
Learning Decision Lists Using
Homogeneous

Richard Segal and Oren Etzioni*
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{segal, etzioni)@cs.washington.edu

Abstract

A decision list is an ordered list of conjunctive
rules (Rivest 1987). Inductive algorithms such as AQ
and CN2 learn decision lists incrementally, one rule
at a time. Such algorithms face the rule overlap prob-
lem - the classification accuracy of the decision list
depends on the overlap between the learned rules.
Thus, even though the rules are learned in isolation,
they can only be evaluated in concert. Existing algo-
rithms solve this problem by adopting a greedy, iter-
ative structure. Once a rule is learned, the training
examples that match the rule are removed from the
training set. We propose a novel solution to the prob-
lem: composing decision lists from homogeneous rules,
rules whose classification accuracy does not change
with their position in the decision list. We prove that
the problem of finding a maximally accurate decision
list can be reduced to the problem of finding maxi-
mally accurate homogeneous rules. We report on the
performance of our algorithm on data sets from the
UC1 repository and on the MONK’s problems.

Introduction
A decision list is an ordered list of conjunctive
rules (Rivest 1987). A decision list classifies exam-
ples by assigning to each example the class associated
with the first conjunctive rule that matches the exam-
ple. The decision list induction problem is to identify,
from a set of training examples, the decision list that
will most accurately classify future examples. A learn-
ing algorithm requires some means for predicting how
a decision list will perform on future examples. One
solution is to use a heuristic scoring function that esti-
mates the accuracy of the list on future examples based
on its accuracy on training examples.’ The overall in-
duction problem can be decomposed into choosing an
appropriate scoring function and finding a decision list
that maximizes it.

*This research was funded in part by Office of Naval
Research grant 92-J-1946 and by National Science Founda-
tion grants IRI-9211045 and IRI-9357772. Richard Segal is
supported, in part, by a GTE fellowship.

lTo avoid overfitting, additional factors are often in-
cluded such as the size of the list and the number of training
examples covered.

A simple algorithm for finding a maximal decision
list is to exhaustively search the space of decision lists
and output the best one found. This algorithm is im-
practical because the number of decision lists is doubly-
exponential in the number of attributes. Many existing
algorithms (e.g., (Michalski 1969; Clark and Niblett
1989; Rivest 1987; Pagallo and Haussler 1990)) learn
decision lists incrementally by searching the space of
conjunctive rules for “good” rules and then combining
the rules to form a decision list.

Such algorithms face the problem of rude overlap -
the accuracy of a decision list is noi a straightforward
function of the accuracy of its constituent rules. To
illustrate this point, consider the two rules ~1 and ~2,
each having 80% accuracy and 50% coverage on the
training examples. The rules may not overlap at all,
which yields a two rule decision list with 80% accuracy
and 100% coverage. However, the rules may have a
40% overlap in which case the accuracy of the decision
list (fr,73) could go down to 67% with a coverage of
60%. In general, any algorithm that forms a classifier
by combining rules learned separately has to overcome
the rule overlap problem.

Algorithms such as AQ and CN2 address the over-
lap problem by adopting an iterative structure. As
each rule is learned, it is inserted into the decision list,
and the examples covered by the rule are removed from
the training set. The algorithm learns the next rule
based on the reduced training set. The process is re-
peated until the training set is exhausted. The overlap
problem is addressed by learning each successive rule
from a training set where examples that match previ-
ously learned rules are filtered out. Note that this it-
erative approach is greedy - once the algorithm learns
a rule, it is committed to keeping that rule in the de-
cision list. All subsequent learning is based on this
commitment.

While the greedy approach has proven to be effective
in practice, it has several problems. First, as pointed
out by Clark and Niblett (1989), the interpretation
of each rule is dependent on the rules that precede
it. This makes decision lists difficult to comprehend
because the learned rules cannot be considered in iso-

Decision-Tree Learning 619

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

lation. Second, on each iteration, fewer training ex-
amples are available for the learning algorithm, which
hinders the algorithm’s ability to learn. This is par-
ticularly important in situations where training data
is scarce. Finally, poor rule choices at the beginning
of the list can significantly reduce the accuracy of the
decision list learned.

Nevertheless, Rivest showed that a greedy, iterative
algorithm can provably PAC learn the concept class
k-&5, decision lists composed of rules of length at most
X: (Rivest 1987). However, Rivest’s PAC guarantee pre-
supposes there exist 100% accurate rules of length at
most rE that cover the training examples. This strong
assumption neatly sidesteps the overlap problem be-
cause the accuracy of a 100% accurate rule remains
unchanged regardless of the rules that precede it in
the decision list. However, the assumption is often vi-
olated in practice. A full complement of 100% accurate
rules of length at most Ic cannot be found when there
is noise in the training data, when the concept to be
learned is not in k-DL (relative to the algorithm’s at-
tribute language), or when the concept is probabilistic.

Our main contribution is a solution to the over-
lap problem that is both theoretically justified and
practical. We borrow the notion of homogeneity from
the philosophical literature (Salmon 1984) to solve the
overlap problem in learning decision lists. Informally,
a homogeneous rule is one whose accuracy does not
change with its position in the decision list.

Formally, let E denote the universe of examples. Let
T denote the set of tests within a domain and G the
set of goal classes. Let DL denote the set of all decision
lists. Let c(e) denote the classification of example e,
and C(e, d) d enote the classification that decision list
d assigns to the example e. We write a rule as A -+ g,
where A C T and g E G. When an example e passes
all the tests in A, we say e E A. Let P be a probability
distribution over examples. We define the accuracy of
a decision list d with respect to P as follows:

A(d) = c P(e)
eEElc(e)=C(e,d)

We define the accuracy of a
the examples that it covers:

rule to be its accuracy on

A homogeneous rule is a rule for which all special-
izations of the rule have the same accuracy as the rule
itself. Formally, a homogeneous rule is a rule A --+ g
such that, for all B c T, the following holds:

a(A A B + g) = a(A + g)

All 100% accurate rules are homogeneous, but homo-
geneous rules need not be 100% accurate. Thus, ho-
mogeneity can be viewed as a generalization of Rivest’s
solution to the overlap problem. This generalization

is valuable in situations where concise 100% accurate
rules do not exist.

Our algorithm for learning decision lists, BRUTEDL,
searches the space of conjunctive rules for maximally
accurate homogeneous rules and composes the rules
found into a decision list. The remainder of the pa-
per is organized as follows. The next section intro-
duces the theory underlying BRUTEDL. The following
section explains the approximations to the theory we
use to make BRUTEDL practical. We then describe
BRUTEDL’S algorithm and discuss how we make our
implement at ion efficient. Finally, we present empir-
ical results that validate our approach and compare
BRUTEDL with related algorithms.

omogeneous Decision Lists
This section describes the theory underlying
BRUTEDL. Our goal is to demonstrate that the prob-
lem of finding a maximally accurate decision list can be
reduced to the problem of finding maximally accurate
homogeneous rules.

A homogeneous decision list is a decision list com-
posed exclusively of homogeneous rules. We use HDL
to refer to the set of all homogeneous decision lists.
BRUTEDL is restricted to learning homogeneous de-
cision lists. Does this restriction mean that in some
cases BRUTEDL will be forced to learn an inferior de-
cision list? In other words, are there cases where the
best homogeneous decision list is less accurate than
the best decision list? The answer is no. We say
that two decision lists d and d’ are dogicadly equiva-
lent if they classify all examples identically. That is,
b’ e E E, C(e, d) = C(e, d’).

Theorem 1 For every decision list, there exists a ho-
mogeneous decision list that is logically equivalent.

Proof sketch:

Let d be a nonhomogeneous decision list and r = A --)
g be a nonhomogeneous rule in d. We can replace r
with a set of equivalent homogeneous rules. By per-
forming this replacement for all nonhomogeneous rules
in d, a homogeneous decision list logically equivalent
to d can be found. Let t be any test not in A. The
rule r can be replaced with A A t + g and A A 4 -+ g
without changing how d classifies examples. If these
rules are homogeneous, we are done. If not, we can re-
peat the procedure and replace the two rules with four
rules without logically changing d. This procedure can
be repeated until a set of homogeneous rules is found.
A set of homogeneous rules is guaranteed to be found
because there is a finite number of tests.0

Our solution to the overlap problem combines the
notion of homogeneity with the intuition that the best
rule to classify any given example is the most accurate
rule that covers the example. We define a maximal
cover as a set of rules containing, for each example, the
most accurate homogeneous rule that covers it. For-
mally, let hr(e) be the set of homogeneous rules that

620 Machine Learning

match e. A maximal cover M(E) of a universe of ex-
amples E is any set of homogeneous rules for which
the following holds:

V eEE, 3 rEM(E) such that a(r) =T phyel a(r’)
I

We now show that the problem of finding the maxi-
mally accurate decision list can be reduced to the prob-
lem of finding a maximal cover for E.

Theorem 2 Any homogeneous decision list d whose
rules form a maximum cover of E and is sorted by
decreasing accuracy will have:

A(d) = dial A(b) I

Proof:
First we prove that d must be a maximally accu-
rate homogeneous decision list. Assume that A(d) #
maxd,EHDL A(d’). There must exist a homogeneous
decision list f such that A(f) > A(d). Let e denote
an example that is classified by a rule fi in f and dj
in d such that u(fi) > u(dj). Since A(f) > A(d),
such an example must exist. The rules of d form
a maximum cover; therefore, there exists a dk such
that u(dk) = milX,.Ehqej u(r). Furthermore, we have

a(&) > u(h) b ecause fi E hr(e). We have k < j
because u(dk) 2 u(fi) > a(dj) and d is sorted by de-
creasing accuracy. But if k < j, e should have been
classified by dk rather than dj. This contradiction es-
tablishes that A(d) = maxd,E HDL A(d’). Let g be a
decision list such that A(g) = maxd,E DI, A(d’). As-
sume A(g) > A(d). By Theorem 1, there exists an
h E HDL that is logically equivalent to g. We have
A(h) = 4s) b ecause h and g are logically equiva-
lent. But since h is homogeneous, we have A(d) 2
A(h) = A(g) h h w ic contradicts the assumption. Thus,
A(d) = maxdlEDL A(d’).n

Implications for BRUTEDL
We now consider the implications of Theorem 2 for
BRUTEDL. If BRUTEDL had access to the probability
distribution P and the set of homogeneous rules, it
would be straightforward to build an algorithm based
on Theorem 2. In practice, BRUTEDL is only given a
set of training data from which it must approximate P
and determine which rules are homogeneous.

BRUTEDL uses LapZaceAccuracy as an approxima-
tion of the actual accuracy of a rule (Niblett 1987).
Let T be a rule that classifies rp training examples cor-
rectly out of the TV training examples it matches. Let
[Gl denote the number of goal classes. The LaplaceAc-
curacy of r is calculated as follows:

rp + 1 LapZaceAccurucy(r) = -
rn + IGI

h
Once an estimate for the accuracy of individual rules

as been defined, it is possible to check whether a

rule is homogeneous. The accuracy of a homogeneous
rule should not change when additional conjuncts are
added. Therefore, homogeneity can be checked by
comparing the LaplaceAccuracy of a rule with the
LaplaceAccuracy of all the rule’s specializations. Since
LaplaceAccuracy is an approximation to the actual ac-
curacy of a rule, a rule is considered homogeneous if
all specializations have roughly the same LaplaceAccu-
racy. We check for statistically significant differences
in LaplaceAccuracy using a x2 test.

Although not required by Theorem 2, it is desirable
that the rules learned by BRUTEDL do not contain ir-
relevant conjuncts. An irrelevant conjunct is any con-
junct whose presence does not affect the accuracy of a
rule. We will call any rule with only relevant conjuncts
minimal. Restricting BRUTEDL to minimal rules does
not affect the class of concepts it can learn because, for
every nonminimal homogeneous rule, there is a mini-
mal rule with identical accuracy and greater coverage
that is formed using some subset of the original rule’s
conjuncts. We check whether a conjunct is relevant by
checking if the accuracy of the rule changes when the
conjunct is removed. Again, we use a x2 test to ensure
that any differences in accuracy that are detected are
significant.

Algorithm
The previous sections developed the basic framework
behind BRUTEDL. We now describe how this frame-
work is implemented. The core of BRUTEDL is a
depth-first search to find, for each example, the best
conjunctive rule that covers it. Rules that are nei-
ther homogeneous nor minimal are filtered out. Once
a maximal cover has been found, the cover is sorted,
and a default rule is appended. BRUTEDL limits its
search to a fixed depth bound when it is too costly to
search the entire space. A pseudo-code description of
BRUTEDL appears in Table 1.

The search performed by BRUTEDL is systematic,
it visits each rule exactly once. In a naive search of
the space of conjunctive rules, the identical rules A A
B--,gandBAA --) g would be visited separately:
once while searching the children of A + g and once
while searching the children of B --+ g. BRUTEDL
achieves systematicity by imposing a canonical order
on the tests within a rule. BRUTEDL assigns a numeric
rank to each test and only considers rules whose tests
appear in order of increasing rank.

Homogeneity is checked by doing a systematic search
of all specializations of a rule. If a specialization is
found with a difference in accuracy that is considered
statistically significant, the homogeneity check fails. If
no such specialization is found, the rule is deemed ho-
mogeneous. BRUTEDL limits the cost of homogeneity
checks by reducing their frequency. It is only necessary
to check the homogeneity of a rule that is minimal and
is the best rule seen thus far for some example. If
a rule does not meet these two criteria, it cannot be

Decision-Tree Learning 621

BruteDLO
DecisionList := MakeEmptyDLO;
BruteSearch(MakeEmptyRule0);
Sort(DecisionList);
AddDefaultRule(DecisionList);

END

BruteSearch(rule)
IF Length(rule) >= MaxLength THEN EXIT;
StartTest := FollowingTest(LastTest(rule));
FOR test := StartTest to LastTest DO

newrule := AddConjunct(rule, test);
IF BestForSomeExample(newrule) AND

IsMinimal(newrule) AND
Homogeneous(newrule,newrule)

THEN Insert(newrule,DecisionList);
IF NOT PruneRule(newrule)
THEN BruteSearch(newrule);

END
END

Homogeneous(ParentRule, ru1e):boolea.n
IF Length(rule) >= MaxLength THEN RETURN(True);
IF rule = ParentRule
THEN StartTest = 1;
ELSE StartTest = FollowingTest(LastTest(rule));

FOR test := StartTest to LastTest DO
newrule := AddConjunct(rule,test);
IF NOT SimilarAccuracy(ParentRule,newrule) THEN
RETURN(False);

ELSE IF NOT Homogeneous(ParentRule,newrule) THEN
RETURN(False);

END
RETURN(True);

END

IsMinimal(rule):boolean
FOR test in Conjuncts(rule) DO
ParentRule := DeleteConjunct(rule, test);
IF SimilarAccuracy(ParentRule, rule)
THEN RETURN(False);

END
RETURN(True);

END

Table 1: Pseudo-code for BruteDL.

part of the final decision list. Using this filter, a ho-
mogeneity check is required for only a small fraction
of the rules searched. Furthermore, the homogeneity
check for a nonhomogeneous rule is often inexpensive
because the search is terminated once a specialization
with a significant difference in accuracy is found.

Once a maximum cover has been found, BRUTEDL
uses it to build a decision list. The final decision list
is formed by sorting the maximum cover and append-
ing a default rule. A default rule is necessary because
the rules found by BRUTEDL, although required to
cover the training examples, might not cover all the
test examples. BRUTEDL appends a default rule that
predicts the most frequent class in the training data.

(1) If Accuracy(r) = 100% then Prune(r).

(2) If MatchedPositives < MinPositives then Prune(r).

(3) If MatchedNegatives(AA-c) < MinSimNegatives A
MatchedPositives(AA-c) < MinSimPositives then

Prune(AAc).

Table 2: Pruning axioms used by BRUTEDL. Prune(r)
indicates the children.of T should not be searched. The
axioms are sound because the rules they prune cannot
be part of the final decision list.

Efficiency
For BRUTEDL to be a practical algorithm, it is impor-
tant that it be as efficient as possible. The efficiency of
BRUTEDL is determined by two factors: the efficiency
of processing each rule and the number of rules pro-
cessed. We address the first element of BRUTEDL’S
efficiency by carefully implementing BRUTEDL in C.
BRUTEDL can process approximately 100,000 rules
per second when running on a SPARC-10. processor
with a data set of 500 examples. BRUTEDL’S run-
ning time grows linearly with the number of examples.
Significant, improvements in program efficiency are not
expected because BRUTEDL is currently within an or-
der of magnitude of the machine’s clock rate. However,
further improvements in rule processing speed will oc-
cur as faster machines become available.

The second element of BRUTEDL’S efficiency is the
number of rules it processes. BRUTEDL can reduce
the number of rules it has to process by pruning away
rules guaranteed not to be part of the final decision
list. BRUTEDL uses the axioms in Table 2 to deter-
mine the portions of the search space it can ignore.
BRUTEDL’S pruning axioms significantly reduce the
number of rules it has to process. For the test do-
mains presented later, the pruning axioms reduced the
search space by as much as a factor of 1,000. The re-
mainder of this section describes BRUTEDL’S pruning
axioms in detail.

The first axiom prunes descendants of 100% accu-
rate rules because they cannot, be minimal. The second
axiom prunes all specializations of a rule that do not
cover a minimum number of positive examples. During
its search, BRUTEDL keeps track of the worst rule that
is the best for some example. For a rule to appear in
the final output, it is necessary for it to be better than
this rule. It is possible to show that for LaplaceAc-
curacy and many other functions, there is a minimum
number of positive examples a rule must cover for it to
achieve a particular score. By setting MinPositives to
the number of positives required to improve upon the
worst rule, we can prune rules that are guaranteed not
to appear in the final decision list.

The third pruning axiom avoids exploring portions of
the search space that are guaranteed not to be minimal.
If a rule contains a conjunct that does little to affect
the rule’s accuracy, then any specialization of that rule

622 Machine Learning

will not be minimal. Consider the rule Y = A A c ---) g
where the conjunct c has little influence on the ac-
curacy of the rule. We will determine the conditions
for which any specialization of T is guaranteed to be
nonminimal. Let s = A A c A B ---f g be any special-
ization of T. For s to be a minimal rule, it is necessary
that its accuracy be significantly different from the ac-
curacy of p = A A B - g. For s to be minimal, it
must therefore be more accurate or less accurate than
p. The maximum possible value of x2 for a specializa-
tion of p that is more accurate than p is obtained by
a rule that matches all the positives of p and none of
its negatives. If p contains too few negative examples,
then the maximal value of x2 will be lower than the
threshold required to be judged significant. Thus, no
specialization of p that is more accurate than p can
be significant unless p contains a minimum number of
negative examples. A similar argument demonstrates
that no specialization of p that is less accurate than p
can be significant unless p contains a minimum number
of positive examples. The negative and positive exam-
ples in p that do not *appear in Y are those for which
A A lc A B holds. If A A 1cA B has too few positive ex-
amples and too few negative examples, then s cannot
be minimal. Furthermore, if the set A A -G contains
too few positive examples and too few negative exam-
ples, then A A lc A B must also not contain enough
examples. Therefore, by pruning specializations of a
rule A A c ----) g when A A lc does not have the required
number of positive and negative examples, we remove
from consideration only rules that are guaranteed not
to be minimal.

Experimental Results

We ran BRUTEDL on several data sets from the UC1
repository (Murphy 1994)2 and on all the data sets
from the MONK’s competition (Thrun et al. 1991).
The results are shown in Table 3. For comparison, the
results for the IND (Buntine and Caruana 1991) im-
plementation of C4 (Quinlan 1986) are also included.
The results for the UC1 data sets are averaged over 10
iterations. Each iteration randomly splits the available
data into 70% for training and 30% for testing. The
MONK’s problems specify both the training set and
test set to use for each problem.

BRUTEDL performed as well as C4 on many of
the UC1 data sets and better than C4 on the lym-
phography data set. However, BRUTEDL performed
relatively poorly on the glass and voting data sets.
BRUTEDL is a clear winner on the MONK #l data
set, and performed at least as well as C4 on the other
two MONK’s problems. The target concept in the
MONK #l data set is an XOR, which is known to
be difficult for decision tree algorithms. In contrast,

2The breast cancer, lymphography, and primary tumor
domains were obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia.

Domain
Breast cancer
Chess endgame
Glass
Hepatitis
Iris
Lymphography
Mushroom
Primary tumor
Voting records
MONK #l
MONK#2
MONK#3

BRUTEDL
Act.
68.7 4.;
98.6 0.4
62.0 5.3
80.6 7.9
93.1 4.5
82.0 3.4

100.0 0.1
39.9 3.0
93.0 3.2

100.0 N/A
68.1 N/A
97.2 N/A

Act.
69.8 3.;
99.2 0.3
69.2 5.5
80.0 7.9
94.2 2.7
69.6 3.4

100.0 0.0
39.1 4.9
94.6 1.5
80.6 N/A
64.8 N/A
97.2 N/A

Table 3: The results of BRUTEDL and C4 on several
data sets. All results except for the MONK data sets
are averaged over 10 iterations. The MONK data sets
come with a single training and test set.

Domain
Breast cancer
Chess endgame
Glass
Hepatitis
Iris
Lymphography
Mushroom
Primary tumor
Voting records
MONK #l
MONK#2
MONK#3

CPU Time Search
min:sec depth

0:31 4
16:34 5
6:29 3
0:53 3
0:37 5
1:13 5
2:09 3
0:08 4
0:04 5
0:Ol N
0:04 N
0:Ol N

Table 4: Running times and search depths for
BRUTEDL. CPU time is for a SPARC-10 workstation.
A search depth of N indicates a complete search.

XOR is easy for BRUTEDL since it merely has to find
a homogeneous rule corresponding to each disjunct.

All of the UC1 data sets were too large for a complete
search. In each of the data sets, a depth bound was
used to restrict the search to consider rules only up
to a certain length. Table 4 shows the execution times
and depth bounds for each data set. BRUTEDL is fast,
taking only a few CPU seconds on some data sets and
no more than 17 CPU minutes on the slowest one.

Critique
Ideally, BRUTEDL'S massive search would result in sig-
nificant improvements when compared with a greedy
algorithm such as C4. Our experiments do not demon-
strate this improvement for several reasons. First, on
some data sets (e.g., mushroom) we observe a ceiling
effect - C4 is performing about as well as possible,
given the data set and attribute language. Second, in
some cases, BRUTEDL overlooks homogeneous rules.

Decision-Tree Learning 623

BRUTEDL discards a rule as nonhomogeneous when
it has a specialization that differs significantly in ac-
curacy from the rule itself. BRUTEDL performs a x2
test at p = .005 on each specialization of the rule to
determine if its accuracy is significantly different from
that of the rule. However, it is not the case that the
probability that BRUTEDL incorrectly judges a rule to
be nonhomogeneous is .005. Although the probability
that a single error is .005, the probability that at least
one of N judgments is in error is 1 - .995N. Thus, the
more specializations a rule has, the more likely it is to
be judged incorrectly as nonhomogeneous.

On both the voting and breast cancer data sets,
BRUTEDL incorrectly judged several key rules to
be nonhomogeneous. We can reduce the likelihood
BRUTEDL will incorrectly judge a rule as nonhomo-
geneous by using a lower p value for the x2 tests. By
using p = .OOOOl, BRUTEDL improves its performance
to 94.4% accuracy on the voting data and to 72.2%
accuracy on the breast cancer data. However, sim-
ply increasing the confidence in individual x2 tests can
cause BRUTEDL to treat a nonhomogeneous rule as
homogeneous. For instance, accuracy on the primary
tumor data set decreases to 34.8% when we change the
confidence level to p = .OOOOl. It is clear that a more
stable method of checking homogeneity is needed.

Finally, BRUTEDL'S performance is limited in do-
mains where it is not able to search to sufficient depth
to find accurate rules. For instance, the rules found
by BRUTEDL at depth 3 in the glass domain are not
as accurate as those found by C4 at depths 5 and 6.
Heuristic search techniques (e.g., beam search) can be
used when a pure depth-bounded search to the desired
depth is too costly. The basic ideas behind BRUTEDL
apply equally well to heuristic search.

Related Work
BRUTEDL builds on our previous work on BRUTE
(Riddle, Segal, and Etzioni 1994). BRUTE uses a
depth-bounded search of the space of conjunctive rules
to find accurate predictive rules. We tested BRUTE
on two data sets from a Boeing manufacturing do-
main. The first data set has 1,075 examples with 48
attributes, and the second has 519 examples with 1,65?
attributes. In the first data set, the predictive rules
found by BRIJTE were 20% more accurate on average
than those found by C4. In the second data set, the
predictive rules found by BRUTE were 44% accurate on
average, while C4 was unable to find any rules. The
results demonstrate the effectiveness of depth-bounded
search on a complex real-world domain. BRUTE'S run-
ning time on the two data sets was less than 3 CPU
minutes on a SPARC-10 workstation.3

nSevera1 other systems have used depth-bounded
search. ITRULE (Smyth and Goodman 1991), like

BRUTE, uses depth-bounded search to find accu-
rate predictive rules. Schlimmer (1993) uses depth-
bounded search to find determinations. However, none
of these systems attempt to build a classifier from the
rules they find.

Rivest (1987) d escribes an algorithm for PAC learn-
ing the concept class k-DL, decision lists composed of
rules of length at most k. Rivest’s k-DL algorithm
conducts a depth-bounded search of the space of con-
junctive rules to find 100% accurate rules. This depth-
bounded search is repeated n times where n is the num-
ber of rules in the learned decision list. We can improve
upon the k-DL algorithm by restricting BRUTEDL to
consider only 100% accurate rules. The homogeneity
check can be dropped because 100% accurate rules are
necessarily homogeneous. This restricted version of
BRUTEDL will PAC learn k-DL using a single depth-
bounded search of the space of conjunctive rules. The
time complexity of the restricted BRUTEDL is asymp-
totically faster than that of the k-DL algorithm by a
factor of n. Furthermore, the unrestricted BRUTEDL
is more general. It can be used on noisy domains, prob-
abilistic concepts, and concepts not in k-DL.

Rivest’s algorithm is very similar to the AQ line of
inductive algorithms (e.g., (Michalski 1969; Clark and
Niblett 1989)). Th ese algorithms share Rivest’s itera-
tive structure but use a beam search to find the best
rule according to a scoring function. The OPUS sys-
tem (Webb 1993) extends CN2 to use depth-bounded
search but retains the same iterative structure. As a
result, poor rule choices at the beginning of the list
can significantly reduce the accuracy of the decision
list learned. Furthermore, the greedy structure in-
troduces dependencies among the decision list’s rules
that can make the decision list difficult to interpret.
BRUTEDL’S solution to the overlap problem avoids
both these pitfalls by learning each rule in the deci-
sion list independently.

The PVM system (Weiss et al. 1990) does a massive
search of the space of classifiers. PVM’s search is not
exhaustive because it uses several heuristics to reduce
the search space. 4 Even with heuristics, the doubly-
exponential search space searched by PVM limits it
to considering classifiers that are significantly smaller
than those considered by BRUTEDL. Finally, Murphy
and Pazzani (1994) used a depth-bounded search of
the space of decision trees to analyze the relationship
between the smallest decision tree and classification
accuracy. A massively parallel Maspar computer and
small domains were used to make a limited search of
this doubly-exponential space possible. Our theory of
homogeneity and sound pruning axioms significantly
reduce the cost of depth-bounded search and make it
practical in many domains.

Many of BRUTEDL’S features help to improve the

3We previously reported BRUTE'S running time as 33
CPU minutes. We have since added additional pruning
axioms that significantly improve BRUTE'S efficiency.

4 Unlike BRUTEDL'S pruning axioms, PVM’s heuris-
tics are not sound and can cause it to overlook accurate
classifiers

624 Machine Learning

human readability of its decision lists. As pointed out
by Clark and Niblett (1989), the readability of a deci-
sion list suffers because the interpretation of each rule
is dependent on the rules that precede it. BRUTEDL
avoids this problem by finding only homogeneous deci-
sion lists. Homogeneous decision lists are easier to un-
derstand because the interpretation of each rule is not
dependent on its position. Furthermore, BRUTEDL
attempts to include all relevant conjuncts within each
rule while leaving out any irrelevant conjuncts.

Another unique aspect of BRUTEDL is that it does
not use a postpruning phase to avoid overfitting. Post-
pruning does not make sense for any algorithm that is
trying to maximize a scoring function because it would
prune the maximal classifier found into some classi-
fier that would be nonmaximal according to its scoring
function. Instead, BRUTEDL uses its heuristic scoring
function to avoid overfitting by assigning a low score to
any rule that covers too few training examples. Over-
fitting is also avoided by requiring that every conjunct
in a rule be relevant.

Conclusion
This paper introduced BRUTEDL, a novel algorithm
for learning decision lists. Unlike algorithms such as
A& or CN2, BRUTEDL conducts a single search for
accurate homogeneous rules, which contain no redun-
dant conjuncts, and builds a decision list from the rules
it finds. We show that, in the limit, the problem of
learning maximally accurate decision lists can be re-
duced to the problem of learning maximally accurate
homogeneous rules. BRUTEDL introduces a number
of approximations to this theory but, as our empirical
results demonstrate, BRUTEDL is effective in practice.
BRUTEDL outperforms C4 in several cases and runs
in less than a minute on most benchmark data sets. In
future work we plan to compare BRUTEDL with CN2
and to demonstrate that decision lists, based on homo-
geneous rules, are easier to comprehend than standard
decision lists.

Acknowledgments
We are grateful to Wray Buntine for distributing the
IND package. IND’s reimplementation of C4 greatly
facilitated our research. Thanks are due to Ruth Et-
zioni for her expert advice on statistical testing, Pa-
tricia Riddle for many helpful discussions, Dan Weld
for commenting on an earlier version of this paper, and
Omid Madani for help testing BRUTEDL.

ItCeferences
W. Buntine and R. Caruana. Introduction to IND and
recursive partitioning. NASA Ames Research Center,
Mail Stop 269-2 Moffet Field, CA 94035, 1991.
P. Clark and T. Niblett. The CN2 induction algo-
rithm. Machine Learning, 3(4):261-283, March 1989.
R. S. Michalski. On the quasi-minimal solution of the
general covering problem. In Proceedings of the Fifth

Internationad Symposium on Information Processing,
pages 125-128, Bled, Yugoslavia, 1969.
Patrick M. Murphy and Michael J. Pazzani. Explor-
ing the decision forest: An empirical investigation of
Occam’s razor in decision tree induction. Submitted
to Artificial Intelligence Research, 1994.
Patrick M. Murphy. UC1 repository of machine learn-
ing databases. [Machine-readable data repository].
Irvine, CA. University of California, Department of
Information and Computer Science., 1994.
T. Niblett. Constructing decision trees in noisy do-
mains. In Progress in Machine Learning (Proceedings
of the 2nd European Working Session on Learning),
pages 67-78, Wilmslow, UK, 1987.
G. Pagallo and D. Haussler. Boolean feature discovery
in empirical learning. Machine Learning, 5(1):71-100,
March 1990.
J. R. Quinlan. Simplifying decision trees. Interna-
tional Journal of Man-Machine Studies, 271221-234,
1986.
Patricia Riddle, Richard Segal, and Oren Etzioni.
Representation design and brute-force induction in a
Boeing manufacturing domain. Applied Artificial In-
telligence, 8:125-147, 1994. Available via anonymous
FTP from /pub/ai at cs.washington.edu.
R. Rivest. Learning decision trees. Machine Learning,
2:229-246, 1987.
Wesley C. Salmon. Scientific Explanation and the
Causal Structure of the World. Princeton University
Press, Princeton, NJ, 1984.
J. C. Schlimmer. Efficiently inducing determinations:
A complete and systematic search algorithm that uses
optimal pruning. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, Amherst,
MA, June 1993.
P. Smyth and R. M. Goodman. Rule induction us-
ing information theory. In Knowledge Discovery in
Databases, pages 159-176. MIT Press, Cambridge,
MA, 1991.
S.B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Ces-
tnik J. Cheng, K. De Jong, S. Dzeroski, S. E.
Fahlman, D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger, R.S. Michal-
ski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie,
W. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang.
The MONK’s problems - A performance comparison
of different learning algorithms. Technical Report CS-
CMU-91-197, Carnegie Mellon University, 1991.
Geoffrey I. Webb. Systematic search for categori-
cal attribute-value data-driven machine learning. In
N. Foo and C. Rowles, editors, AI ‘93. World Scien-
tific, Singapore, 1993.
S. M. Weiss, R. S. Galen, and P. V. Tadepalli. Max-
imizing the predictive value of production rules. Ar-
tificial Intelligence, 45:47-71, September 1990.

Decision-Tree Learning 625

