
Decision Tree Pruning: Biased or 

Sholom M. Weiss t and Nitin Indurkhya $ 
0 Department of Computer Science, Rutgers University 

New Brunswick, New Jersey 08903, USA 
$ Department of Computer Science, University of Sydney 

Sydney, NSW 2006, AUSTRALIA 

Abstract 

We evaluate the performance of weakest- 
link pruning of decision trees using cross- 
validation. This technique maps tree pruning 
into a problem of tree selection: Find the best 
(i.e. the right-sized) tree, from a set of trees 
ranging in size from the unpruned tree to a 
null tree. For samples with at least 200 cases, 
extensive empirical evidence supports the fol- 
lowing conclusions relative to tree selection: 
a 

fl 
lo-fold cross-validation is nearly unbiased; 

b not pruning a covering tree is highly bi- 
ased; (c) lo-fold cross-validation is consistent 
with optimal tree selection for large sample 
sizes and (d) the accuracy of tree selection by 
lo-fold cross-validation is largely dependent 
on sample size, irrespective of the population 
distribution. 

Introduction 
Decision trees methods have evolved from straight- 
forward recursive partitioning algorithms that cover 
sample data to more complex techniques that also 
prune the covering tree and estimate future perfor- 
mance (Breiman et ad. 1984; Quinlan 1993). The mo- 
tivation for pruning a tree is to maximize predictive 
performance, which is often described as “overfitting 
avoidance.” However, too much pruning can readily 
lead to “underfitting,” and a more appropriate objec- 
tive would be to find “the right size” tree. 

We reserve our discussion in this paper to the most 
general case: samples of moderate to large size, sam- 
ples with at least 200 cases. Small samples, with their 
attendant high variability, require special attention 
(Efron 1983; Crawford 1989; Weiss 1991) and are dis- 
cussed in a separate paper (Weiss & Indurkhya 1994). 

Tree Pruning and Selection 

Many techniques have evolved over the years for 
pruning trees to the right size. Practical experience has 
also led to the adaptation of these techniques to alter- 
native learning models such as rule induction (Cohen 
1993; Weiss & Indurkhya 1993) or neural nets (Hassibi 
& Stork 1993). With a very large set of independent 
test data, there is little difficulty in describing the ef- 
ficacy of pruning. The estimated error rate and the 
standard error of the estimate have a precise formal 
description. 

Tree induction methods generate a covering tree to 
discriminate the training data. For generalization to 
new cases, a subtree of the covering tree may actu- 
ally make fewer errors on new cases. Hence the use of 
pruning techniques that excise portions of the covering 
tree. Pruning can be described in the following general 
terms: 
e Generate a set of “interesting” trees; 
o Estimate the true performance of each of these trees; 
e Select the best tree. 

When very large numbers of independent test cases Although there are a number of pruning techniques 
are not available, relatively complex techniques involv- 
ing resampling can be employed to estimate perfor- 

(Quinlan 1987; Cestnik & Bratko 1991), a prime ex- 
ample of a form of pruning that matches these steps is 

mance and to select the pruned tree. Resampling with 
decision trees is more complex than for other classi- 

weakest link (cost-complexity) pruning (Breiman et al. 
1984). A covering tree is recursively pruned into a se- 

fiers. In addition to generating multiple trees, these ries of subtrees, based on eliminating the weak points 

trees must be pruned such that the complexities of the 
subtrees are matched for each subsample. In a series of 
papers studying the effects of pruning on decision tree 
performance (Schaffer 1992b; 1992a; Wolpert 1992; 
Schaffer 1993), it was demonstrated that pruning does 
not always lead to improved results. Moreover, in some 
instances it may even degrade performance. General- 
izing from these experimental results, often with small 
samples, the authors of these studies concluded that 
pruning using cross-validation is inevitably biased and 
is often ineffective without knowledge of the sampled 
population. 

In this paper, we reconsider the efficacy of decision 
tree pruning. Tree pruning is mapped into a problem of 
tree selection among competing subtrees. Previous ex- 
periment results are reevaluated and additional exper- 
iments are performed. We address several major issues 
such as the bias of tree pruning by cross-validation, the 
effect of sample size, the divergence from optimal selec- 
tion, and the extent to which knowledge about overall 
population characteristics is essential for accurate re- 
sults. 
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Table 1: Example of Summary Table for Tree Pruning 

of the current tree. These weak points are determined 
strictly from the training data. 

Having obtained a set of decision trees, (To,. . . , T!) 
one is now faced with the tree selection problem: given 
a set of trees, select the best one. The usual definition 
of best is that of the minimum true error rate, which 
must be estimated. It is useful to order the set of 
trees by some complexity measure such as tree size. If 
the set of trees is obtained by pruning, then To is the 
unpruned covering tree, and T, is a tree that consists 
only of the root node. Figure 1 gives an example of 
a pruning summary table, such as found in CART, 
with the covering tree To having 18 terminal nodes 
and T8 representing the fully pruned tree with a single 
terminal node. Err test is the estimate of the true error 
rate for each tree, and TestsE is an estimate of the 
standard error of the error rate. In this example, T3 
is selected because it has the minimum estimated true 
error rate. 

Thus, tree pruning is mapped into a problem of tree 
selection: Find the best tree, i.e the right-sized tree, 
from a set of trees ranging in size from the unpruned 
tree to a null tree. Tree selection does not depend on 
the techniques for generating the trees. Error estima- 
tion is the sole basis of tree selection; the tree with 
the lowest error-estimate is selected. The quality of 
the results depends on the accuracy of these estimates. 
Several error-estimation procedures might be hypoth- 
esized: 

Ideal: The ideal situation occurs when an oracle is 
available that can tell us the future performance of 
each decision tree. Then we will be able to make 
the optimal tree selection. Such an oracle is usually 
approximated accurately by testing each tree, Ti, on 
a very large, independent test set. 
NP: While we would like to use an oracle-based 
method, this may not be possible if insufficient cases 
are available. One strategy might be to base deci- 
sions on the apparent error for the training cases. 
Because the apparent error rate is minimum for the 
covering tree, this strategy reduces to not pruning 
the initial covering tree. 
Cross-Validation: When large numbers of inde- 
pendent test cases are not available, resampling 
methods are the principal technique for error rate 
estimation. Cross-validation is generally the proce- 
dure of choice, and lo-fold cross-validation (the test 

results of 10 runs using go-percent training and lo- 
percent testing cases, with 10 mutually exclusive test 
partitions) has been widely used for many different 
learning models. 
Our objective in the remainder of this paper is to 

compare the performance of tree pruning for these 
three alternative methods of estimating error rates. 

Basic Principles 
Fundamental St at ist ical Model of 
Evaluation 
The standard model of evaluation of a learning sys- 
tem is by testing on an independent, randomly drawn 
sample from the general population. If performance is 
measured in terms of a proportion of failure, i.e. an 
error rate, then the situation corresponds to the bi- 
nomial sampling model. This testing situation is the 
standard statistical coin tossing problem, where here 
we “toss” the classifier on each of the test cases. If we 
have n test cases, then there are n success or failure 
outcomes, each outcome representing a correct or in- 
correct classification of a test case. The standard error 
of this proportion is given in Equation 1, where n is the 
test-set size and p is the true error rate. For a given 
sample size, the standard error roughly tells us the av- 
erage amount that the error rate will diverge from the 
truth. 

Variance = PO - P) -; SE = &ariance 
n (1) 

We have a statistical- model of how far off the er- 
ror estimate for a single test sample is from the truth. 
With unlimited test samples, the efficacy of pruning 
would be obvious. The pruned tree with the minimum 
test error is the best to a very high degree of confidence. 
Just based on the variation among random samples, 
the error rate on test cases will vary from the truth 
according to Equation 1. This variance is based solely 
on two terms, the true error rate, p, and the test size 
n. Considering the range of p, the worst case (i.e. the 
highest variance) is for p=.5. However, the true error 
rate, p, has a relatively minor effect on the variance, 
and the key factor is n, the test-set size. The accuracy 
of the evaluation on the test cases is mostly determined 
by test-sample size. When n is large enough the stan- 
dard error becomes quite small. 

Given only a single sample, without large numbers 
of test cases, the task is to estimate the true error 
rate. Resampling techniques such as cross-validation 
attempt to approach the performance of testing on the 
same number of independent cases, while still using 
the full sample for training purposes. Resampled es- 
timators are still subject to the random variation of 
the sample. At best, the resampled estimates reflect 
the error-rate for treating the sample as an indepen- 
dent test set. Their variance from the true error-rate 
would approximately follow Equation 1, their accuracy 
mostly dependent on the sample size n, and indepen- 
dent of the original population distribution. 

Estimation and Tree Selection 
ias and Consistency of Estimators An estima- 

tor, 2, of a metric (such as an error-rate) is unbiased if 
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its expected 
all samples) 

value i.e. 
\ is equa to 

the average of its values over 
the true value of the metric. If 

sufficient number of independent random 
are used, then for an unbiased estimator. 

samples, N, 
Eauation 2. 

summarizes this relationship, where z is the &timator: 
Xi is its mean value for the i-th sample, T(z) is the 
true value of the metric being estimated by z and N 
is the number of samples. 

T( )- c;,xi 
X- 

N 
The key concept of an unbiased estimator is that 

over a large enough set of independent samples it av- 
erages to the true answer. It may vary from sample 
to sample, but over all samples the average is correct. 
An example of an unbiased estimator is the error-rate 
estimate on an independent test set. While the esti- 
mate from a particular test set mav differ from the true 
value, the average value of the eitimate over all POS- 

sible (independently sampled) test sets is the same as 
the true value. There is some empirical evidence that 
suggests that cross-validated estimates are relatively 
unbiased under quite general conditions (Efron 1983). 
While an unbiased estimator averages to the the true 
value, it is also desirable that the estimate tend to be 
close ‘to the true value. Equation 1 shows how close a 
typical estimate will be for a given sample size. 

Another desirable statistical property of an estima- 
tor is consistence: results improve with increasing sam- 
ple size. For example, error-rate estimation frgm an 
independent test set is consistent. As the test-sample 
size increases, the error-rate estimate varies less and 
less from the true error-rate. 

Optimality and Unbiased Tree Selection Prun- 
ing can be posed as a problem of tree selection with the 
objective of minimizing the true error rate. An optimal 
procedure always selects the best tree from the-set of 
pruned trees generated for a sample. Such a 
would be obtained if ideal error-rates were 

procedure 
available. 

In their absence, we must rely on estimates. 
While we may use estimates of error rates for tree 

selection and pruning, the absolute magnitude of these 
estimates is not critical. Instead, the relative ranking 
is critical. As long as the relative ranking (in terms 
of error-rates) of the pruned trees is correct, then the 
right-size tree can be selected. If estimators are used 
for tree selection, the tree selection bias should be mea- 
sured. An appropriate measure of bias is the average 
size of trees that are selected. An optimal tree selec- 
tion procedure will always select the right-sized tree 
for each sample. However, an unbiased procedure is 
not necessarily optimal. An unbiased procedure may 
select the wrong-sized tree for any given sample. Al- 
though these trees may range from undersized to over- 
sized, the procedure can be considered unbiased if the 
average size over many samples is correct. 

Bias is one of two principal components of error in 
estimation. The other is variance. As indicated by 
Equation 1, samples randomly drawn for a large pop- 
ulation will vary. They are not a perfect reflection of 
the general population. The variance decreases with 
increasing sample size. Thus, it is not unusual when 
we flip an honest coin ten times, that we will see seven 

Cases I Yeature I 1 

LED 1 pgm/lOOOO 7 Boolean 10 
Noise 5000 10 Numer. 2 

Table 2: Dataset Characteristics 

heads. But if we flip it a thousand times, we are far less 
likely to see seven hundred heads. When the sample 
size grows large, the variance decreases greatly. An un- 
biased strategy with zero variance is an optimal strat- 
egy. As the sample size increases, the variance should 
move closer to zero and an unbiased strategy should 
also approach an optimal strategy. 

The classical formal definition of statistical bias 
may differ from the descriptions given in the ma- 
chine learning literature (Schaffer 1993; Mitchell 1990; 
Utgoff 1986), where a reader might conclude that unbi- 
ased estimators are optimal. The fundamental statis- 
tical concept of bias recognizes that predictive error is 
not attributable solely to the bias of a decision model. 
Instead, the problem may be with the sample! Inac- 
curacy of estimation can be a byproduct of random 
sampling variance, particularly for small samples that 
diverge greatly from the general population character- 
istics. 

With a large enough sample, an unbiased tree se- 
lection strategy should approach an optimal solution, 
but an unbiased strategy will not always beat a biased 
strategy. If the bias fits the characteristics of the pop- 
ulation, then for samples drawn from that population, 
the biased strategy will be closer to the truth. For ex- 
ample, if someone always calls heads, then with a coin 
slightly biased for heads, that strategy should be su- 
perior. With a large enough sample of coin flips one 
would discover this, but for smaller samples inferior 
performances for unbiased guesses are unavoidable. 

Sources of Error in 
Even with unbiased estimation techniques, all induc- 
tion and pruning algorithms are at the mercy of the 
random variance of a sample. There is also another 
inherent source of error. When estimating error rates, 
cross-validation will train on less than the full sample. 
During each train and test cycle, some of the data must 
be reserved for testing. The usual variation is lo-fold: 
90% training and 10% percent testing. For error rate 
estimation, this means that the estimates are those for 
90% trees, not 100%. Thus these estimates should be 
somewhat pessimistic. For tree selection and pruning, 
the situation may be somewhat better. The relative 
ranking is critical, not the absolute magnitude. Still 
the basis of the rankings is 90% trees, implying some 
weakness when the true answer is near the unpruned 
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Ideal 

.282 38.3 

.253 43.3 
Tzvz 13.0 
.264 22.3 
.247 35.5 
.574 70.5 
.436 156.4 
.357 282.3 
.278 12.5 
.245 15.8 
.230 20.3 
.554 21.4 
.520 28.9 
.503 37.1 
.251 1.0 
.251 1.0 
.251 1.0 

---EE- 
1014 

.005 

.002 
.020 

.012 

.007 
,242 
.341 
.292* 
.262* 

.3oJ 
.272 

.254* 
.581 
.442 
.361 

.292* 

.254* 

.235* 

.569* 
.528 
.509 

.255* 

.252" 

.252* 

8.3 1 .005 1 8.4 t 

Table 3: Comparison of Ideal, lo-cv and NP 

tree. 
Another potential source of error is more specific 

to trees. Error estimation by lo-fold cross-validation 
involves the somewhat complicated matching of tree 
complexity. As the sample size increases, this is a rel- 
atively accurate process. With smaller samples, the 
matching process is imperfect and some interpolation 
is required (Breiman et al. 1984). 

We have noted the potential sources of error in tree 
pruning using cross-validation. We now examine how 
strongly these factors affect its performance, and we 
compare its performance to the hypothetically ideal 
solution and to a strategy of not pruning at all. 

Methods 
For purposes of comparison, the same datasets re- 
ported in (Schaffer 1992b; 1992a; 1993) were used in 
the simulations. Unlike previous experiments, we pos- 
tulate a strong connection of sample size to perfor- 
mance. Thus, for each dataset, random samples of size 
200, 500, and 1000 were drawn from the overall popu- 
lation. The true answer was determined by results on 
either the remainder of the dataset or where available 
a second independently drawn test set. In addition to 
the original datasets, four others were also considered. 
These include the following: 
e Random noise for two classes with a prevalence of 

approximately 75% for one class. 
o A two class problem with features representing word 

frequency counts in German Reuters news stories 

10.3 
4.4 

ii* i: 
-Tb- 
-61.5 

158.8 
298.3 

28.0 
63.9 

119.5 
88.1 

177.9 
299.8 
40.6 
97.6 

(Apt&, Damerau, & Weiss 1994). 
o The Peterson/Barney Vowel Formant Dataset in 

which two features (the first two formant values are 
used to discriminate among ten vowel classes 2 Wa- 
trous 1991). 
The Waveform data discussed in (Breiman et al. 
1984) with three classes and twenty one features all 
of which have added noise. The Bayes error-rate for 
this problem is 14%. 

These added datasets allow us to examine a wider 
spectrum of true answers, with some falling near the 
unpruned tree and others far away. With the exception 
of the heart dataset, which only allowed for a size 200 
sample, all datasets were large enough for both training 
and testing on relatively large numbers of cases. The 
characteristics of the datasets are described in Table 2. 
For some datasets, such as the hyperthyroid applica- 
tion, independent test data were available. For others, 
such as the letter recognition application, a random 
subset was drawn for training and the remaining case 
were used for testing. ’ For some applications, such as 
LED, the training data were generated dynamically by 
a program. In addition to the fixed sample size exper- 
iments, we also ran some experiments with even larger 
samples. These sizes were selected based on the num- 
ber of available cases in the dataset. Each simulation 

‘For the german text data, a second set of 1888 inde- 
pendent test cases were used for the large training sample 
experiment. 
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encompassed at least 100 train and test trials. 

Size 

noise hype mush german wave led 
(Ordered by lncroaslng Optlmal Size) 

letter 

Figure 1: Bias: Tree Sizes for Size 1000 Samples 

Size 

noise hw mush heart german wave led pb letter 
(Ordered by lncreaelng Optimal Size) 

Figure 2: Bias: Tree Sizes for Size 200 Samples 

The CART tree induction program was used in all 
experiments. The minimum error tree was selected 
by cross-validation. Ten-fold cross-validation was used 
in all experiments. The following slight modifications 
were made to the program: 

* Each trial was initiated with a new random seed. 

o Ties were broken in favor of the larger tree. 

In the interest of experimental replication, many in- 
duction programs use the same random seed. In a 
laboratory setting, it may be beneficial to maximize 
randomness by reseeding after each trial. While it 
is tempting to break ties with the simpler tree, the 
90% tree is actually being estimated, and therefore the 
larger tree is somewhat more likely for the full sample. 

Difference From Optimal Erate 

mush hype letter german led wave 
(Ordered by lncroaslng Dlfforenco from Optlmal Error) 

pb 

Figure 3: Consistency of lo-cv Performance for Vary- 
ing Size Samples 

As reported in (Schaffer 1992b), experiments were 
performed for cross-validation (lo-cv), and not prun- 
ing (NP). Th e average error rates and sizes for the 
lo-cv and NP trees were recorded. Missing from the 
original analysis was crucial information about the av- 
erage error rates and sizes for the hypothetically opti- 
mal tree-selection strategy (opt). In our experiments, 
this was determined by evaluating each of the ordered 
pruned trees directly on the independent test data. 

Results 
The results of the experiments for the fixed-sized sam- 
ples are listed in Table 3. Table 4 lists the results 
for even larger sample sizes. Differences between NP 
and lo-cv of more than 2 standard errors (>95% confi- 
dence) are noted by a “*“. Figure 1, plots the tree sizes 
for NP, lo-cv and opt for size 1000 samples; Figure 2 
plots them for size 200 samples. Figure 3, compares 
the difference of lo-cv from the optimal error rate for 
sample sizes 200, 500, and 1000. Figure 4 plots the dif- 
ference from the optimal error rate for NP and lo-cv 
for size 1000 samples; Figure 5 plots this difference for 
size 200 samples. 

Significance Testing 
For binomial trials, such as estimating error rates, the 
variance can be directly computed from Equation 1, 
and 2 standard errors is a reasonable significance test. 
In those instances where the dataset is randomly parti- 
tioned into train and test partitions, the standard error 
for a single trial is computed with n equal to the size of 
the test set. For many multiple trials, n approaches the 
full sample size, which is usually used to estimate the 
variance (Breiman et al. 1984). No matter how many 
multiple trials are performed, the results are bounded 
by the size of the full sample and its variance from the 
true population. For these applications, NP demon- 
strates a significantly better result only for the sample 
size of 200 letter recognition application (with its 26 
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Difference From Optimal Erate Difference From Optimal Erate 
0.161: : 

0.12 

0.06 

0.06 

Figure 4: Tree Selection Performance for Size 1000 Figure 5: Tree Selection Performance for Size 200 Sam- 
Samples ples 

classes and small samples for each class). 
With any significance test, two statistical problems 

remain: 
e 

e 

Significance testing does not directly measure the 
magnitude of the difference. 
Even with a comparative result below two stan- 
dard errors, there may still be a competitive edge. 
The difference in performance of competing solu- 
tions is usually more accurately determined than 
the individual estimates (Breiman et al. 1984; 
Shibata 1981). 

These factors should lead one to consider the overall 
pattern of performance, and the relative advantages of 
competing solutions on large numbers of independent 
test cases. Figures 4 and 5 illustrate this overall pat- 
tern. 

Discussion 
The results listed in Tables 3 and 4, which are plot- 
ted in Figures 1 and 2, strongly suggest that pruning 
by lo-cv is nearly unbiased. Figure 3 shows that lo- 
cv pruning is consistent: as the sample size increases, 
the results get better and the difference from the opti- 
mal answer decreases. Not pruning is clearly a highly 
biased (optimistic) strategy. 

When the bias of NP is close to the true answer, 
such as in the letter application, NP performs well, 
even better than the nearly unbiased lo-cv strategy. 
For size 200, the sampling variance is still moderate 
so that NP is sometimes competitive with lo-cv. By 
size 1000, the case for lo-cv is overwhelming, and we 
see lo-cv approaching an optimal selection strategy. 
Even for size 200 samples, lo-cv is competitive across 
the board, with typically slight losses to NP. But an 
NP strategy, with hugely optimistic predictions, can 
lead to disaster for noisy applications. Unfortunately, 
many real-world applications turn out to be collections 
of noisy features. 

mush hype wave heart letter german led 
by Increasing Optimal Relative Error) 

noise 

The fundamental unifying theme in an analysis of 
tree pruning performance must be the binomial model 
with the variance of Equation 1. This model demon- 
strates the difficulties in smaller sample estimation and 
the increasingly better performance for larger samples. 
It explains the sometimes weak behavior of unbiased 
tree selection for smaller samples. It also explains the 
near optimal results for larger samples due to the re- 
duced variance. 

Considering the variety of datasets used in this 
study, including many found in previous studies, one 
can reasonably conclude that these data are represen- 
tative of typical real-world applications. By computing 
average tree sizes and comparing results to ideal trees, 
we have provided an objective basis to compare bias 
and accuracy of selecting the right-sized tree. Most 
importantly, the results of this study are consistent 
with an underlying theory of tree pruning using cross- 
validation. Pruning is mapped into a a form of bino- 
mial testing (coin tossing) to determine a proportion 
(the error rate). Direct testing on independent test 
cases is known to be unbiased with the standard bino- 
mial variance for sample estimators. The accuracy of 
independent testing is mostly dependent on test sam- 
ple size and independent of solution complexity. This 
study shows that cross-validation estimators are good 
approximators to estimates based on independent test 
cases. 

Overall, these results demonstrate that NP is usu- 
ally inferior to lo-cv, sometimes by very large margins, 
for samples of at least 200 cases. If one were aware of 
the characteristics of the true answer, such as likely 
solution complexity, one might achieve slightly better 
results by biasing the solution in that direction. For a 
size 1000 sample, such knowledge would be of marginal 
value. The results are entirely consistent with sample 
size variation. With sample size of at least 200, good 
results for tree pruning and selection should generally 
be achievable without any knowledge of the popula- 
tion. 
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Table 4: Results for very large training samples 

The same binomial model should also be used to 
compare significance of results (Breiman et al. 1984). 
Standard significance tests, such as t-tests or nonpara- 
metric ranked sign tests on the results of each trial 
or the pooled data of all cases and trials, will over- 
weight the significance of results for increasing num- 
bers of non-independent trials. 

One might wonder whether the experimental re- 
sults suggest that the standard tree induction estima- 
tion techniques should be modified. Unlike our single- 
minded search for minimum error pruning, in the real 
world there is a strong tendency to simplify results. 
One sometimes chooses a simpler tree that is close to 
the best solution (Breiman et al. 1984 . The usual 
rationale is in terms of explanatory capa b ilities. How- 
ever, the real world may not be the perfect labora- 
tory setting that was presented for the experiments of 
this paper. While the ideal model is a random sample 
from an infinite population, future samples may ac- 
tually be drawn from a slightly changing population, 
where the simpler solution actually performs better. 
Whichever variation is used, we believe that these ex- 
perimental results strongly confirm the efficacy of re- 
sampling estimators for tree pruning and selection. Al- 
though we have not examined the effects of pruning on 
other learning models, the known generality of resam- 
pling techniques should produce similar results. 
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