
Learning Expla sed Search Control Rules For Partial Order Planning

Suresh Katukam & Subbarao Kambhampati*
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-5406

email:suresh@enuxsa.eas.asu.edu, rao@asu.edu

Abstract

This paper presents sN-r.z+EBL, the fitst implementation
of explanation based learning techniques for a partial
order planner. We describe the basic learning framework
of SNLP+EBL, including regression, explanation prop-
agation and rule generation. We then concentrate on
SNLP+EBL'S ability to learn from failures and present a
novel approach that uses stronger domain and planner
specific consistency checks to detect, explain and learn
from the failures of plans at depth limits. We will end with
an empirical evaluation of the efficacy of this approach
in improving planning performance.

1 Introduction
One way of coping with the computational complexity of
domain-independent planning involves application of learn-
ing techniques to speed up planning. Accordingly, there
has been a considerable amount of research directed towards
applying explanation-based learning (EBL) techniques to
planning [2, lo]. Much of this work has been concentrated on
the state-based planning. Motivated by the known advantages
of partial order (PO) planning over state based planning in
plan generation [l] and reuse [5,6], in this paper we address
the problem of adapting EBL techniques to speed up partial
order planning.

The EBL frameworks for state-based planning, such as
PRODIGYEBL [lo] and Failsafe [2] typically construct
search control rules that aim to steer the planner away tiom
unpromising paths. The search control rules are generated
by analyzing the search space explored by the planner to
locate failures, constructing explanations for those failures,
and regressing the failure explanations over the planning
decisions.

Given that partial order and state-based planners search
in very different search (decision) spaces, adapting these
EBL frameworks to partial order (PO) planning offers two
important challenges. First, since the space of decisions
in PO planning is different, the process of regressing and

*This research is supported in part by National Science Founda-
tion under grant KU-92 10997, and ARPA/Rome Laboratory planning
initiative under grant F30602-93-C-0039. Thanks to Bulusu Gopi
Kumar, Steve Minton, Prasad Tadepalli and Dan Weld for helpful
comments.

generalizing the explanations needs to be extended signifi-
cantly. Secondly, since the types of failures encountered in
PO planning are different from those encountered in state-
based planning, we need to investigate effective learning
opportunities for PO planners.

In this paper, we address both these issues. Specifically, we
describe SNLP+EBL, a system that learns search control rules
for SNLP, a causal link based PO planner [l, 91. We will start
by describing the basic learning framework in SNLP+EBL,
including the details of regression, explanation propagation
and search-control rule learning (Section 2). We will then
concentrate on SNLP+EBL'S ability to learn from failures.
We will show that the failures detected by SNLP (analytical
failures) alone do not by themselves provideeffective learning
opportunitiesfor SNLP+EBL inmany domains. This is because
many futile lines of reasoning either never end in analytical
failures or cross depth limits much before they do. Since
depth limit failures are not analytical, it is not possible to
learn from them.

To deal with this impasse, we adopt a novel approach
of strategically applying stronger consistency checks to the
plans crossing depth limits, to detect and explain the implicit
failures in those plans. These explanations are then used to
generate search control rules. In Section 3, we will describe
a specific realization of this strategy that utilizes the domain
axioms (or readily available physical laws of the domain) to
detect and explain inconsistencies (failures) at some depth
limit failures. In Section 3.1, we describe the results of an
empirical study which demonstrate the effectiveness of the
search control rules learned by this method.

2 The SNLP+EBL system
2.1 The base level planner
As mentioned earlier, our base level planner is SNLP, a causal
link based PO planner described in [l, 91. SNLP searches
in the space of partial plans. E&h partial plan can be seen
as a 5 tuple: (S, 0, 13, I& S) where: S is the set of actions
(also called steps) in the plan. The actions are described in
the STRIPS representation, with add, delete and precondition
lists. S contains two distinguished steps start and fin. The
effects of start and the preconditions of fin correspond,
respectively, to the initial state and the desired goals of the
planning problem. 0 describes the ordering constraints over

582 Machine Learning

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Node A
INITIAL STATE: GOAL STATE:

(0 (COOL A)) ((CYLINDRICAL A) G)
((POLISH A) G)

mralized Rule:

demtmn((2 (POLISiA) G) 1) n promilon((2 (POLISH A) G) 1)

- n,

Node D Reason :
(CYLIND A)
a-------

(0 i 1) (1 < G)
. - -stabllshes(2 (POLISH ?X) G)

Ipen-cond((COOL ?X) 2)
as-effect(1 (COOL ?X))
m-effect(1 (POLISH ?X)) 0" - I\

Node F FAII
Reason:(l <

/\

'G) (G < 1)

(CYLINORICAL A) G)

(0 < 1) (1 < 2)
open-cond((CoOL ?X) 2))
has-effect(1 (Co3L ?X))
(?X = A)

Reason:
(0 < 1) (1 < 2)
establlshes(0 (COOL ?X) 2)
has-effect(l (COOL ?X))
(?X = A)

Legend :
solrd-lme : precedence
dashed-lme : causal-lmk
< : precedence
1 : ROLL(A)
2 : POLISH(A)
0 : start
G : fm
= : codesqnates
P : any-condltlon

demotlon((0 (COOL Ay \lon((O W33L A) 2) 1) ~:~s~z$$rlml

Node H Far1 Node I Fail
Reason:(O < l)(l < 0) Reason:(l < 2) (2 < 1)
(mltlal explanation) (mltlal explanation)

Figure 1: Search Tree illustrating learning from analytical failures

the steps in S. L? is a set of code&nation (binding) and Action Precond Add Dele
non-codes&nation (prohibited bindings) constraints on the Roll(o) - Polish(o) A Cool(o)
variables appearing in the preconditions and post-conditions

Cylind(o)
Lathe(o) - Cylind(o) Polish(o)

of the operators. Polish(o) Cool(o) Polish(o)

G is the set of open conditions of the partial plan, i.e,
tuples (c, S) such that c is a precondition of step s E S. The
planning process consists of establishing the open conditions
with the help of the effects of either an existing step or a new
step. Whenever an open condition (c, s) is established with
the help of the effects of some step s’, it is removed from G,
and a causal link s’ 5 s is added to L. Ifs is a new step, its
preconditions are also added to G.

The initial planning problem is to polish au object A and
make its surface cylindrical. The object’s temperature is cool
in the initial state. The figure shows a failing branch of
the search tree. In this branch, SNLP establishes the open
condition (Cylin&icaZ(A), G) with the help of the new step
1: Roll(A). It then establishes the other open condition
(Polished(A), G) with the operator 2: Po 1 is h(A).

A causal link should be seen as a commitment by the
planner to protect c in the range between s’ and s. Whenever
new steps are introduced into the plan, the existing causal
links are checked to see if any of their conditions are violated.
A step t of the plan is said to be a threat to a causal
link s 3 w E L, if t has an add or delete list literal q
such that q possibly codesignates with p, and t can possibly
come in between s and w. The threat is resolved by either
promoting t to come after w , or demoting it to come before
s (in both cases, appropriately updating 0), or adding non-
code&nation constraints to ensure that q does not codesignate
with p. A threat for a causal link is said to be unresolvable
if all of these possibilities make either 0 or f3 inconsistent.
SNLP backtracks when it encounters an unresolvable threat,
or an unestablishable open condition.

Since Roll(A) deletes Polish(A), it is now a threat to
the link 2 J’oZ~~(A)

G. SNLP resolves this threat by demoting
1:~0ll(A) to come before %Polish(A). Polish(A)
ah0 introduces a new open condition (Cool(A),Z). SNLP
establishes it using the effects of the start state. Since
Roll(A) also deletes Cool(A), it also threatens this last
establishment. When SNLP tries to deal with the threat by
demoting 1: Roll(A) to come before step 0, it fails (since
0 already precedes I).’ Such failures represent learning
opportunities for the sNLP+EBL system, as discussed in the
next section.

2.2 Interaction between the learner and the
planner

The search tree in Figure 1 illustrates SNLP'S planning
process in terms of an example from a simple job-shop
scheduling domain with the operators shown below:

Search control rules attempt to provide guidance to the un-
derlying problem solver at critical decision points. As we
have seen above, for SNLP these decision points are selec-
tion of open conditions; establishment, including simple-
establishment and step-addition (operator selection); threat

‘To simplify the exposition clear, we omitted the failing separa-
tion branch from the figure.

Control Learning 583

Decision: The new step sr is added to establish the condition p
at step 92 in the current partial plan. The preconditions of this
decision are simply that 82 requires a condition p.

(1) Result of regressing the ordering constraint LX’ -i 5”
TTW, If 8’ = 81 and 5” = 92
TTueA start-special,Ifd= start anda” = 81
(see rule generalization section for
explanationof start-special flag)
32 4 d’, if 8’ = sr and 82 4 8”
s’ + s” otherwise

(2) Result of regressing the causal link s’ 2 8”
True If s’ = 81 and 8” = 82 andp = p’

8’ 5 3” otherwise

Figure 2: Partial procedure for regressing explanations over
step establishments

selection; and threat resolution, including promotion, demo-
tion and separation. Of these, it is not feasible to learn
goal-selection and threat-selection rules using the standard
EBL analysis since SNLP never backtracks over these deci-
sions. SNLP+EBL system learns search ~ntrO1 rules for all
the other decisions. A search control rule may either be in
the form of a selection rule or a rejection rule. In our cur-
rent work, we have concentrated on learning rejection rules
(although the basic framework can be extended to include
selection rules).

Unlike systems such as PRODIGY/EBL, which commence
learning only after theplanningis completed, SNLP+EBL does
adaptive (intra-trial) learning (c.f. [2]), which combines a
form of dependency directed backtracking with generation of
search-control rules. The planner does depth first search both
in the learning and non-learning phases. During the learning
phase, SNLP+EBL invokes the learning component whenever
the planner encounters a failure.

There are two types of failures that are recognized by SNLP:
the first is the analytical failure (where the planner reaches
an impasse and declares that the current partial plan cannot
be refined further). As explained earlier, this happens when
the partial plan contains a causal link with an unresolvable
threat, or an unestablishable open condition. The second type
of failure occurs when the problem solver crosses a pre-set
depth limit. The purpose of this limit is to prevent runaway
search down fruitless alleys.

If the learner is able to explain the failure, it constructs an
initial explanation and then regresses that explanation over
the decisions in that branch to generate search control rules.
From our discussion above, it is clear that analytical failures
can be explained in terms of the inconsistency of the ordering
and binding constraints of the partial plan, or in terms of
the unestablishable open condition. For example, the initial
explanation of failure for the partial plan at node H in Figure
1 is simply that (0 4 1) A (1 + 0) (causing an ordering cycle).
We defer the treatment of depth limit failures to Section 3.
Regression: Once an initial explanation for a failure is
constructed, sNLP+EBL regresses this explanation over the
decisions leading to the failing partial plan. For state-based
planners, the phuming decisions correspond closely to opera-

Procedure Propagate@, d;)
[di: failing partial plan; E: initial explanation of failure at d;).
3. Set d c d;
1. E’ t Regress((E, decision(d)))
2. If E’ = E, then set d t paTent(Goto Step 1. (aform ofDDB)
3.IfE’#E,then
3.1. If there are unexplored siblings of d
3.1 .l Make a rejection rule rejecting the decision of d, with E’
as the antecedent generalize it and store it in the rule set
3.1.2. fexp(paTent(d)) c E’A

pTecond(decision(d)) + f exp(paTent(d))
(store E’ as one the failure explanations urlder parent(d)))
3.1.3. Restart search at the first unexplored sibling of d

3.2. If there are no unexplored siblings of d,
3.2.1. Set E t [E’ A pTecond(decision(d))] + f exp(pwent(d))
3.2.2. If all the siblings of d are establishing an open
condition (c, 8). and none of them establish it from start,

Set E t E +~initially-true(c)
3.2.3. Set d t paTent(Goto Step 1.

Figure 3: Propagating Failure Explanations

tor applications, and thus regression over planning decisions
is very close to regression over operators [12]. In con-
trast, decisions in the PO planners correspond to addition
of generalized constraints (steps, orderings, bindings, causal
links) to the partial plan. SNLP+EBL provides a sound and
complete framework for regressing explanations over these
decisions. Figure 2 contains a partial outline of the procedure
for regressing arbitrary constraints of an explanation over an
establishment decision involving step addition. A complete
description of the regression rules for this and other planning
decisions is beyond the scope of this paper, and can be found
in [S].
Propagating Failure Explanations: Once an initial expla-
nation of the failure has been identified, it is propagated up
the failure branch to learn search control rules, as well as to
do a form of dependency directed backtracking. Figure 3
provides the outline of this procedure. We will illustrate this
process with the help of the example in Figure 1.

As discussed at the end of Section 2.1, the first failure
in this example is noticed at node H. Here, the demotion
caused order inconsistency in the plan. The explanation for
this failure is simply that (0 4 1) A (1 -4 0) (causing a cycle
in the ordering). When this explanation is regressed over the
demotion decision to make step 1 precede 0, we get 0 4 1.
Since the regressed explanation is different horn the original
one (step 3 in Figure 3)2, it is then conjoined with the
preconditions of the demotion decision (which in this case
is that 1 threatens the link 0 CoJ5A) 2) to get the weakest
preconditions for this branch of failure under G. These are
then stored as one of the failure explanations at node G (step

2Had the explanation not changed during regression over H,
the propagation process would have continued to the parent of this
decision (step 2 in Figure 3). The rationale being that at least as
far as this failure is concerned the choice taken at H’s parent node
didn’t contribute to the failure. Thus, as long as the decisions at
the upper levels remain same, exploring the other siblings of H is
guaranteed to keep this failure intact. This process constitutes a
simple form of dependency directed backtracking.

584 Machine Learning

3.1.2 in Figure 3).
Since the explanation changed after regression, and since

there are unexplored siblings of H, technically, we can learn
a rejection rule here (step 3.1.1 in Figure 3). However, its
utility is going to be very low since the consistency check
can find out the failure in the next level any way. To avoid
generation of such low-utility rules, we currently use a preset
constant I and ignore any rules generated within Z levels of
the failure.

At this point, search continues with the other sibling1 of H,
which uses the promotion alternative to resolve the threat (step
3.1.3). This plan also fails, and the explanation of this failure
is (1 4 2) A (2 + 1). When regressed over the promotion de-
cision, this becomes 1 4 2. The preconditions for promotion,
which are the same as those for the demotion, are conjoined
with (1 + 2), and added to the failure explanations at G.
Finally, since there are no more alternatives at G, the existing
explanations are conjoined to give the combined explanation

(0 4 l)A (1 4 2)A0 Co~A)2Ahas-eff ect(1, cool(A))
(step 3.2.1). This combined explanation is now regressed
over the establishment decision at node 6, and the resultant
explanation is regressed once again over E (since E has no
more unexplored alternatives, and it already considered the
establishment from initial state). The result is stored as the
explanation of failure for the branch through E at node D.
The search continues on the promotion branch through node
F and eventually fails. This then allows SNLP+EBL to conjoin
the explanations at D and pass the conjunction over to B.

Since D is the only alternative at B, we can continue the
regression process. But, before doing so, we note that in the
current planning episode none of the establishment branches at
B have considered start as an establisher (because start
did not have an effect unifying with Polish(A)). However,
since the effects of the start step change from problem to
problem (while those of all other steps, which correspond to
domain operators, remain same), in a new problem situation
it may well be the case that start step would be giving
Polish(A), and thus the failure of node B may no longer hold
in that situation. To ensure the soundness of the learned rules,
we must explicitly account for this possibility in explaining
the failure of B. We do this by conjoining the condition
linit ially-true(Pobish(A)) to the explanation failure
at B (step 3.2.2).3

The explanation regressed over the establishment decision
at B can be used to learn a useful step establishment rejection
rule at A (since A still has unexplored alternatives). This
rule is shown to the left of node A. It says that Roll should
be rejected as a choice for establishing any condition at goal
step G, if Polish(A) is also a goal at the same step. Notice
that the rule does not mention the specific establishment
Cylindrical(A), that lead to the introduction of Roll. This
is correct because the failure explanation at node B does not
involve CyIindrical(A).4

3A more eager learning possibility would be to extend additional
planning effort and see if B will have failed even if initial state were
giving the open condition (as it would have, in the current case).

41t is interesting to note that in a similar situation, Prodigy [l l]
seems to learn a more specific rule which depends on establishing

Rule Generalization: Once a search control rule is made,
it is generalized using the standard EBL process (c.f. 15,
lo]). This process aims to replace any constants in the
search control rule with variables, without affecting the rule
correctness. In SNLP+EBL this is accomplished by doing the
original regression process in terms of variables and their
bindings (SNLP aheady provides support for this). During
generalization, any bindings that are forced by the initial and
goal state specifications of the original problem are removed
from the explanation, leaving only those binding constraints
that were forced by the initial explanation of the failure[5].
Iu the example in Figure 1, the binding ?x M A in the
failure explanation of node B is stripped when making the
generalized rule.

The generalization process also needs to generalize step
names occurring in the failure explanation. Since the explana-
tions qualify the steps in terms of their effects and conditions
and their relations to other steps, most step names including
fin (G) can be generalized. The only exception to this
rule is the status of the start step, which may or may not
be generalizable based on the specifics of the explanation.
To help in this decision, our regression rules explicitly flag
start step as special when it must not be generalized. An
example of this can be seen in the regression rules for step
establishment decision in Figure 2. When an ordering of
the form start -c, 31 is regressed over the addition of step
~1, the start step is flagged special since this ordering is
automatically introduced as a result of step addition only with
respect to the start step. When start is not flagged
as special, it is generalized just as any other step. In the
example in Figure 1, the rule learned after step and variable
generalization is shown in a box to the left of node B.
Rule Storage: Once a rule is generalized, it is entered into the
corpus of control rules available to the planner. These rules
thus become available to the planner in guiding its search
in the other branches during the learning phase, as well as
subsequent planning episodes. In storing rules in the rule
corpus, SNLP+EBL makes some bounded checks to see if an
isomorphic rule is aheady present in the stored rules.

3 Learning from
In the previous section, we described the framework for
learning search control rules from initial explanations of
failed plans. As mentioned in that section, the only failures
explainable by SNLP are the order and binding inconsistencies,
which it detects during threat resolution (the unestablishable
condition failure is rare in practical domains). The rules
learned from such failures were successful in improving
performance of SNLP in some synthetic domains (such as
D” S2* described in [11).

Unfortunately however, 1 earning from analytical failures
alone turns out to be ineffective in other recursive domains
such as blocks world or job-shop scheduling. The main
reason for this is that many futile lines of reasoning either
never end in analytical failures or cross depth limits much
before they do. Since depth limit failures are not analytical, no
domain independent explanation can be given to these failures.

CyhzdTica@i).

Control Learning 585

However, sometimes it is possible
checks based on thedomain theory

to use strong consistency
as well as the meta-theory

of the planner to show that the partial plan at the depth
limit contains a failure that the planner’s consistency checks
have not yet detected. Consider for example a simplified

However, sometimes it is possible to use strong consistency
checks based on the domain theory as well as the meta-theory
of the planner to show that the partial plan at the depth
limit contains a failure that the planner’s consistency checks
have not yet detected. Consider for example a simplified
blocks-world partial plan shown below: blocks-world partial plan shown below:

11 ui

Given the blocks world domain axiom that no block can have Given the blocks world domain axiom that no block can have
another block on top of it, and be clear at the same time, another block on top of it, and be clear at the same time,
and the SNLP meta-theory that a causal link, s1 -% ~2, once and the SNLP meta-theory that a causal link, s1 -% SZ., once
established, will protect the condition c in every situation established, will protect the condition c in every situation
between s1 and 92, we can see that the above partial plan between ~1 and 92, we can see that the above partial plan
can never be refined into a successful plan. To generalize can never be refined into a successful plan. To generalize
and state this formally, we define the np-conditions, or and state this formally, we define the np-conditions, or
necessarily preservable conditions, of a step s’ in a plan P to necessarily preservable conditions, of a step s’ in a plan P to
be the set of conditions supported by any causal link, such be the set of conditions supported by any causal link, such
that s’ necessarily intercedes the source and destination of the that s’ necessarily intercedes the source and destination of the
causal link. causal link.

npconditions(s’) = (clsl 5 s2 E L A s1 -4 s’ A s’ -4 ~2) npconditions(s’) = (ClSl 5 s2 E L A Sl -i s’ A St 4 s2)

Given the q-conditions of a step, we know that the partial Given the q-conditions of a step, we know that the partial
plan containing it can never be refined into a complete plan as
long as precond(s’) u np-conditions(s’) is inconsistent with
respect to domain axioms. However, SNLP ‘s local consistency
checks will not recognize this, leading it sometimes into an
indefinite looping behavior of repeatedly refining the plan
in the hopes of making it complete. In the example above,
this could happen if SNLP tries to achieve Clear(B) at step
1 by adding a new step 2 : P&o&x, y), and then plans on
making On(x, B) true at 2 by taking A off B, and putting z
on B. when such looping makes SNLP cross the depth limit,
SNLP+EBL uses the np-conditions based consistency check
to detect and explain this implicit failure, and learn from that
explanation.

plan containing it can never be refined into a complete plan as
long as precond(s’) u np-conditions(s’) is inconsistent with
respect to domain axioms. However, SNLP ‘s local consistency
checks will not recognize this, leading it sometimes into an
indefinite looping behavior of repeatedly refining the plan
in the hopes of making it complete. In the example above,
this could happen if SNLP tries to achieve Clear(B) at step
1 by adding a new step 2 : P&o&x, y), and then plans on
making On& B) true at 2 by taking A off B, and putting z
on B. when such looping makes SNLP cross the depth limit,
SNLP+EBL uses the np-conditions based consistency check
to detect and explain this implicit failure, and learn from that
explanation.

To keep theconsistency check tractable, SNLP+EBL utilizes
a restricted representation for domain axioms (first proposed
in [3]): each domain axiom is represented as a conjunction of
literals, with a set of binding constraints. The table below lists
a set of domain axioms for the blocks world. The first one

To keep theconsistency check tractable, SNLP+EBL utilizes
a restricted representation for domain axioms (first proposed
in [3]): each domain axiom is represented as a conjunction of
literals, with a set of binding constraints. The table below lists
a set of domain axioms for the blocks world. The first one
states that y cannot have x on top of it, and be clear, unless y states that y cannot have x on top of it, and be clear, unless y
is the table. is the table.

on(x, y) A dear(y)[y @ Z’abie] On(x, y) A cZeur(y)[y @ Table]
On& Y) A On(x, Z)[Y # 4 04x, Y) A On(x, 4Cy # 4

On(x, y) A Onb, y)[x # 2, y # ~ddel Oh, y) A Onb, y)[x # 2, y # ~~~~el
A partial plan is inconsistent whenever it contains a step A partial plan is inconsistent whenever it contains a step

s such that the conjunction of literals comprising any do-
main axiom are unifiable with a subset of conditions in
np-conditions(s) U precond(s).

Given this theory, we can now explain and learn from the
blocks-world partial plan above. The initial explanation of

this failureis: start Owp GA(start 4 l)A(l+ G)A
open-cond(Clear(y), 1) A y $& Table. This explanation
can be regressed over the phuming decisions to generate rules.

s such that the conjunction of literals comprising any do-
main axiom are unifiable with a subset of conditions in
np-conditions(s) U precond(s).

Given this theory, we can now explain and learn from the
blocks-world partial plan above. The initial explanation of

this failure is: start
Owp GA(start 4 l)A(l+ G)A

open-cond(Clear(y), 1) A y * Table. This explanation
can be regressed over the phuming decisions to generate rules.

(1) Reject establishment start On%') 81
If open-cond(On(y,z),sl)A
linitially-true(On(y,z))A lbinds(y,TabZe)

(2) Reject promotion 81 4 93
If open-cond(clea~(zz), 33)A
establishes(sl,On(zl,z2),82)A
precedes (93,82)A lbinds(zz,?'able)

(3) Reject step addition puton(x’, y) “es(z) s1
If establishes(start,On(x,y), 92)A
precedes (al, s2)A lbinds(y,Table)

A

Figure 4: A sampling of rules learned using domain axioms
in Blocks world domain

The above theory can be used to learn from some of the
depth limit failures. In blocks world, use of this technique
enabled SNLP+EBL to produce several useful search control
rules. Figure 4 lists a sampling of these rules. The first
one is an establishment rejection rule which says that if
On(x, y) A On(y, z) is required at some step, then reject the
choice of establishing On(x, y) from the initial state, if initial
state is not giving On(y, 2).

3.1 Empirical Evaluation
To evaluate the effectiveness of the rules learned by
SNLP+EBL, we conducted experiments on random problems
in blocks world. The problems all had randomly generated
initial states consisting of 3 to 8 blocks (using the procedure
outlined in Minton’s thesis [lo]). The first test set contained
30 problems all of which had random 3-block stacks in the
goal state. The second test set contained 100 randomly gen-
erated goal states (using the procedure in [lo]) with 2 to 6
goals. For each test set, the planner was run on a set of
randomly generated problems drawn from the same distribu-
tion (20 for the first set and 50 for the second). Any learned
search-control rule, which has been used at least once during
the learning phase, is stored in the rule-base. This resulted in
approximately 10 stored rules for the first set, and 15 stored
rules for the second set. (It is interesting to note that none of
these rules were learned from analytical failures.)

In the testing phase, the two test set problems were run
with SNLP , sNLP+EBL (with the saved rules) as well as
SNLP+DOMAX, a version of sNLP which uses domain axioms
to prune inconsistent plans as soon as they are generated. A
cpu time limit of 120 seconds was used in each test set.

Table 1 describes the results of these experiments. Figure
5 shows the cumulative performance graphs for the three
methods in the second test set. Our results clearly show
that SNLP+EBL was able to outperform SNLP significantly
on these problem populations.’ SNLP+EBL also outperforms
SNLP+DOMAX, showing that learning search-control rules

5The experiments reported here were all done on the standard
public domain SNLP implementation of Barrett and Weld [l]. In ad-
dition, we also experimented with more optimized implementations
of SNLP including those that do not resolve positive threats (and
hence are not systematic), and avoid separation by defining threats
in terms of necessary codesignation [14]. The qualitative relations

586 Machine Learning

7 Num SNLP SNLP+EBL SNLP+DOMAX
Prob . ’ %Sol C.tlm 7 OS01 c. tlm %Sol c. tlm

I(30) 60% 1767 100% 195 97% 582
II (100) 51% 6063 81% 2503 74% 4623

Table 1: Results from the blocks world experiments

EOW.0
A

Figure 5: Cumulative performance curves for Test Set 2

is better than using domain axioms directly as a basis for
stronger consistency check on every node during planning.
This is not surprising since checking consistency of every
plan during search can increase the refinement cost unduly.
@3L thus provides a way of strategically applying stronger
consistency checks.

4 Related Work 141
As wenoted earlier, our workon SNLP+EBL was motivated by
the desire to adapt the EBL frameworks developed for state-
based phuming, such as FRODIGY/EBL [lo] and Failsafe
[2], to partial order planning. Our use of domain axioms to
detect and explain failures at depth limits is related to, and
inspired by Bhatnagar’s work on Failsafe 121. Bhatnagar also
advocates starting with over-general explanations of failure
and relaxing the rules in response to future impasses. The
rules learned in SNLP+EBL, in contrast, are always sound in
that any path rejected by a rejection rule is guaranteed to fail.
Domain axioms have been used by other researchers in the
past to control search in PO planning (c.f. [7, 31). Our use
of domain axioms is closest to the work of Kambhampati
[7], who uses an idea similar to np-conditions to implement
a minimal-conflict based heuristic for controlling refitting in
plan reuse. The current work shows that E!BL provides a way
of strategically applying domain axiom based consistency
checks. Finally, although we did not explicitly address
monitoring the utility of learned rules and filtering bad rules,
we believe that utility monitoring models developed for state-
based planners [4, 101 will also apply for PO planners.

E51

161

[71

181

PI

[lOI

1111

1121

D31

I241

5 Conclusions and Future Work
In this paper, we presented sNLP+EBL, the first system-
atic implementation of explanation-based search control rule
learning to a PO planner. We have described the details of

between SNLP, SNLP+EBL and SNLP+DOMAX
in the presence of these optimizations.

remained same even

the regression, explanation propagation and rule generation
process in SNLP+EBL. We have then proposed a general
methodology for learning from planning failures, viz., using
a battery of stronger consistency checks based on the meta-
theory of the planner, and the domain theory of the problem,
to detect and explain failures at depth limits. We described
a specific instantiation of this method, which uses domain
axioms to look for inconsistencies in the plans at depth limits,
and presented experimental results that demonstrate its effec-
tiveness. Although our EBL framework was developed in the
context of SNLP we believe that it can be easily extended to
more powerful PO planners such as UCPOP [131.

Learning from domain axiom based failures alone may not
be sufficient in domains which do not have any strong implicit
domain theory. We are currently working towards identifying
other types of stronger consistency checks which can be used
to complement the domain axiom based techniques in such
domains. One example involves utilizing domain specific
theories of loop detection to avoid step-based looping.

r.11

121

r31

References
A. Barrett and D.S. Weld. Partial Order Planning: Evaluating
Possible Efficiency Gains. Artificial Intelligence, Vol. 67,
No.1, 1994.
N. Bhatnagar. On-line Learning From Search Failures PhD
thesis, Rutgers University, New Brunswick, NJ, 1992.
M. Drummond and K. Curry. Exploiting Temporal coherence
in nonlinear plan construction. Computational Intelligence,
4(2):341-348.1988.
J. Gratch and G. DeJong. COMPOSER: A Probabilistic So-
lution to the Utility problem in Speed-up Learning. Jn Proc.
AAAI 92, pp:235--240, 1992
S. Kambhampati and S. Kedar. A unified framework for expla-
nation based generalization of partially ordered and partially
instantiated plans. Artificial Intelligence, Vol. 67, No. 2,1994.
S. Kambhampati and J. Chen. Relative Utility of EBG based
Plan Reuse in Partial Ordering vs. Total Ordering Planning. Jn
Proc. AAAZ-93, pp:5 14--5 19,1993.
S. Kambhampati. Exploiting Causal Structure to Control
Retrieval and Refitting during Plan reuse. Computational
Intelligence. 10(2), May 1994.
S. Katukam. Learning Explanation-Based Search Control
Rules for Partial Order Planning. Masters Thesis, Arizona
State University, Tempe, AZ, 1994. forthcoming).
D. McAllester and D. Rosenblitt. Systematic Nonliner Planning
In Proc. AAAZ-91,199l.
S. Minton. Learning Eflective Search Control Knowledge: An
Explanation-Based Approach. PhD thesis, Carnegie-Mellon
University, Pittsburgh, PA, 1988.
S. Minton. J.G. Carbonell, C.A. Knoblock, D.R. Kuokka,
0. Etzioni and Y. Gil. Explanation-BasedLearning: A Problem
Solving Perspective. Artificial Intelligence, 40:63--l 18, 1989.
N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo
Alto, 1980.
J.S. Penberthy and D.S. Weld. UCPOP: A sound, complete
partial order planner for ADL. In Proc. KRR-92,1992.
M. Peot and D. Smith. Threat removal strategies for Nonlinear
Planning. Jn Proc. 11 th AAAI, 1993.

Control Learning 587

