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Abstract 

This paper presents sN-r.z+EBL, the fitst implementation 
of explanation based learning techniques for a partial 
order planner. We describe the basic learning framework 
of SNLP+EBL, including regression, explanation prop- 
agation and rule generation. We then concentrate on 
SNLP+EBL'S ability to learn from failures and present a 
novel approach that uses stronger domain and planner 
specific consistency checks to detect, explain and learn 
from the failures of plans at depth limits. We will end with 
an empirical evaluation of the efficacy of this approach 
in improving planning performance. 

1 Introduction 
One way of coping with the computational complexity of 
domain-independent planning involves application of learn- 
ing techniques to speed up planning. Accordingly, there 
has been a considerable amount of research directed towards 
applying explanation-based learning (EBL) techniques to 
planning [2, lo]. Much of this work has been concentrated on 
the state-based planning. Motivated by the known advantages 
of partial order (PO) planning over state based planning in 
plan generation [l] and reuse [5,6], in this paper we address 
the problem of adapting EBL techniques to speed up partial 
order planning. 

The EBL frameworks for state-based planning, such as 
PRODIGYEBL [lo] and Failsafe [2] typically construct 
search control rules that aim to steer the planner away tiom 
unpromising paths. The search control rules are generated 
by analyzing the search space explored by the planner to 
locate failures, constructing explanations for those failures, 
and regressing the failure explanations over the planning 
decisions. 

Given that partial order and state-based planners search 
in very different search (decision) spaces, adapting these 
EBL frameworks to partial order (PO) planning offers two 
important challenges. First, since the space of decisions 
in PO planning is different, the process of regressing and 
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generalizing the explanations needs to be extended signifi- 
cantly. Secondly, since the types of failures encountered in 
PO planning are different from those encountered in state- 
based planning, we need to investigate effective learning 
opportunities for PO planners. 

In this paper, we address both these issues. Specifically, we 
describe SNLP+EBL, a system that learns search control rules 
for SNLP, a causal link based PO planner [l, 91. We will start 
by describing the basic learning framework in SNLP+EBL, 
including the details of regression, explanation propagation 
and search-control rule learning (Section 2). We will then 
concentrate on SNLP+EBL'S ability to learn from failures. 
We will show that the failures detected by SNLP (analytical 
failures) alone do not by themselves provideeffective learning 
opportunitiesfor SNLP+EBL inmany domains. This is because 
many futile lines of reasoning either never end in analytical 
failures or cross depth limits much before they do. Since 
depth limit failures are not analytical, it is not possible to 
learn from them. 

To deal with this impasse, we adopt a novel approach 
of strategically applying stronger consistency checks to the 
plans crossing depth limits, to detect and explain the implicit 
failures in those plans. These explanations are then used to 
generate search control rules. In Section 3, we will describe 
a specific realization of this strategy that utilizes the domain 
axioms (or readily available physical laws of the domain) to 
detect and explain inconsistencies (failures) at some depth 
limit failures. In Section 3.1, we describe the results of an 
empirical study which demonstrate the effectiveness of the 
search control rules learned by this method. 

2 The SNLP+EBL system 
2.1 The base level planner 
As mentioned earlier, our base level planner is SNLP, a causal 
link based PO planner described in [l, 91. SNLP searches 
in the space of partial plans. E&h partial plan can be seen 
as a 5 tuple: (S, 0, 13, I& S) where: S is the set of actions 
(also called steps) in the plan. The actions are described in 
the STRIPS representation, with add, delete and precondition 
lists. S contains two distinguished steps start and fin. The 
effects of start and the preconditions of fin correspond, 
respectively, to the initial state and the desired goals of the 
planning problem. 0 describes the ordering constraints over 
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Figure 1: Search Tree illustrating learning from analytical failures 

the steps in S. L? is a set of code&nation (binding) and Action Precond Add Dele 
non-codes&nation (prohibited bindings) constraints on the Roll(o) - Polish(o) A Cool(o) 
variables appearing in the preconditions and post-conditions 

Cylind(o) 
Lathe(o) - Cylind(o) Polish(o) 

of the operators. Polish(o) Cool(o) Polish(o) 

G is the set of open conditions of the partial plan, i.e, 
tuples (c, S) such that c is a precondition of step s E S. The 
planning process consists of establishing the open conditions 
with the help of the effects of either an existing step or a new 
step. Whenever an open condition (c, s) is established with 
the help of the effects of some step s’, it is removed from G, 
and a causal link s’ 5 s is added to L. Ifs is a new step, its 
preconditions are also added to G. 

The initial planning problem is to polish au object A and 
make its surface cylindrical. The object’s temperature is cool 
in the initial state. The figure shows a failing branch of 
the search tree. In this branch, SNLP establishes the open 
condition (Cylin&icaZ(A), G) with the help of the new step 
1: Roll(A). It then establishes the other open condition 
(Polished(A), G) with the operator 2: Po 1 is h(A). 

A causal link should be seen as a commitment by the 
planner to protect c in the range between s’ and s. Whenever 
new steps are introduced into the plan, the existing causal 
links are checked to see if any of their conditions are violated. 
A step t of the plan is said to be a threat to a causal 
link s 3 w E L, if t has an add or delete list literal q 
such that q possibly codesignates with p, and t can possibly 
come in between s and w. The threat is resolved by either 
promoting t to come after w , or demoting it to come before 
s (in both cases, appropriately updating 0), or adding non- 
code&nation constraints to ensure that q does not codesignate 
with p. A threat for a causal link is said to be unresolvable 
if all of these possibilities make either 0 or f3 inconsistent. 
SNLP backtracks when it encounters an unresolvable threat, 
or an unestablishable open condition. 

Since Roll(A) deletes Polish(A), it is now a threat to 
the link 2 J’oZ~~(A) 

G. SNLP resolves this threat by demoting 
1:~0ll(A) to come before %Polish(A). Polish(A) 
ah0 introduces a new open condition (Cool(A),Z). SNLP 
establishes it using the effects of the start state. Since 
Roll(A) also deletes Cool(A), it also threatens this last 
establishment. When SNLP tries to deal with the threat by 
demoting 1: Roll(A) to come before step 0, it fails (since 
0 already precedes I).’ Such failures represent learning 
opportunities for the sNLP+EBL system, as discussed in the 
next section. 

2.2 Interaction between the learner and the 
planner 

The search tree in Figure 1 illustrates SNLP'S planning 
process in terms of an example from a simple job-shop 
scheduling domain with the operators shown below: 

Search control rules attempt to provide guidance to the un- 
derlying problem solver at critical decision points. As we 
have seen above, for SNLP these decision points are selec- 
tion of open conditions; establishment, including simple- 
establishment and step-addition (operator selection); threat 

‘To simplify the exposition clear, we omitted the failing separa- 
tion branch from the figure. 
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Decision: The new step sr is added to establish the condition p 
at step 92 in the current partial plan. The preconditions of this 
decision are simply that 82 requires a condition p. 

(1) Result of regressing the ordering constraint LX’ -i 5” 
TTW, If 8’ = 81 and 5” = 92 
TTueA start-special,Ifd= start anda” = 81 
(see rule generalization section for 
explanationof start-special flag) 
32 4 d’, if 8’ = sr and 82 4 8” 
s’ + s” otherwise 

(2) Result of regressing the causal link s’ 2 8” 
True If s’ = 81 and 8” = 82 andp = p’ 

8’ 5 3” otherwise 

Figure 2: Partial procedure for regressing explanations over 
step establishments 

selection; and threat resolution, including promotion, demo- 
tion and separation. Of these, it is not feasible to learn 
goal-selection and threat-selection rules using the standard 
EBL analysis since SNLP never backtracks over these deci- 
sions. SNLP+EBL system learns search ~ntrO1 rules for all 
the other decisions. A search control rule may either be in 
the form of a selection rule or a rejection rule. In our cur- 
rent work, we have concentrated on learning rejection rules 
(although the basic framework can be extended to include 
selection rules). 

Unlike systems such as PRODIGY/EBL, which commence 
learning only after theplanningis completed, SNLP+EBL does 
adaptive (intra-trial) learning (c.f. [2]), which combines a 
form of dependency directed backtracking with generation of 
search-control rules. The planner does depth first search both 
in the learning and non-learning phases. During the learning 
phase, SNLP+EBL invokes the learning component whenever 
the planner encounters a failure. 

There are two types of failures that are recognized by SNLP: 
the first is the analytical failure (where the planner reaches 
an impasse and declares that the current partial plan cannot 
be refined further). As explained earlier, this happens when 
the partial plan contains a causal link with an unresolvable 
threat, or an unestablishable open condition. The second type 
of failure occurs when the problem solver crosses a pre-set 
depth limit. The purpose of this limit is to prevent runaway 
search down fruitless alleys. 

If the learner is able to explain the failure, it constructs an 
initial explanation and then regresses that explanation over 
the decisions in that branch to generate search control rules. 
From our discussion above, it is clear that analytical failures 
can be explained in terms of the inconsistency of the ordering 
and binding constraints of the partial plan, or in terms of 
the unestablishable open condition. For example, the initial 
explanation of failure for the partial plan at node H in Figure 
1 is simply that (0 4 1) A (1 + 0) (causing an ordering cycle). 
We defer the treatment of depth limit failures to Section 3. 
Regression: Once an initial explanation for a failure is 
constructed, sNLP+EBL regresses this explanation over the 
decisions leading to the failing partial plan. For state-based 
planners, the phuming decisions correspond closely to opera- 

Procedure Propagate@, d;) 
[di: failing partial plan; E: initial explanation of failure at d;). 
3. Set d c d; 
1. E’ t Regress((E, decision(d))) 
2. If E’ = E, then set d t paTent( Goto Step 1. (aform ofDDB) 
3.IfE’#E,then 
3.1. If there are unexplored siblings of d 
3.1 .l Make a rejection rule rejecting the decision of d, with E’ 
as the antecedent generalize it and store it in the rule set 
3.1.2. fexp(paTent(d)) c E’A 

pTecond(decision(d)) + f exp(paTent(d)) 
(store E’ as one the failure explanations urlder parent(d))) 
3.1.3. Restart search at the first unexplored sibling of d 

3.2. If there are no unexplored siblings of d, 
3.2.1. Set E t [E’ A pTecond(decision(d))] + f exp(pwent(d)) 
3.2.2. If all the siblings of d are establishing an open 
condition (c, 8). and none of them establish it from start, 

Set E t E +~initially-true(c) 
3.2.3. Set d t paTent( Goto Step 1. 

Figure 3: Propagating Failure Explanations 

tor applications, and thus regression over planning decisions 
is very close to regression over operators [12]. In con- 
trast, decisions in the PO planners correspond to addition 
of generalized constraints (steps, orderings, bindings, causal 
links) to the partial plan. SNLP+EBL provides a sound and 
complete framework for regressing explanations over these 
decisions. Figure 2 contains a partial outline of the procedure 
for regressing arbitrary constraints of an explanation over an 
establishment decision involving step addition. A complete 
description of the regression rules for this and other planning 
decisions is beyond the scope of this paper, and can be found 
in [S]. 
Propagating Failure Explanations: Once an initial expla- 
nation of the failure has been identified, it is propagated up 
the failure branch to learn search control rules, as well as to 
do a form of dependency directed backtracking. Figure 3 
provides the outline of this procedure. We will illustrate this 
process with the help of the example in Figure 1. 

As discussed at the end of Section 2.1, the first failure 
in this example is noticed at node H. Here, the demotion 
caused order inconsistency in the plan. The explanation for 
this failure is simply that (0 4 1) A (1 -4 0) (causing a cycle 
in the ordering). When this explanation is regressed over the 
demotion decision to make step 1 precede 0, we get 0 4 1. 
Since the regressed explanation is different horn the original 
one (step 3 in Figure 3)2, it is then conjoined with the 
preconditions of the demotion decision (which in this case 
is that 1 threatens the link 0 CoJ5A) 2) to get the weakest 
preconditions for this branch of failure under G. These are 
then stored as one of the failure explanations at node G (step 

2Had the explanation not changed during regression over H, 
the propagation process would have continued to the parent of this 
decision (step 2 in Figure 3). The rationale being that at least as 
far as this failure is concerned the choice taken at H’s parent node 
didn’t contribute to the failure. Thus, as long as the decisions at 
the upper levels remain same, exploring the other siblings of H is 
guaranteed to keep this failure intact. This process constitutes a 
simple form of dependency directed backtracking. 

584 Machine Learning 



3.1.2 in Figure 3). 
Since the explanation changed after regression, and since 

there are unexplored siblings of H, technically, we can learn 
a rejection rule here (step 3.1.1 in Figure 3). However, its 
utility is going to be very low since the consistency check 
can find out the failure in the next level any way. To avoid 
generation of such low-utility rules, we currently use a preset 
constant I and ignore any rules generated within Z levels of 
the failure. 

At this point, search continues with the other sibling1 of H, 
which uses the promotion alternative to resolve the threat (step 
3.1.3). This plan also fails, and the explanation of this failure 
is (1 4 2) A (2 + 1). When regressed over the promotion de- 
cision, this becomes 1 4 2. The preconditions for promotion, 
which are the same as those for the demotion, are conjoined 
with ( 1 + 2 ), and added to the failure explanations at G. 
Finally, since there are no more alternatives at G, the existing 
explanations are conjoined to give the combined explanation 

(0 4 l)A (1 4 2)A0 Co~A)2Ahas-eff ect(1, cool(A)) 
(step 3.2.1). This combined explanation is now regressed 
over the establishment decision at node 6, and the resultant 
explanation is regressed once again over E (since E has no 
more unexplored alternatives, and it already considered the 
establishment from initial state). The result is stored as the 
explanation of failure for the branch through E at node D. 
The search continues on the promotion branch through node 
F and eventually fails. This then allows SNLP+EBL to conjoin 
the explanations at D and pass the conjunction over to B. 

Since D is the only alternative at B, we can continue the 
regression process. But, before doing so, we note that in the 
current planning episode none of the establishment branches at 
B have considered start as an establisher (because start 
did not have an effect unifying with Polish(A)). However, 
since the effects of the start step change from problem to 
problem (while those of all other steps, which correspond to 
domain operators, remain same), in a new problem situation 
it may well be the case that start step would be giving 
Polish(A), and thus the failure of node B may no longer hold 
in that situation. To ensure the soundness of the learned rules, 
we must explicitly account for this possibility in explaining 
the failure of B. We do this by conjoining the condition 
linit ially-true(Pobish(A)) to the explanation failure 
at B (step 3.2.2).3 

The explanation regressed over the establishment decision 
at B can be used to learn a useful step establishment rejection 
rule at A (since A still has unexplored alternatives). This 
rule is shown to the left of node A. It says that Roll should 
be rejected as a choice for establishing any condition at goal 
step G, if Polish(A) is also a goal at the same step. Notice 
that the rule does not mention the specific establishment 
Cylindrical(A), that lead to the introduction of Roll. This 
is correct because the failure explanation at node B does not 
involve CyIindrical(A).4 

3A more eager learning possibility would be to extend additional 
planning effort and see if B will have failed even if initial state were 
giving the open condition (as it would have, in the current case). 

41t is interesting to note that in a similar situation, Prodigy [l l] 
seems to learn a more specific rule which depends on establishing 

Rule Generalization: Once a search control rule is made, 
it is generalized using the standard EBL process (c.f. 15, 
lo]). This process aims to replace any constants in the 
search control rule with variables, without affecting the rule 
correctness. In SNLP+EBL this is accomplished by doing the 
original regression process in terms of variables and their 
bindings (SNLP aheady provides support for this). During 
generalization, any bindings that are forced by the initial and 
goal state specifications of the original problem are removed 
from the explanation, leaving only those binding constraints 
that were forced by the initial explanation of the failure[5]. 
Iu the example in Figure 1, the binding ?x M A in the 
failure explanation of node B is stripped when making the 
generalized rule. 

The generalization process also needs to generalize step 
names occurring in the failure explanation. Since the explana- 
tions qualify the steps in terms of their effects and conditions 
and their relations to other steps, most step names including 
fin (G) can be generalized. The only exception to this 
rule is the status of the start step, which may or may not 
be generalizable based on the specifics of the explanation. 
To help in this decision, our regression rules explicitly flag 
start step as special when it must not be generalized. An 
example of this can be seen in the regression rules for step 
establishment decision in Figure 2. When an ordering of 
the form start -c, 31 is regressed over the addition of step 
~1, the start step is flagged special since this ordering is 
automatically introduced as a result of step addition only with 
respect to the start step. When start is not flagged 
as special, it is generalized just as any other step. In the 
example in Figure 1, the rule learned after step and variable 
generalization is shown in a box to the left of node B. 
Rule Storage: Once a rule is generalized, it is entered into the 
corpus of control rules available to the planner. These rules 
thus become available to the planner in guiding its search 
in the other branches during the learning phase, as well as 
subsequent planning episodes. In storing rules in the rule 
corpus, SNLP+EBL makes some bounded checks to see if an 
isomorphic rule is aheady present in the stored rules. 

3 Learning from 
In the previous section, we described the framework for 
learning search control rules from initial explanations of 
failed plans. As mentioned in that section, the only failures 
explainable by SNLP are the order and binding inconsistencies, 
which it detects during threat resolution (the unestablishable 
condition failure is rare in practical domains). The rules 
learned from such failures were successful in improving 
performance of SNLP in some synthetic domains (such as 
D” S2* described in [ 11). 

Unfortunately however, 1 earning from analytical failures 
alone turns out to be ineffective in other recursive domains 
such as blocks world or job-shop scheduling. The main 
reason for this is that many futile lines of reasoning either 
never end in analytical failures or cross depth limits much 
before they do. Since depth limit failures are not analytical, no 
domain independent explanation can be given to these failures. 

CyhzdTica@i). 
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However, sometimes it is possible 
checks based on thedomain theory 

to use strong consistency 
as well as the meta-theory 

of the planner to show that the partial plan at the depth 
limit contains a failure that the planner’s consistency checks 
have not yet detected. Consider for example a simplified 

However, sometimes it is possible to use strong consistency 
checks based on the domain theory as well as the meta-theory 
of the planner to show that the partial plan at the depth 
limit contains a failure that the planner’s consistency checks 
have not yet detected. Consider for example a simplified 
blocks-world partial plan shown below: blocks-world partial plan shown below: 

11 ui 

Given the blocks world domain axiom that no block can have Given the blocks world domain axiom that no block can have 
another block on top of it, and be clear at the same time, another block on top of it, and be clear at the same time, 
and the SNLP meta-theory that a causal link, s1 -% ~2, once and the SNLP meta-theory that a causal link, s1 -% SZ., once 
established, will protect the condition c in every situation established, will protect the condition c in every situation 
between s1 and 92, we can see that the above partial plan between ~1 and 92, we can see that the above partial plan 
can never be refined into a successful plan. To generalize can never be refined into a successful plan. To generalize 
and state this formally, we define the np-conditions, or and state this formally, we define the np-conditions, or 
necessarily preservable conditions, of a step s’ in a plan P to necessarily preservable conditions, of a step s’ in a plan P to 
be the set of conditions supported by any causal link, such be the set of conditions supported by any causal link, such 
that s’ necessarily intercedes the source and destination of the that s’ necessarily intercedes the source and destination of the 
causal link. causal link. 

npconditions(s’) = (clsl 5 s2 E L A s1 -4 s’ A s’ -4 ~2) npconditions(s’) = (ClSl 5 s2 E L A Sl -i s’ A St 4 s2) 

Given the q-conditions of a step, we know that the partial Given the q-conditions of a step, we know that the partial 
plan containing it can never be refined into a complete plan as 
long as precond(s’) u np-conditions(s’) is inconsistent with 
respect to domain axioms. However, SNLP ‘s local consistency 
checks will not recognize this, leading it sometimes into an 
indefinite looping behavior of repeatedly refining the plan 
in the hopes of making it complete. In the example above, 
this could happen if SNLP tries to achieve Clear(B) at step 
1 by adding a new step 2 : P&o&x, y), and then plans on 
making On(x, B) true at 2 by taking A off B, and putting z 
on B. when such looping makes SNLP cross the depth limit, 
SNLP+EBL uses the np-conditions based consistency check 
to detect and explain this implicit failure, and learn from that 
explanation. 

plan containing it can never be refined into a complete plan as 
long as precond(s’) u np-conditions(s’) is inconsistent with 
respect to domain axioms. However, SNLP ‘s local consistency 
checks will not recognize this, leading it sometimes into an 
indefinite looping behavior of repeatedly refining the plan 
in the hopes of making it complete. In the example above, 
this could happen if SNLP tries to achieve Clear(B) at step 
1 by adding a new step 2 : P&o&x, y), and then plans on 
making On& B) true at 2 by taking A off B, and putting z 
on B. when such looping makes SNLP cross the depth limit, 
SNLP+EBL uses the np-conditions based consistency check 
to detect and explain this implicit failure, and learn from that 
explanation. 

To keep theconsistency check tractable, SNLP+EBL utilizes 
a restricted representation for domain axioms (first proposed 
in [3]): each domain axiom is represented as a conjunction of 
literals, with a set of binding constraints. The table below lists 
a set of domain axioms for the blocks world. The first one 

To keep theconsistency check tractable, SNLP+EBL utilizes 
a restricted representation for domain axioms (first proposed 
in [3]): each domain axiom is represented as a conjunction of 
literals, with a set of binding constraints. The table below lists 
a set of domain axioms for the blocks world. The first one 
states that y cannot have x on top of it, and be clear, unless y states that y cannot have x on top of it, and be clear, unless y 
is the table. is the table. 

on(x, y) A dear(y)[y @ Z’abie] On(x, y) A cZeur(y)[y @ Table] 
On& Y) A On(x, Z)[Y # 4 04x, Y) A On(x, 4Cy # 4 

On(x, y) A Onb, y)[x # 2, y # ~ddel Oh, y) A Onb, y)[x # 2, y # ~~~~el 
A partial plan is inconsistent whenever it contains a step A partial plan is inconsistent whenever it contains a step 

s such that the conjunction of literals comprising any do- 
main axiom are unifiable with a subset of conditions in 
np-conditions(s) U precond(s). 

Given this theory, we can now explain and learn from the 
blocks-world partial plan above. The initial explanation of 

this failureis: start Owp GA(start 4 l)A(l+ G)A 
open-cond(Clear(y), 1) A y $& Table. This explanation 
can be regressed over the phuming decisions to generate rules. 

s such that the conjunction of literals comprising any do- 
main axiom are unifiable with a subset of conditions in 
np-conditions(s) U precond(s). 

Given this theory, we can now explain and learn from the 
blocks-world partial plan above. The initial explanation of 

this failure is: start 
Owp GA(start 4 l)A(l+ G)A 

open-cond(Clear(y), 1) A y * Table. This explanation 
can be regressed over the phuming decisions to generate rules. 

(1) Reject establishment start On%') 81 
If open-cond(On(y,z),sl)A 
linitially-true(On(y,z))A lbinds(y,TabZe) 

(2) Reject promotion 81 4 93 
If open-cond(clea~(zz), 33)A 
establishes(sl,On(zl,z2),82)A 
precedes (93,82)A lbinds(zz,?'able) 

(3) Reject step addition puton(x’, y) “es(z) s1 
If establishes(start,On(x,y), 92)A 
precedes (al, s2)A lbinds(y,Table) 

A 

Figure 4: A sampling of rules learned using domain axioms 
in Blocks world domain 

The above theory can be used to learn from some of the 
depth limit failures. In blocks world, use of this technique 
enabled SNLP+EBL to produce several useful search control 
rules. Figure 4 lists a sampling of these rules. The first 
one is an establishment rejection rule which says that if 
On(x, y) A On(y, z) is required at some step, then reject the 
choice of establishing On(x, y) from the initial state, if initial 
state is not giving On(y, 2). 

3.1 Empirical Evaluation 
To evaluate the effectiveness of the rules learned by 
SNLP+EBL, we conducted experiments on random problems 
in blocks world. The problems all had randomly generated 
initial states consisting of 3 to 8 blocks (using the procedure 
outlined in Minton’s thesis [lo]). The first test set contained 
30 problems all of which had random 3-block stacks in the 
goal state. The second test set contained 100 randomly gen- 
erated goal states (using the procedure in [lo]) with 2 to 6 
goals. For each test set, the planner was run on a set of 
randomly generated problems drawn from the same distribu- 
tion (20 for the first set and 50 for the second). Any learned 
search-control rule, which has been used at least once during 
the learning phase, is stored in the rule-base. This resulted in 
approximately 10 stored rules for the first set, and 15 stored 
rules for the second set. (It is interesting to note that none of 
these rules were learned from analytical failures.) 

In the testing phase, the two test set problems were run 
with SNLP , sNLP+EBL (with the saved rules) as well as 
SNLP+DOMAX, a version of sNLP which uses domain axioms 
to prune inconsistent plans as soon as they are generated. A 
cpu time limit of 120 seconds was used in each test set. 

Table 1 describes the results of these experiments. Figure 
5 shows the cumulative performance graphs for the three 
methods in the second test set. Our results clearly show 
that SNLP+EBL was able to outperform SNLP significantly 
on these problem populations.’ SNLP+EBL also outperforms 
SNLP+DOMAX, showing that learning search-control rules 

5The experiments reported here were all done on the standard 
public domain SNLP implementation of Barrett and Weld [l]. In ad- 
dition, we also experimented with more optimized implementations 
of SNLP including those that do not resolve positive threats (and 
hence are not systematic), and avoid separation by defining threats 
in terms of necessary codesignation [14]. The qualitative relations 
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7 Num SNLP SNLP+EBL SNLP+DOMAX 
Prob . ’ %Sol C.tlm 7 OS01 c. tlm %Sol c. tlm 

I(30) 60% 1767 100% 195 97% 582 
II (100) 51% 6063 81% 2503 74% 4623 

Table 1: Results from the blocks world experiments 

EOW.0 
A 

Figure 5: Cumulative performance curves for Test Set 2 

is better than using domain axioms directly as a basis for 
stronger consistency check on every node during planning. 
This is not surprising since checking consistency of every 
plan during search can increase the refinement cost unduly. 
@3L thus provides a way of strategically applying stronger 
consistency checks. 

4 Related Work 141 
As wenoted earlier, our workon SNLP+EBL was motivated by 
the desire to adapt the EBL frameworks developed for state- 
based phuming, such as FRODIGY/EBL [lo] and Failsafe 
[2], to partial order planning. Our use of domain axioms to 
detect and explain failures at depth limits is related to, and 
inspired by Bhatnagar’s work on Failsafe 121. Bhatnagar also 
advocates starting with over-general explanations of failure 
and relaxing the rules in response to future impasses. The 
rules learned in SNLP+EBL, in contrast, are always sound in 
that any path rejected by a rejection rule is guaranteed to fail. 
Domain axioms have been used by other researchers in the 
past to control search in PO planning (c.f. [7, 31). Our use 
of domain axioms is closest to the work of Kambhampati 
[7], who uses an idea similar to np-conditions to implement 
a minimal-conflict based heuristic for controlling refitting in 
plan reuse. The current work shows that E!BL provides a way 
of strategically applying domain axiom based consistency 
checks. Finally, although we did not explicitly address 
monitoring the utility of learned rules and filtering bad rules, 
we believe that utility monitoring models developed for state- 
based planners [4, 101 will also apply for PO planners. 
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5 Conclusions and Future Work 
In this paper, we presented sNLP+EBL, the first system- 
atic implementation of explanation-based search control rule 
learning to a PO planner. We have described the details of 

between SNLP, SNLP+EBL and SNLP+DOMAX 
in the presence of these optimizations. 

remained same even 

the regression, explanation propagation and rule generation 
process in SNLP+EBL. We have then proposed a general 
methodology for learning from planning failures, viz., using 
a battery of stronger consistency checks based on the meta- 
theory of the planner, and the domain theory of the problem, 
to detect and explain failures at depth limits. We described 
a specific instantiation of this method, which uses domain 
axioms to look for inconsistencies in the plans at depth limits, 
and presented experimental results that demonstrate its effec- 
tiveness. Although our EBL framework was developed in the 
context of SNLP we believe that it can be easily extended to 
more powerful PO planners such as UCPOP [ 131. 

Learning from domain axiom based failures alone may not 
be sufficient in domains which do not have any strong implicit 
domain theory. We are currently working towards identifying 
other types of stronger consistency checks which can be used 
to complement the domain axiom based techniques in such 
domains. One example involves utilizing domain specific 
theories of loop detection to avoid step-based looping. 
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