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Abstract 

A decision list is an ordered list of conjunctive 
rules (Rivest 1987). Inductive algorithms such as AQ 
and CN2 learn decision lists incrementally, one rule 
at a time. Such algorithms face the rule overlap prob- 
lem - the classification accuracy of the decision list 
depends on the overlap between the learned rules. 
Thus, even though the rules are learned in isolation, 
they can only be evaluated in concert. Existing algo- 
rithms solve this problem by adopting a greedy, iter- 
ative structure. Once a rule is learned, the training 
examples that match the rule are removed from the 
training set. We propose a novel solution to the prob- 
lem: composing decision lists from homogeneous rules, 
rules whose classification accuracy does not change 
with their position in the decision list. We prove that 
the problem of finding a maximally accurate decision 
list can be reduced to the problem of finding maxi- 
mally accurate homogeneous rules. We report on the 
performance of our algorithm on data sets from the 
UC1 repository and on the MONK’s problems. 

Introduction 
A decision list is an ordered list of conjunctive 
rules (Rivest 1987). A decision list classifies exam- 
ples by assigning to each example the class associated 
with the first conjunctive rule that matches the exam- 
ple. The decision list induction problem is to identify, 
from a set of training examples, the decision list that 
will most accurately classify future examples. A learn- 
ing algorithm requires some means for predicting how 
a decision list will perform on future examples. One 
solution is to use a heuristic scoring function that esti- 
mates the accuracy of the list on future examples based 
on its accuracy on training examples.’ The overall in- 
duction problem can be decomposed into choosing an 
appropriate scoring function and finding a decision list 
that maximizes it. 
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lTo avoid overfitting, additional factors are often in- 
cluded such as the size of the list and the number of training 
examples covered. 

A simple algorithm for finding a maximal decision 
list is to exhaustively search the space of decision lists 
and output the best one found. This algorithm is im- 
practical because the number of decision lists is doubly- 
exponential in the number of attributes. Many existing 
algorithms (e.g., (Michalski 1969; Clark and Niblett 
1989; Rivest 1987; Pagallo and Haussler 1990)) learn 
decision lists incrementally by searching the space of 
conjunctive rules for “good” rules and then combining 
the rules to form a decision list. 

Such algorithms face the problem of rude overlap - 
the accuracy of a decision list is noi a straightforward 
function of the accuracy of its constituent rules. To 
illustrate this point, consider the two rules ~1 and ~2, 
each having 80% accuracy and 50% coverage on the 
training examples. The rules may not overlap at all, 
which yields a two rule decision list with 80% accuracy 
and 100% coverage. However, the rules may have a 
40% overlap in which case the accuracy of the decision 
list (fr,73) could go down to 67% with a coverage of 
60%. In general, any algorithm that forms a classifier 
by combining rules learned separately has to overcome 
the rule overlap problem. 

Algorithms such as AQ and CN2 address the over- 
lap problem by adopting an iterative structure. As 
each rule is learned, it is inserted into the decision list, 
and the examples covered by the rule are removed from 
the training set. The algorithm learns the next rule 
based on the reduced training set. The process is re- 
peated until the training set is exhausted. The overlap 
problem is addressed by learning each successive rule 
from a training set where examples that match previ- 
ously learned rules are filtered out. Note that this it- 
erative approach is greedy - once the algorithm learns 
a rule, it is committed to keeping that rule in the de- 
cision list. All subsequent learning is based on this 
commitment. 

While the greedy approach has proven to be effective 
in practice, it has several problems. First, as pointed 
out by Clark and Niblett (1989), the interpretation 
of each rule is dependent on the rules that precede 
it. This makes decision lists difficult to comprehend 
because the learned rules cannot be considered in iso- 
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lation. Second, on each iteration, fewer training ex- 
amples are available for the learning algorithm, which 
hinders the algorithm’s ability to learn. This is par- 
ticularly important in situations where training data 
is scarce. Finally, poor rule choices at the beginning 
of the list can significantly reduce the accuracy of the 
decision list learned. 

Nevertheless, Rivest showed that a greedy, iterative 
algorithm can provably PAC learn the concept class 
k-&5, decision lists composed of rules of length at most 
X: (Rivest 1987). However, Rivest’s PAC guarantee pre- 
supposes there exist 100% accurate rules of length at 
most rE that cover the training examples. This strong 
assumption neatly sidesteps the overlap problem be- 
cause the accuracy of a 100% accurate rule remains 
unchanged regardless of the rules that precede it in 
the decision list. However, the assumption is often vi- 
olated in practice. A full complement of 100% accurate 
rules of length at most Ic cannot be found when there 
is noise in the training data, when the concept to be 
learned is not in k-DL (relative to the algorithm’s at- 
tribute language), or when the concept is probabilistic. 

Our main contribution is a solution to the over- 
lap problem that is both theoretically justified and 
practical. We borrow the notion of homogeneity from 
the philosophical literature (Salmon 1984) to solve the 
overlap problem in learning decision lists. Informally, 
a homogeneous rule is one whose accuracy does not 
change with its position in the decision list. 

Formally, let E denote the universe of examples. Let 
T denote the set of tests within a domain and G the 
set of goal classes. Let DL denote the set of all decision 
lists. Let c(e) denote the classification of example e, 
and C(e, d) d enote the classification that decision list 
d assigns to the example e. We write a rule as A -+ g, 
where A C T and g E G. When an example e passes 
all the tests in A, we say e E A. Let P be a probability 
distribution over examples. We define the accuracy of 
a decision list d with respect to P as follows: 

A(d) = c P(e) 
eEElc(e)=C(e,d) 

We define the accuracy of a 
the examples that it covers: 

rule to be its accuracy on 

A homogeneous rule is a rule for which all special- 
izations of the rule have the same accuracy as the rule 
itself. Formally, a homogeneous rule is a rule A --+ g 
such that, for all B c T, the following holds: 

a(A A B + g) = a(A + g) 

All 100% accurate rules are homogeneous, but homo- 
geneous rules need not be 100% accurate. Thus, ho- 
mogeneity can be viewed as a generalization of Rivest’s 
solution to the overlap problem. This generalization 

is valuable in situations where concise 100% accurate 
rules do not exist. 

Our algorithm for learning decision lists, BRUTEDL, 
searches the space of conjunctive rules for maximally 
accurate homogeneous rules and composes the rules 
found into a decision list. The remainder of the pa- 
per is organized as follows. The next section intro- 
duces the theory underlying BRUTEDL. The following 
section explains the approximations to the theory we 
use to make BRUTEDL practical. We then describe 
BRUTEDL’S algorithm and discuss how we make our 
implement at ion efficient. Finally, we present empir- 
ical results that validate our approach and compare 
BRUTEDL with related algorithms. 

omogeneous Decision Lists 
This section describes the theory underlying 
BRUTEDL. Our goal is to demonstrate that the prob- 
lem of finding a maximally accurate decision list can be 
reduced to the problem of finding maximally accurate 
homogeneous rules. 

A homogeneous decision list is a decision list com- 
posed exclusively of homogeneous rules. We use HDL 
to refer to the set of all homogeneous decision lists. 
BRUTEDL is restricted to learning homogeneous de- 
cision lists. Does this restriction mean that in some 
cases BRUTEDL will be forced to learn an inferior de- 
cision list? In other words, are there cases where the 
best homogeneous decision list is less accurate than 
the best decision list? The answer is no. We say 
that two decision lists d and d’ are dogicadly equiva- 
lent if they classify all examples identically. That is, 
b’ e E E, C(e, d) = C(e, d’). 

Theorem 1 For every decision list, there exists a ho- 
mogeneous decision list that is logically equivalent. 

Proof sketch: 

Let d be a nonhomogeneous decision list and r = A --) 
g be a nonhomogeneous rule in d. We can replace r 
with a set of equivalent homogeneous rules. By per- 
forming this replacement for all nonhomogeneous rules 
in d, a homogeneous decision list logically equivalent 
to d can be found. Let t be any test not in A. The 
rule r can be replaced with A A t + g and A A 4 -+ g 
without changing how d classifies examples. If these 
rules are homogeneous, we are done. If not, we can re- 
peat the procedure and replace the two rules with four 
rules without logically changing d. This procedure can 
be repeated until a set of homogeneous rules is found. 
A set of homogeneous rules is guaranteed to be found 
because there is a finite number of tests.0 

Our solution to the overlap problem combines the 
notion of homogeneity with the intuition that the best 
rule to classify any given example is the most accurate 
rule that covers the example. We define a maximal 
cover as a set of rules containing, for each example, the 
most accurate homogeneous rule that covers it. For- 
mally, let hr(e) be the set of homogeneous rules that 
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match e. A maximal cover M(E) of a universe of ex- 
amples E is any set of homogeneous rules for which 
the following holds: 

V eEE, 3 rEM(E) such that a(r) =T phyel a(r’) 
I 

We now show that the problem of finding the maxi- 
mally accurate decision list can be reduced to the prob- 
lem of finding a maximal cover for E. 

Theorem 2 Any homogeneous decision list d whose 
rules form a maximum cover of E and is sorted by 
decreasing accuracy will have: 

A(d) = dial A(b) I 

Proof: 
First we prove that d must be a maximally accu- 
rate homogeneous decision list. Assume that A(d) # 
maxd,EHDL A(d’). There must exist a homogeneous 
decision list f such that A(f) > A(d). Let e denote 
an example that is classified by a rule fi in f and dj 
in d such that u(fi) > u(dj). Since A(f) > A(d), 
such an example must exist. The rules of d form 
a maximum cover; therefore, there exists a dk such 
that u(dk) = milX,.Ehqej u(r). Furthermore, we have 

a(&) > u(h) b ecause fi E hr(e). We have k < j 
because u(dk) 2 u(fi) > a(dj) and d is sorted by de- 
creasing accuracy. But if k < j, e should have been 
classified by dk rather than dj. This contradiction es- 
tablishes that A(d) = maxd,E HDL A(d’). Let g be a 
decision list such that A(g) = maxd,E DI, A( d’). As- 
sume A(g) > A(d). By Theorem 1, there exists an 
h E HDL that is logically equivalent to g. We have 
A(h) = 4s) b ecause h and g are logically equiva- 
lent. But since h is homogeneous, we have A(d) 2 
A(h) = A(g) h h w ic contradicts the assumption. Thus, 
A(d) = maxdlEDL A(d’).n 

Implications for BRUTEDL 
We now consider the implications of Theorem 2 for 
BRUTEDL. If BRUTEDL had access to the probability 
distribution P and the set of homogeneous rules, it 
would be straightforward to build an algorithm based 
on Theorem 2. In practice, BRUTEDL is only given a 
set of training data from which it must approximate P 
and determine which rules are homogeneous. 

BRUTEDL uses LapZaceAccuracy as an approxima- 
tion of the actual accuracy of a rule (Niblett 1987). 
Let T be a rule that classifies rp training examples cor- 
rectly out of the TV training examples it matches. Let 
[Gl denote the number of goal classes. The LaplaceAc- 
curacy of r is calculated as follows: 

rp + 1 LapZaceAccurucy(r) = - 
rn + IGI 

h 
Once an estimate for the accuracy of individual rules 

as been defined, it is possible to check whether a 

rule is homogeneous. The accuracy of a homogeneous 
rule should not change when additional conjuncts are 
added. Therefore, homogeneity can be checked by 
comparing the LaplaceAccuracy of a rule with the 
LaplaceAccuracy of all the rule’s specializations. Since 
LaplaceAccuracy is an approximation to the actual ac- 
curacy of a rule, a rule is considered homogeneous if 
all specializations have roughly the same LaplaceAccu- 
racy. We check for statistically significant differences 
in LaplaceAccuracy using a x2 test. 

Although not required by Theorem 2, it is desirable 
that the rules learned by BRUTEDL do not contain ir- 
relevant conjuncts. An irrelevant conjunct is any con- 
junct whose presence does not affect the accuracy of a 
rule. We will call any rule with only relevant conjuncts 
minimal. Restricting BRUTEDL to minimal rules does 
not affect the class of concepts it can learn because, for 
every nonminimal homogeneous rule, there is a mini- 
mal rule with identical accuracy and greater coverage 
that is formed using some subset of the original rule’s 
conjuncts. We check whether a conjunct is relevant by 
checking if the accuracy of the rule changes when the 
conjunct is removed. Again, we use a x2 test to ensure 
that any differences in accuracy that are detected are 
significant. 

Algorithm 
The previous sections developed the basic framework 
behind BRUTEDL. We now describe how this frame- 
work is implemented. The core of BRUTEDL is a 
depth-first search to find, for each example, the best 
conjunctive rule that covers it. Rules that are nei- 
ther homogeneous nor minimal are filtered out. Once 
a maximal cover has been found, the cover is sorted, 
and a default rule is appended. BRUTEDL limits its 
search to a fixed depth bound when it is too costly to 
search the entire space. A pseudo-code description of 
BRUTEDL appears in Table 1. 

The search performed by BRUTEDL is systematic, 
it visits each rule exactly once. In a naive search of 
the space of conjunctive rules, the identical rules A A 
B--,gandBAA --) g would be visited separately: 
once while searching the children of A + g and once 
while searching the children of B --+ g. BRUTEDL 
achieves systematicity by imposing a canonical order 
on the tests within a rule. BRUTEDL assigns a numeric 
rank to each test and only considers rules whose tests 
appear in order of increasing rank. 

Homogeneity is checked by doing a systematic search 
of all specializations of a rule. If a specialization is 
found with a difference in accuracy that is considered 
statistically significant, the homogeneity check fails. If 
no such specialization is found, the rule is deemed ho- 
mogeneous. BRUTEDL limits the cost of homogeneity 
checks by reducing their frequency. It is only necessary 
to check the homogeneity of a rule that is minimal and 
is the best rule seen thus far for some example. If 
a rule does not meet these two criteria, it cannot be 
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BruteDLO 
DecisionList := MakeEmptyDLO; 
BruteSearch(MakeEmptyRule0); 
Sort(DecisionList); 
AddDefaultRule(DecisionList); 

END 

BruteSearch(rule) 
IF Length(rule) >= MaxLength THEN EXIT; 
StartTest := FollowingTest(LastTest(rule)); 
FOR test := StartTest to LastTest DO 

newrule := AddConjunct(rule, test); 
IF BestForSomeExample(newrule) AND 

IsMinimal(newrule) AND 
Homogeneous(newrule,newrule) 

THEN Insert(newrule,DecisionList); 
IF NOT PruneRule(newrule) 
THEN BruteSearch(newrule); 

END 
END 

Homogeneous(ParentRule, ru1e):boolea.n 
IF Length(rule) >= MaxLength THEN RETURN(True); 
IF rule = ParentRule 
THEN StartTest = 1; 
ELSE StartTest = FollowingTest(LastTest(rule)); 

FOR test := StartTest to LastTest DO 
newrule := AddConjunct(rule,test); 
IF NOT SimilarAccuracy(ParentRule,newrule) THEN 
RETURN(False); 

ELSE IF NOT Homogeneous(ParentRule,newrule) THEN 
RETURN(False); 

END 
RETURN(True); 

END 

IsMinimal(rule):boolean 
FOR test in Conjuncts(rule) DO 
ParentRule := DeleteConjunct(rule, test); 
IF SimilarAccuracy(ParentRule, rule) 
THEN RETURN(False); 

END 
RETURN(True); 

END 

Table 1: Pseudo-code for BruteDL. 

part of the final decision list. Using this filter, a ho- 
mogeneity check is required for only a small fraction 
of the rules searched. Furthermore, the homogeneity 
check for a nonhomogeneous rule is often inexpensive 
because the search is terminated once a specialization 
with a significant difference in accuracy is found. 

Once a maximum cover has been found, BRUTEDL 
uses it to build a decision list. The final decision list 
is formed by sorting the maximum cover and append- 
ing a default rule. A default rule is necessary because 
the rules found by BRUTEDL, although required to 
cover the training examples, might not cover all the 
test examples. BRUTEDL appends a default rule that 
predicts the most frequent class in the training data. 

(1) If Accuracy(r) = 100% then Prune(r). 

(2) If MatchedPositives < MinPositives then Prune(r). 

(3) If MatchedNegatives(AA-c) < MinSimNegatives A 
MatchedPositives(AA-c) < MinSimPositives then 

Prune(AAc). 

Table 2: Pruning axioms used by BRUTEDL. Prune(r) 
indicates the children.of T should not be searched. The 
axioms are sound because the rules they prune cannot 
be part of the final decision list. 

Efficiency 
For BRUTEDL to be a practical algorithm, it is impor- 
tant that it be as efficient as possible. The efficiency of 
BRUTEDL is determined by two factors: the efficiency 
of processing each rule and the number of rules pro- 
cessed. We address the first element of BRUTEDL’S 
efficiency by carefully implementing BRUTEDL in C. 
BRUTEDL can process approximately 100,000 rules 
per second when running on a SPARC-10. processor 
with a data set of 500 examples. BRUTEDL’S run- 
ning time grows linearly with the number of examples. 
Significant, improvements in program efficiency are not 
expected because BRUTEDL is currently within an or- 
der of magnitude of the machine’s clock rate. However, 
further improvements in rule processing speed will oc- 
cur as faster machines become available. 

The second element of BRUTEDL’S efficiency is the 
number of rules it processes. BRUTEDL can reduce 
the number of rules it has to process by pruning away 
rules guaranteed not to be part of the final decision 
list. BRUTEDL uses the axioms in Table 2 to deter- 
mine the portions of the search space it can ignore. 
BRUTEDL’S pruning axioms significantly reduce the 
number of rules it has to process. For the test do- 
mains presented later, the pruning axioms reduced the 
search space by as much as a factor of 1,000. The re- 
mainder of this section describes BRUTEDL’S pruning 
axioms in detail. 

The first axiom prunes descendants of 100% accu- 
rate rules because they cannot, be minimal. The second 
axiom prunes all specializations of a rule that do not 
cover a minimum number of positive examples. During 
its search, BRUTEDL keeps track of the worst rule that 
is the best for some example. For a rule to appear in 
the final output, it is necessary for it to be better than 
this rule. It is possible to show that for LaplaceAc- 
curacy and many other functions, there is a minimum 
number of positive examples a rule must cover for it to 
achieve a particular score. By setting MinPositives to 
the number of positives required to improve upon the 
worst rule, we can prune rules that are guaranteed not 
to appear in the final decision list. 

The third pruning axiom avoids exploring portions of 
the search space that are guaranteed not to be minimal. 
If a rule contains a conjunct that does little to affect 
the rule’s accuracy, then any specialization of that rule 
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will not be minimal. Consider the rule Y = A A c ---) g 
where the conjunct c has little influence on the ac- 
curacy of the rule. We will determine the conditions 
for which any specialization of T is guaranteed to be 
nonminimal. Let s = A A c A B ---f g be any special- 
ization of T. For s to be a minimal rule, it is necessary 
that its accuracy be significantly different from the ac- 
curacy of p = A A B - g. For s to be minimal, it 
must therefore be more accurate or less accurate than 
p. The maximum possible value of x2 for a specializa- 
tion of p that is more accurate than p is obtained by 
a rule that matches all the positives of p and none of 
its negatives. If p contains too few negative examples, 
then the maximal value of x2 will be lower than the 
threshold required to be judged significant. Thus, no 
specialization of p that is more accurate than p can 
be significant unless p contains a minimum number of 
negative examples. A similar argument demonstrates 
that no specialization of p that is less accurate than p 
can be significant unless p contains a minimum number 
of positive examples. The negative and positive exam- 
ples in p that do not *appear in Y are those for which 
A A lc A B holds. If A A 1cA B has too few positive ex- 
amples and too few negative examples, then s cannot 
be minimal. Furthermore, if the set A A -G contains 
too few positive examples and too few negative exam- 
ples, then A A lc A B must also not contain enough 
examples. Therefore, by pruning specializations of a 
rule A A c ----) g when A A lc does not have the required 
number of positive and negative examples, we remove 
from consideration only rules that are guaranteed not 
to be minimal. 

Experimental Results 

We ran BRUTEDL on several data sets from the UC1 
repository (Murphy 1994)2 and on all the data sets 
from the MONK’s competition (Thrun et al. 1991). 
The results are shown in Table 3. For comparison, the 
results for the IND (Buntine and Caruana 1991) im- 
plementation of C4 (Quinlan 1986) are also included. 
The results for the UC1 data sets are averaged over 10 
iterations. Each iteration randomly splits the available 
data into 70% for training and 30% for testing. The 
MONK’s problems specify both the training set and 
test set to use for each problem. 

BRUTEDL performed as well as C4 on many of 
the UC1 data sets and better than C4 on the lym- 
phography data set. However, BRUTEDL performed 
relatively poorly on the glass and voting data sets. 
BRUTEDL is a clear winner on the MONK #l data 
set, and performed at least as well as C4 on the other 
two MONK’s problems. The target concept in the 
MONK #l data set is an XOR, which is known to 
be difficult for decision tree algorithms. In contrast, 

2The breast cancer, lymphography, and primary tumor 
domains were obtained from the University Medical Centre, 
Institute of Oncology, Ljubljana, Yugoslavia. 

Domain 
Breast cancer 
Chess endgame 
Glass 
Hepatitis 
Iris 
Lymphography 
Mushroom 
Primary tumor 
Voting records 
MONK #l 
MONK#2 
MONK#3 

BRUTEDL 
Act. 
68.7 4.; 
98.6 0.4 
62.0 5.3 
80.6 7.9 
93.1 4.5 
82.0 3.4 

100.0 0.1 
39.9 3.0 
93.0 3.2 

100.0 N/A 
68.1 N/A 
97.2 N/A 

Act. 
69.8 3.; 
99.2 0.3 
69.2 5.5 
80.0 7.9 
94.2 2.7 
69.6 3.4 

100.0 0.0 
39.1 4.9 
94.6 1.5 
80.6 N/A 
64.8 N/A 
97.2 N/A 

Table 3: The results of BRUTEDL and C4 on several 
data sets. All results except for the MONK data sets 
are averaged over 10 iterations. The MONK data sets 
come with a single training and test set. 

Domain 
Breast cancer 
Chess endgame 
Glass 
Hepatitis 
Iris 
Lymphography 
Mushroom 
Primary tumor 
Voting records 
MONK #l 
MONK#2 
MONK#3 

CPU Time Search 
min:sec depth 

0:31 4 
16:34 5 
6:29 3 
0:53 3 
0:37 5 
1:13 5 
2:09 3 
0:08 4 
0:04 5 
0:Ol N 
0:04 N 
0:Ol N 

Table 4: Running times and search depths for 
BRUTEDL. CPU time is for a SPARC-10 workstation. 
A search depth of N indicates a complete search. 

XOR is easy for BRUTEDL since it merely has to find 
a homogeneous rule corresponding to each disjunct. 

All of the UC1 data sets were too large for a complete 
search. In each of the data sets, a depth bound was 
used to restrict the search to consider rules only up 
to a certain length. Table 4 shows the execution times 
and depth bounds for each data set. BRUTEDL is fast, 
taking only a few CPU seconds on some data sets and 
no more than 17 CPU minutes on the slowest one. 

Critique 
Ideally, BRUTEDL'S massive search would result in sig- 
nificant improvements when compared with a greedy 
algorithm such as C4. Our experiments do not demon- 
strate this improvement for several reasons. First, on 
some data sets (e.g., mushroom) we observe a ceiling 
effect - C4 is performing about as well as possible, 
given the data set and attribute language. Second, in 
some cases, BRUTEDL overlooks homogeneous rules. 
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BRUTEDL discards a rule as nonhomogeneous when 
it has a specialization that differs significantly in ac- 
curacy from the rule itself. BRUTEDL performs a x2 
test at p = .005 on each specialization of the rule to 
determine if its accuracy is significantly different from 
that of the rule. However, it is not the case that the 
probability that BRUTEDL incorrectly judges a rule to 
be nonhomogeneous is .005. Although the probability 
that a single error is .005, the probability that at least 
one of N judgments is in error is 1 - .995N. Thus, the 
more specializations a rule has, the more likely it is to 
be judged incorrectly as nonhomogeneous. 

On both the voting and breast cancer data sets, 
BRUTEDL incorrectly judged several key rules to 
be nonhomogeneous. We can reduce the likelihood 
BRUTEDL will incorrectly judge a rule as nonhomo- 
geneous by using a lower p value for the x2 tests. By 
using p = .OOOOl, BRUTEDL improves its performance 
to 94.4% accuracy on the voting data and to 72.2% 
accuracy on the breast cancer data. However, sim- 
ply increasing the confidence in individual x2 tests can 
cause BRUTEDL to treat a nonhomogeneous rule as 
homogeneous. For instance, accuracy on the primary 
tumor data set decreases to 34.8% when we change the 
confidence level to p = .OOOOl. It is clear that a more 
stable method of checking homogeneity is needed. 

Finally, BRUTEDL'S performance is limited in do- 
mains where it is not able to search to sufficient depth 
to find accurate rules. For instance, the rules found 
by BRUTEDL at depth 3 in the glass domain are not 
as accurate as those found by C4 at depths 5 and 6. 
Heuristic search techniques (e.g., beam search) can be 
used when a pure depth-bounded search to the desired 
depth is too costly. The basic ideas behind BRUTEDL 
apply equally well to heuristic search. 

Related Work 
BRUTEDL builds on our previous work on BRUTE 
(Riddle, Segal, and Etzioni 1994). BRUTE uses a 
depth-bounded search of the space of conjunctive rules 
to find accurate predictive rules. We tested BRUTE 
on two data sets from a Boeing manufacturing do- 
main. The first data set has 1,075 examples with 48 
attributes, and the second has 519 examples with 1,65? 
attributes. In the first data set, the predictive rules 
found by BRIJTE were 20% more accurate on average 
than those found by C4. In the second data set, the 
predictive rules found by BRUTE were 44% accurate on 
average, while C4 was unable to find any rules. The 
results demonstrate the effectiveness of depth-bounded 
search on a complex real-world domain. BRUTE'S run- 
ning time on the two data sets was less than 3 CPU 
minutes on a SPARC-10 workstation.3 

nSevera1 other systems have used depth-bounded 
search. ITRULE (Smyth and Goodman 1991), like 

BRUTE, uses depth-bounded search to find accu- 
rate predictive rules. Schlimmer (1993) uses depth- 
bounded search to find determinations. However, none 
of these systems attempt to build a classifier from the 
rules they find. 

Rivest (1987) d escribes an algorithm for PAC learn- 
ing the concept class k-DL, decision lists composed of 
rules of length at most k. Rivest’s k-DL algorithm 
conducts a depth-bounded search of the space of con- 
junctive rules to find 100% accurate rules. This depth- 
bounded search is repeated n times where n is the num- 
ber of rules in the learned decision list. We can improve 
upon the k-DL algorithm by restricting BRUTEDL to 
consider only 100% accurate rules. The homogeneity 
check can be dropped because 100% accurate rules are 
necessarily homogeneous. This restricted version of 
BRUTEDL will PAC learn k-DL using a single depth- 
bounded search of the space of conjunctive rules. The 
time complexity of the restricted BRUTEDL is asymp- 
totically faster than that of the k-DL algorithm by a 
factor of n. Furthermore, the unrestricted BRUTEDL 
is more general. It can be used on noisy domains, prob- 
abilistic concepts, and concepts not in k-DL. 

Rivest’s algorithm is very similar to the AQ line of 
inductive algorithms (e.g., (Michalski 1969; Clark and 
Niblett 1989)). Th ese algorithms share Rivest’s itera- 
tive structure but use a beam search to find the best 
rule according to a scoring function. The OPUS sys- 
tem (Webb 1993) extends CN2 to use depth-bounded 
search but retains the same iterative structure. As a 
result, poor rule choices at the beginning of the list 
can significantly reduce the accuracy of the decision 
list learned. Furthermore, the greedy structure in- 
troduces dependencies among the decision list’s rules 
that can make the decision list difficult to interpret. 
BRUTEDL’S solution to the overlap problem avoids 
both these pitfalls by learning each rule in the deci- 
sion list independently. 

The PVM system (Weiss et al. 1990) does a massive 
search of the space of classifiers. PVM’s search is not 
exhaustive because it uses several heuristics to reduce 
the search space. 4 Even with heuristics, the doubly- 
exponential search space searched by PVM limits it 
to considering classifiers that are significantly smaller 
than those considered by BRUTEDL. Finally, Murphy 
and Pazzani (1994) used a depth-bounded search of 
the space of decision trees to analyze the relationship 
between the smallest decision tree and classification 
accuracy. A massively parallel Maspar computer and 
small domains were used to make a limited search of 
this doubly-exponential space possible. Our theory of 
homogeneity and sound pruning axioms significantly 
reduce the cost of depth-bounded search and make it 
practical in many domains. 

Many of BRUTEDL’S features help to improve the 

3We previously reported BRUTE'S running time as 33 
CPU minutes. We have since added additional pruning 
axioms that significantly improve BRUTE'S efficiency. 

4 Unlike BRUTEDL'S pruning axioms, PVM’s heuris- 
tics are not sound and can cause it to overlook accurate 
classifiers 
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human readability of its decision lists. As pointed out 
by Clark and Niblett (1989), the readability of a deci- 
sion list suffers because the interpretation of each rule 
is dependent on the rules that precede it. BRUTEDL 
avoids this problem by finding only homogeneous deci- 
sion lists. Homogeneous decision lists are easier to un- 
derstand because the interpretation of each rule is not 
dependent on its position. Furthermore, BRUTEDL 
attempts to include all relevant conjuncts within each 
rule while leaving out any irrelevant conjuncts. 

Another unique aspect of BRUTEDL is that it does 
not use a postpruning phase to avoid overfitting. Post- 
pruning does not make sense for any algorithm that is 
trying to maximize a scoring function because it would 
prune the maximal classifier found into some classi- 
fier that would be nonmaximal according to its scoring 
function. Instead, BRUTEDL uses its heuristic scoring 
function to avoid overfitting by assigning a low score to 
any rule that covers too few training examples. Over- 
fitting is also avoided by requiring that every conjunct 
in a rule be relevant. 

Conclusion 
This paper introduced BRUTEDL, a novel algorithm 
for learning decision lists. Unlike algorithms such as 
A& or CN2, BRUTEDL conducts a single search for 
accurate homogeneous rules, which contain no redun- 
dant conjuncts, and builds a decision list from the rules 
it finds. We show that, in the limit, the problem of 
learning maximally accurate decision lists can be re- 
duced to the problem of learning maximally accurate 
homogeneous rules. BRUTEDL introduces a number 
of approximations to this theory but, as our empirical 
results demonstrate, BRUTEDL is effective in practice. 
BRUTEDL outperforms C4 in several cases and runs 
in less than a minute on most benchmark data sets. In 
future work we plan to compare BRUTEDL with CN2 
and to demonstrate that decision lists, based on homo- 
geneous rules, are easier to comprehend than standard 
decision lists. 
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