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Abstract 
This article shows how rational analysis can be used to 
minimize learning cost for a general class of statistical 
learning problems. We discuss the factors that influ- 
ence learning cost and show that the problem of effr- 
cient learning can be cast as a resource optimization 
problem. Solutions found in this way can be signifi- 
cantly more efficient than the best solutions that do not 
account for these factors. We introduce a heuristic 
learning algorithm that approximately solves this opti- 
mization problem and document its performance im- 
provements on synthetic and real-world problems. 

se1191]) of these factors to minimize learning cost. We dis- 
cuss this in the context of parametric hypothesis selection 
problems, an abstract class of statistical learning problems 
where a system must select one of a finite set of hypothe- 
sized courses of action, where the quality of each hypothesis 
is described as a function of some unknown parameters (e.g. 
[Gratch92,Greiner92,Kaelbling93,Moore94,Musick93]). 
A learning system determines and refines estimates of these 
parameters by “paying for” training examples. 

1. Introduction 
Machine learning techniques are valuable tools both in ac- 
quiring important scientific concepts and in support of deci- 
sion making under uncertainty. Unfortunately, learning can 
involve asignificant investment of resources. There may be 
monetary cost in obtaining data and computational cost in 
processing it. Usually such factors are addressed by infor- 
mal or intuitive judgements rather than a rational analysis 
of the costs and benefits of alternative learning operations. 

We show how such problems can be cast as resource opti- 
mization problems, and that solutions found in this way can 
be significantly more efficient than solutions that do not ac- 
count for the cost of gathering information (more than an or- 
der of magnitude). Surprisingly, standard hypothesis selec- 
tion algorithms do not reason about information cost, and 
are thus less efficient then they might be. We introduce a ra- 
tional hypothesis selection algorithm that approximately 
solves the resource allocation problem and empirically doc- 
ument the analytically predicted improvements in efficien- 
cy. This algorithm is quite general and can handle situations 
where the cost of processing data is initially unknown. 

There is a significant learning cost in many diverse appli- 
cation areas. In speed-up learning there is substantial cost 
associated with processing each training example [Tadepal- 
li92]). In some classification problems it is extremely ex- 
pensive to obtain data (e.g. protein folding problems) and 
it is essential to make the most effective use of what data is 
available. Somewhat paradoxically, cost is also an issue 
when there is an overabundance of data. In this case it is ex- 
pensive to use all of the data and one needs some criteria to 
decide how much data is enough to achieve a given level of 
performance [Musick93]. Finally, learning may involve 
ethical issues, as when experiments require giving poten- 
tially harmful treatments to human subjects. Under these 
circumstances it is a moral imperative to utilize as few sub- 
jects as possible and to quickly recognize and discard those 
treatments that worsen the patients condition. 

This article discusses factors that influence cost and con- 
siders how to use rational analysis (i.e., [DoylegO, Rus- 

2. Hypothesis Selection Problems 
Hypothesis selection problems are an abstract class of 
learning problems where one hypothesis must be chosen 
from a predefined set based on performance over an un- 
known distribution of problems or tasks. Performance is 
characterized by a hypothesis’ expected utility over the dis- 
tribution, which must be estimated from training data. Hy- 
pothesis selections are at the core of many machine learning 
approaches. For example, the utility problem in speed-up 
learning is a selection problem in which a problem solving 
heuristic is chosen from a set of proposed candidates, where 
expected utility is defined as the average time to solve a 
problem [Gratch92, Greiner92, Minton881. The attribute 
selection problem in classification learning is a problem of 
selecting one of a set of attributes on which to split, where 
utility is equated with information gain [Musick93]. In re- 
inforcement learning a system must select an action, where 
utility is equated with expected reward [Kaelbling93]. 

Portions of this work were performed by the Jet Propulsion Laboratory, 
California Institute of Technology, under contract with the National 
Aeronautics and Space Administration and portions at the University of 
Illinois under National Science Foundation Grant NSF-IRI-92-09394. 

Several factors affect the cost of identifying a good selec- 
tion. For example, there may be some cost in obtaining each 
training example. Furthermore, there can be additional cost 
for each hypothesis that is evaluated over a given training 
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examp1e.l The challenge is to choose examples and evalua- 
tions in such a way as to maximize the likelihood of a good 
selection with a minimum of learning cost. 

Choosing the best hypothesis is problematic as the under- 
lying probability distributions are typically unavailable. 
Rather than requiring a hypothesis selection algorithm to al- 
ways select the best hypothesis, algorithms typically obey 
some probabilistic requirement on the properties of the hy- 
pothesis that they select. Several alternative requirements 
have been proposed. In this paper we adopt theprobablyap- 
proximately correct (PAC) requirement favored by compu- 
tational learning theory [Valiant84]. Under this require- 
ment a hypothesis selection algorithm selects a hypothesis 
that with high probability is close to the best. 

The expected utility associated with a hypothesis can be 
estimated by observing its performance over a finite set of 
training examples. However, to satisfy the PAC require- 
ment an algorithm must reason about the discrepancy be- 
tween the estimated and true utility of each hypothesis. For- 
mally, let there be k hypotheses. Let Hser denote the 
expected utility of the selected hypothesis and (without loss 
of generality) let Hi, i=l ..k-1, be the expected utility for the 

remaining hypotheses. Let fiFi; be an estimate of the ex- 
pected utility of the hypothesis. The PAC requirement is 
that hypothesis estimatedto be best must be within some us- 
er-specified constant E of the best hypothesis with probabil- 
ity l-6. It suffices to bound the probability that a hypothesis 
is estimated to be worse than the selected hypothesis given 
that it is in fact better, for each of the pair-wise comparisons: 

k-l 

i=l 
1 I 6 (1) 

Thus the problem of bounding the probability of error re- 
duces to bounding the probability of error of each of the k-l 
comparisons of Hsel to Hi. 

To assess these probabilities we must adopt certain statis- 
tical assumptions. In this article we adopt the normal para- 
metric model for reasoning about statistical error. This as- 
sumes that the difference between the expected utility and 
estimated utility of a hypothesis can be accurately approxi- 
mated by a normal distribution (see [Hogg78] for an expla- 
nation of the robustness of this common assumption which 
is grounded in the Central Limit Theorem). The expected 
cost associated with processing data is also assumed to be 
normally distributed. Choosing adifferent parametric mod- 
el would change the subsequent analysis but analogous re- 
sults should hold for the conventional models. 

With the normality assumption the probabilities in Equa- 
tion 1 are a reduced to a function of the estimates, the num- 
ber of examples, n, used for each estimate, the closeness pa- 

l. For example, in classification learning a potentially large set of 
examples must be partitioned for each hypothesized split. In speed-up 
learning the learning system may have to re-solve the example problem 
for each candidate heuristic. 

rameter E, and an unknown variance term, 02. Variance 
measures how much each observation can differ from its ex- 
pected value, which can be estimated from the data.2 To 
simplify the presentation we ignore the E parameter in the 
discussion that follows ([Chien94] offers more details). For 
agiven pair-wise comparison, &, the (simplified) probabili- 
ty of incorrect selection is: 

(2) 

where the function @is the quantile function of the standard 
normal distribution. Intuitively, Equation 2 shows that the 
probability of a mistake diminishes as the difference in ex- 
pected utility between the hypotheses increases, as the num- 
ber of training examples increases, and as the variance of 
each hypothesis decreases. This relationship can be used to 
determine how many training examples to allocate to each 
comparison. If we wish to achieve a given bound of 6, then 
by simple algebra the number of examples needed for a giv- 
en pair-wise comparison is: 

c-f . 
n se’~i 

d.1 [~-i(d)]* 

= (H,,, _ Hi)* (3) 

where CD-’ is the inverse of the quantile function of the stan- 
dard normal distribution. 

While the variance and true expected utilities are un- 
known, a class of statistical approaches called sequential 
approaches has been designed for such problems [Govinda- 
rajulugl]. These techniques develop estimates of the un- 
known parameters from a small initial sample size and then 
incrementally refine these estimates after each subsequent 
training example. For example, after some number of ex- 
amples a sequential technique would estimate that the hy- 
pothesis it will eventually select is the one with the current 
highest estimated utility. Such techniques terminate sam- 
pling based on an estimate of the sufficient number of train- 
ing examples. Section 4 introduces a sequential hypothesis 
selection algorithm that uses a sequential approximation to 
Equation 3 to decide when to stop sampling. 

3. The Value of ational Learning 
The PAC requirement constrains but does not completely 
determine the behavior of a hypothesis selection algorithm. 
We would like an algorithm to satisfy the requirement with 
the minimum cost possible. Several of the factors that con- 
tribute to the cost are unknown before learning begins. For 
this reason standard (non-rational) hypothesis selection al- 

2. We “block” examples as in [Moore941 to further reduce sampling 
complexity. Blocking forms estimates by averaging the difference in 
utility between hypotheses on each observed example, which can sub- 
stantially reduce the variance in the data when hypotheses are related 
(e.g. when each hypothesis is a variant on a basic search control strate- 
gy). It is trivial to modify the algorithm to work for the case where it 
is not possible to block data. 
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Figure 1. An illustration of the difference between equal and 
optimal allocation with equal and unequal disparity indices. 

gorithms ignore these factors when making their selection. 
This section discusses the relevant factors and shows that 
they can be folded into a single value, the disparity index. 
We show that in theory an algorithm can achieve large per- 
formance improvements by exploiting this information, if 
only it were available. Comparable performance improve- 
ments can be achieved in practice using sequential tech- 
niques, as we show in the next section. 

Equation 3 illuminates the factors that affect selection 
cost. In order to satisfy the PAC requirement we must, for 
each non-selected hypothesis, bound the probability that it 
is better than the selected hypothesis. The total cost is is the 
sum of the cost of processing each training example. Equa- 
tion 3 shows that the number of examples allocated to the 
two hypotheses increases as the variance increases, as the 
difference in utility between the hypotheses decreases, or as 
the acceptable probability of making a mistake decreases. 

The first two factors are determined by the environment, 
but the last, the probability threshold associated with each 
comparison, can conceivably vary and thus be placed under 
the control of the hypothesis selection algorithm. The algo- 
rithm must only ensure that the sum of these probabilities 
remain less than 6 (Equation 1). If one comparison requires 
agreat many examples and another very few, it seems possi- 
ble that allowing greater error for the first and less for the 
second might reduce the total cost. In fact, allowing the al- 
gorithm to judiciously allocate error to each comparison can 
result in a substantial reduction in overall cost. 

Reducing the cost of selection can be cast as an optimiza- 
tion problem. Total cost is the sum of the number of exam- 
ples allocated to each comparison (from Equation 3) times 
the average cost to process an example. Let Csel,i denote the 
average cost per example to compare the selected hypothe- 
sis with hypothesis i. Let c+ be the error level allocated to 
the comparison. The optimal allocation of error can be de- 
termined by solving the following optimization problem:3 

3. This assumes that the cost of processing examples for one com- 
parison is independent of the other comparisons. A more complex anal- 
ysis is needed to faithfully represent cases where there is significant 
sharing of cost between comparisons. 
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Figure 2: The potential benefits of rational analysis. 
Shows the ratio of equal allocation cost to optimal cost 
for several error levels and number of hypotheses. 

Resource Optimization Problem 

Choose 06 to minimize 
k-l 

c 

a* 
se’*i 

cse”i (& - Hi)* 
[cJ.-’ (ai)]* 

i=l 

k-l 

Subject to the constraint that 
c Cri S 6 
i=l 

Of course in an actual hypothesis selection problem the 
expected utility of the hypotheses, and perhaps the variance 
and cost will be unknown before learning begins. Without 
considering such information the only reasonable policy is 
to assign an equal error level to each comparison (i.e. 
q=&/[k-11). However, comparing this equal allocation 
policy with the optimal solution shows that equal allocation 
can be highly sub-optimal. To see this, consider the case 
with three hypotheses, k=3, which results in two compari- 
sons with error al and &-al. The selection cost is: 

Dl[@-‘(a,>]* + &[W(d -a,)]* (4) 

where Di = 
c.Wl,20~e~,i 

(Hse~ - Hi>* 

The value Q is called the disparity index for comparison i. 
To be optimal, aI must be chosen so as to minimize the 

total cost. The equal allocation policy assigns at equal to 
612. Equation 4 indicates that the equal allocation solution 
is optimal only in the case where the two disparity indices 
are equal. This is illustrated in Figure 1, which shows the 
cost equation as a function of at, first in the case where the 
disparity indices are equal, and then when there is a differ- 
ence between their values. The minimum point under this 
curve is the optimal cost and the value of at at this point in- 
dicates the optimal error allocation. In contrast, the equal 
allocation policy yields a cost that may differ significantly 
from this minimum. 

In practice it is unlikely that the disparity indices will be 
equal all for comparisons. Even if the example cost is simi- 
lar for every hypothesis the variance and expected utilities 



of hypotheses will almost certainly differ. The inefficiency 
of equal allocation increases as the differences between dis- 
parity indices increases. The inefficiency also increases as 
with the number of hypotheses. By taking the difference in 
disparity indices to the limit it can be shown that for k hy- 
potheses the ratio of equal allocation cost to the optimal cost 
can be up to [Q-*(6/[k-1])]2 / [@-1(S)]2. The ratio can be 
quite large as illustrated in Figure 2. Thus, ignoring dispar- 
ity information can result in costs up to an order of magni- 
tude greater with as few as ten hypotheses under consider- 
ation. This result also shows that the ratio cannot grow 
without bound and that equal allocation is near optimal for 
cases with few hypotheses and a small error level. 

4. Rational Example Allocation 
If the disparity indices were known advance, an algorithm 
could optimize the cost of selecting a hypothesis. Although 
this information is unavailable before learning begins, with 
a sequential approach the algorithm can develop increasing- 
ly accurate approximations to this information in the course 
of learning. These approximations can be almost as effec- 
tive as the true information in guiding learning behavior. In 
this section we introduce a rational hypothesis selection al- 
gorithm that exploits these approximations to minimize se- 
lection cost. This is compared with an efficient non-rational 
approach similar to Moore and Lee’s BRACE algorithm 
[Moore94]. The superiority of the rational approach is doc- 
umented on artificial and real-world data sets. 

4.1 Interval-Based Sellection Algorithm 
We first introduce the basic hypothesis selection approach. 
Rational and non-rational algorithms derived from this ap- 
proach differ in how they choose hypotheses to further eval- 
uate. The algorithm initially evaluates all hypotheses over 
a small initial set of 4 training examples. This is to develop 
initial parameter estimates and to enhance the robustness of 
the normality assumption. The algorithm then incremental- 
ly processes training examples, deciding to evaluate one or 
more hypotheses on that example. Learning proceeds incre- 
mentally until, to the required level of confidence, one hy- 
pothesis E-dominates. The basic approach is as follows:4 

With hypotheses Hl..Hk 
Evaluate all hypotheses over ng training examples 
While no selection 

Let Hsel be hypothesis with highest estimated utility 
k-l 

IF i$i<<~e/-ElHi>H~,~+E 1 Id 
i=l 

THEN select Hset 
ELSE Obtain next example 

Evaluate those hypotheses chosen according to 
rational or non-rational policy as outlined below 

4. See [Chien94] for complete discussion of such rational and non- 
rational algorithms. The probability is computed with equations analo- 
gous to Equation 2. 

Eaual Allocation Police. The non-rational algorithm fol- 
lows the equal allocation policy. Each cycle through the 
loop allocates an additional example to a pair-wise compar- 
ison if its probability of error remains above the fixed level 
of 6/[k-11. Eventually every comparison will drop below 
this error threshold and the procedure will terminate. 

Marninal Rate ofReturn Policv. Using estimates of the dis- 
parity indices, the rational algorithm calculates the increase - - 
in confidence and the cost of allocating an additional exam- 
ple to each comparison. At each cycle through the main 
loop the algorithm allocates an example to the comparison 
with the highest marginal rate of return. This is the ratio of 
increased confidence to increased cost. 

This rational policy tries to maximize the decrease in sta- 
tistical error per unit cost, although we cannot guarantee the 
strategy achieves the optimal error allocation. Complica- 
tions include the fact that estimates of the disparity factors 
differ from their true value and the initial sample size pa- 
rameter restricts the algorithm’s degrees of freedom. None- 
theless, this policy has performed well empirically. The 
marginal rate of return is estimated using an equation analo- 
gous to Equation 2, substituting in estimated for actual util- 
ity values. After processing the QJ initial training examples 
the algorithm estimates the expected utility, variance, and 
cost of the various comparisons. The change in error can be 
estimated by considering how the error would change as- 
suming the current parameter estimates are correct: 

The estimated marginal rate of return for a comparison is 
computed by dividing this estimate of the reduction of error 
by the estimated cost of processing an additional training 
example. 

4.2 Empirical Evaluation 
We illustrate the performance of the algorithms on simu- 
lated and real-world data. The first evaluation uses simu- 
lated data with high disparity to illustrate that the rational 
algorithm achieves performance improvements compara- 
ble to what is predicted by the theoretical analysis. The sec- 
ond evaluation uses data from a NASA scheduling applica- 
tion to illustrate the robustness of the approach on a 
real-world hypothesis selection problem. 

42.1 Simulated Data. A rational algorithm should sig- 
nificantly outperform a non-rational approach when there 
is a large difference between the costs, variances, or ex- 
pected utilities of the various hypotheses. We test this hy- 
pothesis for several number of hypotheses and error levels. 
For all experiments E is set at 1 .O and 6 varies from 0.05 to 
0.25, in 0.05 increments. We perform tests with three, five, 
and ten hypotheses. The training examples are randomly 
generated: All utility values and example costs are normal- 
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ly distributed according to some expected value and vari- 
ance, denoted N(value,variance). For all experiments, HI 
is distributed iV(74,50) with cost N(20, l), H2 is distributed 
N(72,50) with cost N(50000,l). All remaining hypotheses 
aredistributedN(5,50) withcostN(20,l). Foreachconfigu- 
ration the algorithms are run 5000 times and the reported re- 
sults are the average over these trials. 

Figure 3 summarizes the predicted and observed eflcien- 
cy ratio. This is the cost to select using equal allocation over 
the cost to select using rational allocation. The performance 
improvement due to rational allocation is surprisingly close 
to the limit. This suggests that for this data set the rational 
algorithm has identified a near optimal error allocation. 
Note that for large error the observed efficiency drops be- 
low the predicted level. This is a consequence of the initial 
sample size parameter ng . The rational algorithm is forced 
to take at least this many examples on every comparison, 
while in this problem configuration less would suffice to 
achieve the probability bound. The implication is that when 
the hypothesis evaluation problem is easy (requires perhaps 

. fewer than ng examples to make a selection) the efficiency 
will be effected more by the choice of the initial sample size 
than the allocation policy. An interesting issue we have not 
sufficiently explored is possible strategies for setting the 
initial parameter size. 

4.2.2 NASA Scheduling Data. The test of real-world 
applicability is based on data drawn from a NASA schedul- 
ing application detailed in [Gratch93]. This data provides 
a test of the applicability of the techniques. Both algorithms 
assume estimated utility varies normally from the expected 
utility. In fact, this common assumption is violated by the 
data as most of the scheduling heuristics are bi-modally dis- 
tributed. This characteristic provides a rather severe test of 
the robustness of both approaches. 

The heuristic system was developed to schedule commu- 
nications between earth-orbiting satellites and ground- 

9-l - Predicted 1 

based antennas. In the course of development extensive 
evaluations were performed with variant scheduling heuris- 
tics. The purpose of these evaluations was to choose a heu- 
ristic that generated satisfactory schedules quickly on aver- 
age. This is easily seen as a hypothesis evaluation problem. 
Each of the heuristics corresponds to a hypothesis. The cost 
of evaluating a hypothesis over a training example is the 
CPU time required to solve the scheduling problem with the 
given heuristic. The utility of the training example is simply 
the negation of its cost. In that way, choosing a hypothesis 
with maximal expected utility corresponds to choosing a 
scheduling heuristic with minimal average cost. 

The application involves several hypothesis selection 
problems, four of which we use in this evaluation (A, B, C, 
and D). Each selection problem consists of a set of schedul- 
ing heuristics, and data on the heuristics’ performance over 
about one thousand scheduling problems. For the purpose 
of these experiments the data sets are assumed to corre- 
spond exactly to the underlying probability distributions. 
An experimental trial consists of executing a technique over 
examples drawn from one of these data sets. Each time a 
training example is to be processed, some problem is drawn 
randomly with replacement from the data set. The actual 
utility and cost values associated with this scheduling prob- 
lem is used. As in the synthetic data, each experimental trial 
is repeated 5000 times and all reported results are the aver- 
age of these trials. In this data the cost and expected utilities 
of hypotheses are relatively close to each other so the differ- 
ence between the disparity indices is relatively small across 
comparisons. 

Each trial used an error level of 0.05 or 0.25 and E equal 
to 4.0. The results are summarized in Table 1. For each al- 
gorithm this shows the average number of examples re- 
quired to select a hypothesis, the total cost of those exam- 
ples, and the observed probability that the selection was 
correct for each of the four selection problems. 

D 7 4 0.25 3,274 4,993 0.93 2,241 3,429 0.88 1.5 
0.05 7,972 12,037 0.96 7,621 11,583 0.94 1.0 

00 
0 0.05 0.10 0.15 0.20 0.25 

Error Level (6) 

Table 1. Average number of observations, cost, and probabili- 
ty of correct selection for scheduling data. 

Figure 3. Shows predicted and observed efficiency of the ratio- 
nal allocation policy (the ratio in cost between the non-rational 
and rational policies). The rational policy shows a significant in- 
crease in efficiencv. 

Both algorithms performed robustly. In each selection 
problem the PAC requirement was achieved or nearly 
achieved. This result is particularly remarkable given the 
data’s significant departure from normality. The rational al- 
gorithm provides a modest improvement over the equal al- 
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location algorithm on three out of the four selection prob- 
lems. The improvement increased with higher error level 
in accordance with theoretical predictions. In both the 
scheduling and artificial data the rational algorithm tended 
to exhibit statistical error closer to the requested bound. The 
equal allocation strategies excessive conservatism is due to 
its inflexibility in allocating statistical error in cases where 
a hypothesis could be discarded with less than r~ datapoints. 

While the scheduling improvements may seem modest, 
there are three points that must be emphasized. First, the 
number of hypotheses was small and improvements should 
grow with the number of hypotheses. Second, in absolute 
terms the savings are significant. For example, the 350 ex- 
amples saved in selection problem D translate into about fif- 
teen hours of CPU effort. Finally, in no case did the rational 
algorithm perform worse. Thus there is little loss, and po- 
tential for substantial improvement with rational allocation. 

5. Related Work and Conclusions 

This analysis can be extended in a number of ways. In many 
learning situations one may be reluctant to assume normal- 
ity. For example, when selecting attributes in a decision tree 
a multinomial model may be more appropriate. We suspect 
comparable results will hold for a wide range of statistical 
models but further analysis is necessary. Selection prob- 
lems could be formalized in a bayesian statistical frame- 
work as in [Moore94, Rivest881. This would eliminate the 
need for an initial sample but require a rigorous encoding of 
prior knowledge. Related to this, Howard [Howard701 has 
extensively investigated a bayesian framework for assess- 
ing learning cost in the case of single hypothesis problems. 

While this article has focused on minimizing cost in the 
context of hypothesis selection, the ability to assess both the 
benefits and costs of learning has been investigated in a va- 
riety of contexts both inside and outside of artificial intelli- 
gence. For example the tradeoff between goal-directed ac- 
tion and exploration behavior has been studied in 
reinforcement learning [Kaelbling93]. Another active area 
of investigation involves the selection of an inductive bias 
for classification learning tasks. A weaker bias allows high- 
er potential accuracy but requires more data. The selection 
of an appropriate bias depends on the availability and cost 
of obtaining training examples as well as usefulness of bet- 
ter prediction (see [desJardins92]). The same issue arises 
in neural networks and in statistics when one must choose 
a network topology or statistical model that balances the 
tradeoff between the fit to the data and the number of exam- 
ples required to reach a given level of predictive accuracy. 
Finally, these learning issues can be seen as part of the more 
general area of limited rationality This is the problem of 
developing a theory of rational decision making when in the 
presence of limited reasoning resources [Russell9 1, Wel- 
lman92]. 

To summarize, we argue that learning algorithms must 
assess both the benefits and costs of learning. We provide 

a theoretical analysis of the factors that contribute to learn- 
ing cost. By reasoning about a value called the disparity in- 
dex a learning algorithm can achieve the same level of bene- 
fit at substantially reduced cost. We introduce a heuristic 
algorithm that empirically achieves the predicted perform- 
ance improvements over a non-rational approach. While 
the improvements on any given hypothesis selection prob- 
lem may lie well below the theoretical limit, the rational al- 
gorithm is unlikely to perform worse and may perform sig- 
nificantly better. Therefore there seems little reason not to 
adopt this or an analogous rational approach. 
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