause the robot to hallucinate a turn because one of the
walls is invisible, although this is rare.

Recognition of districts is very reliable, although it
can sometimes become confused if the robot is driven
in a cluttered open space rather than a corridor.

High-level navigation

High-level navigation performance is determined by the
accuracy of place recognition. In general, the system
works flawlessly unless the robot gets lost. For exam-
ple, the robot has often run laps (implemented by alter-
nately giving opposite corners as goals to the navigator)
for over an hour without any navigation faults. When
the robot gets lost, the navigator will generally over-
shoot and turn around. If the robot gets severely lost,
the navigator will flail around until the place recogni-
tion system gets reoriented. The worst failure mode is
when the place recognition system thinks that it is east
of its goal when it is actually at the western edge of
the building. In this case, the navigator unit and the
unwedger fight each other, making opposite course cor-
rections. The place recognition system should probably
be modified to notice that it is lost in such situations so
that the navigator will stop making course corrections
until the place recognition system relocks. This has not
yet been implemented however.

Getting lost is a more serious problem for the action
sequencers, since they are equivalent to plans but there
is no mechanism for replanning which a plan step fails.
This can be mitigated by using the navigator to exe-
cute individual plan steps, which amounts to shifting
responsibility from plan-time to run-time.

Conclusions

Many vision-based mobile robots have been devel-
oped in the past (see for example [Kosaka and Kak,
1992][Kriegman et al., 871 [Crisman, 1992][Turk et al.,
19871). The unusual aspects of Polly are its relatively
large behavioral repertoire, simple design, and princi-
pled use of special properties of its environment.

Polly’s efficiency and reliability are due to a number
of factors. Specialization to a task allows the robot to
compute only the information it needs. Specialization
to the environment allows the robot to substitute sim-
ple computations for more expensive ones. The use of
multiple strategies in parallel reduces the likelihood of
catastrophic failure (see [Horswill and Brooks, 1988]).
Thus if the vanishing point computation generates bad
data, the depth-balancing strategy will compensate for
it and the distance control system will prevent colli-
sions until the vanishing point is corrected. Finally,
the speed of its perception/control allows it to rapidly
recover from errors. This relaxes the need for perfect

828 Horswill

perception and allows simpler perceptual and control
strategies to be used.

Scalability is a major worry for all approaches to AI.
We don’t know whether an approach will scale until we
try to scale it and so the field largely runs on existence
proofs. Polly is an existence proof that a robust system
with a large behavioral repertoire can be built using
simple components which are specialized to their task
and environment, but it does not show how far we can
extend the approach.

One of the benefits of making constraints explicit and
putting them in correspondence with transformations
is that it gives us some degree of leverage in generaliz-
ing our designs. Although space precluded a detailed
analysis of Polly’s systems, we can see from the brief
analysis of the low level navigation system that the role
of the background texture constraint was to simplify
the figure ground problem by allowing the substitution
of a edge detector. This tells us several useful things.
First, any linear filter restricted to the right band will
do (see [Horswill, 1993a]). Second, if the environment
does not satisfy the BTC, then any other transforma-
tion which simplifies figure ground will also do. We
can even use multiple figure/ground systems and switch
between them depending on the properties of the envi-
ronment. Another possibility is two implement both
the general system and a specialized system and switch
at the behavioral level. This effectively moves the opti-
mization from compile-time to run-time and makes the
specialized system a sort of a hardware accelerator on
a par with a cache memory.

Thus specialized systems need not simply be hacks.
We can learn things from the design of one specialized
system which are applicable to the designs of other sys-
tems, even traditional systems.

References
[Agre and Chapman, 19871 Philip E. Agre and David

Chapman. Pengi: An implementation of a theory of
activity. In Proceedings of the Sixth National Confer-
ence on Artificial Intelligence, pages 268-272, 1987.

[Agre, 19881 Philip E. Agre. The dynamic structure of
everyday life. Technical Report 1085, October 1988.

[Aloimonos, 19901 John Aloimonos. Purposive and
qualitative active vision. In DARPA Image Under-
standing Workshop, 1990.

[Ballard, 19911 D ana H. Ballard. Animate vision. Ar-
tificial Intelligence, 48(1):57-86, 1991.

[Bellutta et al., 19891 P. Bellutta, 6. Collini, A. Verri,
and V. Torre. Navigation by tracking vanishing
points. In AAAI Spring Symposium on Robot Navi-
gation, pages 6-10, Stanford University, March 1989.
AAAI.

[Blake and Yuille, 19921 Andrew Blake
and Alan Yuille, editors. Active Vision. MIT Press,
Cambridge, MA, 1992.

[Brooks, 19861 Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal of
Robotics and Automoation, 2(1):14-23, March 1986.

[Crisman, 19921 Jill D. Crisman. Color Region Track-
ing for Vehicle Guidance, chapter 7. In Blake and
Yuille [1992], 1992.

[Norswill and Brooks, 1988] Ian Horswill and Rodney
Brooks. Situated vision in a dynamic environment:
Chasing objects. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, August
1988.

[Horswill, 19881 I an D. Horswill. Reactive navigation
for mobile robots. Master’s thesis, Massachusetts In-
stitute of Technology, June 1988.

[Horswill, 1993a] Ian Horswill. Analysis of adaptation
and environment. In submission, 1993.

[Horswill, 1993131 Ian H orswill. Specialization of percep-
tual processes. PhD thesis, Massachusetts Institute
of Technology, Cambridge, 1993. forthcoming.

[Ikeuchi and Herbert, 19901 Katsushi Ikeuchi and Mar-
tial Herbert. Task oriented vision. In DARPA Image
Understanding Workshop, 1990.

[Kosaka and Kak, 19921 A. Kosaka and A. C. Kak.
Fast vision-guided mobile robot navigation using
model-based reasoning and prediction of uncertain-
ties. Computer Vision, Graphics, and Image Pro-
cessing, 56(3), September 1992.

[Kriegman et al., 871 David J.
Kriegman, Ernst Triendl, and Tomas 0. Binford. A
mobile robot: Sensing, planning and locomotion. In
1987 IEEE Internation Conference on Robotics and
Automation, pages 402-408. IEEE, March 87.

[Lynch, 19601 Kevin Lynch. The Image of the City.
MIT Press, 1960.

[Passini, 19841 Romedi Passini. Wayfinding in Archi-
tecture, volume 4 of Environmental Design Series.
Van Norstrand Reinhold, New York, 1984.

[Rosenschein and Kaelbling, 19861 Stanley J. Rosen-
schein and Leslie Pack Kaelbling. The synthesis
of machines with provable epistemic properties. In
Joseph Halpern, editor, Proc. Conf. on Theoretical
Aspects of Reasoning about Knowledge, pages 83-98.
Morgan Kaufmann, 1986.

[Turk et al., 19871 Matthew A. Turk, David G. Mor-
genthaler, Keith Gremban, and Martin Marra. Video
road following for the autonomous land vehicle. In
1987 IEEE Internation Conference on Robotics and
Automation, pages 273-280. IEEE, March 1987.

Vision Processing 829

