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Abstract 

Agents that operate in a multi-agent system need an 
efficient strategy to handle their encounters with other 
agents involved. Searching for an optimal interactive 
strategy is a hard problem because it depends mostly 
on the behavior of the others. In this work, interaction 
among agents is represented as a repeated two-player 
game, where the agents’ objective is to look for a strat- 
egy that maximizes their expected sum of rewards in 
the game. We assume that agents’ strategies can be 
modeled as finite automata. A model-bused approach 
is presented as a possible method for learning an ef- 
fective interactive strategy. First, we describe how an 
agent should find an optimal strategy against a given 
model. Second, we present an unsupervised algorithm 
that infers a model of the opponent’s automaton from 
its input/output behavior. A set of experiments that 
show the potential merit of the algorithm is reported 
as well. 

Introduction 
In recent years, a major research effort has been in- 
vested in designing and building intelligent agents - 
software or hardware entities that interact with an ex- 
ternal environment in an intelligent way. In complex 
environments, such as the Internet, intelligent agents 
are likely to encounter other agents and may need to 
interact with them in order to achieve their goals. For 
example, an information gathering agent may have to 
interact with information supplying agents in order 
to obtain highly relevant information at a low cost. 
Other examples are situations where conflict resolu- 
tion, task allocation, resource sharing and cooperation 
are needed. 

When looking for an efficient strategy for interac- 
tion, an agent must consider two main outcomes of its 
behavior. First, the direct reward for its action during 
the current encounter with others. Second, the effect of 
its behavior on the future behavior of the other agents. 
Designing an “effective” strategy for interaction is a 
hard problem because its effectiveness depends mostly 
on the strategies of the other agents involved. How- 
ever, the agents are autonomous, hence their strate- 
gies are private. One way to deal with this prob- 

62 Agents 

lem is to endow agents with the ability to adapt their 
strategies based on their interaction experience. Re- 
cent studies (Littman 1994; Sandholm & Crites 1995; 
WeiB & Sen 1996) describe various adaptation meth- 
ods for agents operating in multiagent systems (MAS). 
In this work, we suggest a model-bused approach for 
learning an efficient interactive strategy. At any stage 
of an interaction, the adaptive agent holds a model of 
its opponent’s strategy. During interaction, the agent 
exploits the current opponent model to predict its be- 
havior and chooses its own action according to that 
prediction. When the prediction fails, the agent up- 
dates the opponent model to make it consistent with 
the new counterexample. 

A model bused approach introduces two main ques- 
tions. First, given a model of another agent, how 
should an agent react optimally against it? Second, 
how should an agent adapt an opponent model in the 
case of a failure in prediction? We propose a frame- 
work based on tools of game theory. Interaction among 
agents is represented as a repeated two-player game and 
the objective of each agent is to look for an interaction 
strategy that maximizes its expected sum of rewards 
in the game. We restrict the agents’ strategies to regu- 
lar strategies, i.e., strategies that can be represented by 
deterministic finite automata (Rubinstein 1986). First, 
based on previous work (Papadimitriou & Tsitsiklis 
1987), we show that finding the best response strat- 
egy can be done efficiently given some common utility 
functions for repeated games. Second, we show how 
an adaptive agent can infer an opponent model based 
on its interaction experience in the past. We present 
an unsupervised algorithm that infers a model of the 
opponent’s automaton from its input/output behavior 
and report some experimental results. 

Interaction as a Repeated Game 

To formalize the notion of interacting agents we con- 
sider a framework where an encounter between two 
agents is represented as a two-player game and a se- 
quence of encounters as a repeated game; both are tools 
of game theory. 
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Definition 1 A two-player game is a tupde G =< 
RI, Ra, ~1, u2 >, where RI, R2 are finite sets of ulter- 
native moves for the players (catted pure strategies), 
undul,uz:R1xR2 -+ % are utility functions that de- 
fine the utility of a joint move (rl, r2) for the players. 

A sequence of encounters among agents is described 
as a repeated game, G #, based on the repetition of 
G an indefinite number of times. At any stage t of 
the game, the players choose their moves, (ri , ri) E 
RI x R2, simultaneously. A history, h(t) of G#, 
is a finite sequence of joint moves chosen by the 
agents until the current stage of the game. h(t) = 
((rf, r,“), (rt, ri), . . . , (ri-l, ri-‘)) We will denote the 
empty history by X. H(G#) is the set of all finite his- 
tories for G#. 
A strategy si for G# for player i, i E { 1,2}, is a func- 
tion from the set of histories of the game to the set 
of the player’s moves. si : H(G#) -+ Ri Si is the set 
of all possible strategies for player i in G#. A pair of 
strategies (si, sz) defines an infinite sequence of joint 
moves while playing the game G#: 

gs1,sm = x 
gw2(t + 1) = gs1,sz @)ll(s1~ss,,&)), s2(gs1,s$))) 

gwm cl e fi nes the history h(t) for the repeated game 
played by sr , ~2. 

Definition 2 A two-player repeated-game over a 
stage game G is a tupde G# =< SI, S2, Ul, U2 >, 
where &, S2 are sets of strategies for the players, and 
U1, U2 : S1 x S2 -+ !I? are utility functions. Ui defines 
the utility of the infinite sequence gsI,s2 for player i. 

Definition 3 sypt (sj , Ui) will be culled an optimal 
strategy for player i, with respect to strategy sj and 
utility Ui, ifl\ds E Si, [Ui(sgPt(sj, U;), sj) 2 Ui(s, sj)]. 

In this work we consider two common utility functions 
for repeated games. The first is the discounted-sum 
function: 

U,““(q ) s2) = 
(1 - ri> 2 ^litW(Sl(LJ s~,s,(t>>,s2(ss,,s,(t))) 

t=o 

0 5 y < 1 is a discount factor for future payoffs. It is 
easy to show that Uds (~1, ~2) converges for any y < 1. 
The second is the limit-of-the-means function: 

We assume that the player’s objective is to maximize 
the expected sum of rewards in the repeated game ac- 
cording to its utility function. 

Best Response Against a Given Model 
One of the basic factors that effects the behavior of 
agents in MAS is the knowledge that they have about 
each other. In this work we assume that each player is 
aware of the other player’s actions, i.e., RI, R2 are com- 
mon knowledge, while the players’ preferences, Ul, u2, 

are private. In such a framework, while the history 
of the game is common knowledge, each player pre- 
dicts the future course of the game differently. The 
prediction of player i, gs,,3J, is -based on the player’s 
strategy si , and on the player’s assumption about the 
opponent’s strategy, Sj. ij will be called an opponent 
model. An adaptive player modifies its opponent model 
gj during the game based on its history. Whenever ij 
is modified, the player should look for an updated best 
response strategy sip” (gj, Ui) with respect to its utility 
function, Ui. 

Generally, searching for an optimal strategy in the 
space of strategies is too complicated for agents with 
bounded rationality. In this work we adopt a common 
restriction that the players use regular strategies, i.e., 
strategies that can be represented by deterministic fi- 
nite automata (DFA) (Rubinstein 1986). 

A DFA (Moore machine) is defined as a tuple A4 = 
(Q, Gn, qo, 4 Cout, F), where Q is a non empty finite 
set of states, Ci, is the machine input alphabet, qo 
is the initial state, and C out is the output alphabet. 
S : Q x Xi, * Q is a transition function. S is extended 
to the range Q x CT, in the usual way: S(q, X) = Q, 
S(q,sa) = S(S(q,s),o). A is the null string. F : Q ---+ 
Gout is the output function. M(s) = F(S(qo, s)) is the 
output of M for a string s E Cm. iA41 denotes the 
number of states of lL?. 

A strategy for player i against opponent j is repre- 
sented by a DFA Mi where Ci, = Rj and Gout = Ri. 
Given a history ((ry, rg), (r:, r$), . . . , (ri-‘, ri-‘)), the 
move selected by A4i is k$(rjrt . . . rj-'). 

Theorem 1 (Papudimitriou 63’ Tsitsiklis 1987) Given * 
a DFA opponent model Mj, there exists a best response 
DFA M,O”“(h;lj, Ui) such thut IM8~p”(&j7 Ui)I 5 l&Ijl 
with respect to: a. Ui = Ut”. b. Ui = Ui”. Moreover, n 
MzFpt(Mj, Vi) can be computed in time polynomial in 

Ikj I. 

Under the assumption that the opponent’s strategy 
can be modeled as a DFA, and in order to pre- 
dict the opponent’s actions, the adaptive agent has 
to infer the smallest DFA consistent with the sam- 
ple of the opponent’s behavior. Finding the small- 
est finite automaton consistent with a given sam- 
ple has been shown to be NP-Complete (Gold 1978; 
Angluin 1978). It has also been shown that the mini- 
mal consistent automaton cannot be approximated by 
any polynomial-time algorithm (Pitt 1989). Thus, pas- 
sive modeling of a given automaton from an arbitrary 
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sample seems to be infeasible. Unsupervised Learning of BFA 
Gold (1978) studied the problem of identifying a 

DFA from a given sample by representing the machine 
using an observation table (S, E, T). S c Ci*, is a 
prefix-closed set of strings. E C Ci*, is a suffix-closed 
set of strings called tests. T is a two dimensional ta- 
ble with one row for each element of S U SC, where 
SC = (scr]s E S, (T E &}, and one column for each 
element of E. row(s) marks the table row associated 
with s. The table entries, T(s, e), are members of Gout. 
The rows of the table are partitioned to equivalence 
classes: C(s) = (row(s’)lrow(s’) = rozo(s)). 

The L* algorithm is not suitable for opponent mod- 
eling due to the unavailability of a teacher. Also, 
experiments with the opponent might be too expen- 
sive or even destructive for the learner. We propose 
to deal with this problem by considering unsupervised 
approaches. During encounters with the opponent, the 
adaptive agent holds a consistent model with the op- 
ponent’s behavior in the past, and exploits the model 
to predict it’s behavior in the future. When a new 
example arrives, it can be a supporting example or a 
counterexumple. For the first case, the algorithm does 
not change the model. For a counterexample, the al- 
gorithm constructs a new observation table that cov- 
ers the data, including the new counterexample. Table 
construction requires a teacher for answering member- 
ship queries. In the absence of such a teacher the agent 
consults its previous model. Following that, it arranges 
the table to make it closed and consistent, and con- 
structs a new model consistent with the new table. 

Definition 4 A table is consistent ifl Vsi, s2 E 
s, [C(Q) = C(Q) + ‘da E &&(sp) = C(s24. 
A table is closed $Vs E SC, 3s’ E S, s E C(s’). 

We say that a DFA M is consistent with an obser- 
vation table (S, E, 7’) iff for any entry (s,e) in T, 
M(se) = T(s, e). The minimal DFA M(S, E, T), that 
is consistent with (S, E, T), is defined as follows (An- 
gluin 1987): Q = (C(s) : s E S}, qo = C(X), 
S(C(s), a) = C(w), F(C(s)) = T(s, A). 

We say that a table (S, E, T) covers a sample D if 
for any d E D there is an entry (s, e) E T such that 
d = (se, a) and T(s, e) = (T. We say that a table 
entry (s, e) is supported by a sample D if there is an 
example d E D such that d = (se, a), and T(s, e) = 
0. An entry (s, e) of the table (S, E, T) is called a 
permanent entry if it is supported by D. (s, e) is called 
a hole entry otherwise. Two table entries, (sit er) and 
(~2, e2), are called tied if slel = s2e2. An assignment is 
a vector over Cz,, that assigns an output value to each 
hole of a table. An assignment is legal iff tied holes 
receive the same value. Finding a legal assignment for 
a given table is easy. For example, the assignment that 
inserts the same output value for all the holes must be 
legal. We call it the trivial assignment. The problem 
becomes much harder if we look for a legal assignment 
that yields a closed and consistent table. We call it the 
optimal assignment. 

Theorem 2 (Gold) The problem of finding un opti- 
mal assignment for an observation table that covers a 
given sample is NP-hard. 

Angluin (1987) d escribes an algorithm, named L*, that 
efficiently infers an automaton model using a minimal 
adequate teacher, an oracle that answers membership 
and equivalence queries, for finding an optimal ussign- 
ment. Ron and Rubinfeld (1995) describe a modified 
version of L* that learns a PAC model of a given DFA 
in the presence of a fallible teacher who sometimes pro- 
vides incorrect answers. Rivest and Shapire (1993) de- 
scribe a procedure that simulates iterated interactions 
of a robot with an unknown environment and is based 
on L*. Instead of an adequate teacher that answers 
queries, the learner is permitted to experiment with 
the environment (machine). 

The algorithm named US-L*, (unsupervised L*), 
maintains the same observation table as L* does. At 
the beginning, the algorithm inserts all the prefixes of 
the examples into S, and constructs SC to include all 
their extensions. E is initialized to include the empty 
test A. Entries of the table are filled as follows: When 
an entry (s, e) is supported by a past example, it is as- 
signed the example’s output value and it is marked as a 
permanent entry. When a table entry is not supported 
by a past example, it is assigned an output value pre- 
dicted by the previous model, and it is marked as a 
hole entry. 

The algorithm then arranges the table to make it 
consistent. In the case of inconsistency, there are two 
S-rows, s1 and ~2, belonging to the same equivalence 
class, but their g-extensions do not, (i.e., there are 
0 E Gin, and e E E, such that T(sia,e) # T(sz0,e)). 
Inconsistency is solved by adding the test oe into E, 
an extension that separates row(sl) and row(s2) into 
two different equivalence classes and yields an addition 
of at least one new state to the model. Next, the algo- 
rithm arranges the table to become closed exactly as 
L* does. When the table is not closed, there is s E SC 
without any equal row in S. US-L* moves s from SC 
into S and for each 0 E Ci, adds SO into SC. Figure 
1 shows a pseudo-code of the algorithm. 

Theorem 3 If D is a set of examples of the machine’s 
behavior, M is a DFA consistent with D, and t is a new 
example. Then US-L* (D, M, t) eventually terminates 
and outputs a model consistent with D U (t>, with size 
bounded by IM I + It 1. Moreover, if k is the size of the 
set of all prefixes of the examples in D U (t), then the 
total running time, and the size of the observation table 
used by US-L*, are bounded by a polynomial in k and 
IML 
The proofs for all the theorems in this paper can be 
found in (Carmel & Markovitch 1996). 
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Algorithm: US-L*(D, M, t) 
D: a set of examples of the machine’s behavior. 
M: The current model consistent with D. 
t = (s, a):new example of the machine’s behavior 

D + D u {C} 
if D(s) # M(s), {t is a counterezample} 

Init (S, E, T): 
S + all prefixes of D 
Vs E S and u E C,, 

if su @ S, SC + SC U (so} 

E - {Xl 
Vs E S U SC, T(s, A) + Query(s, A) 

Consistency: 
While not Consistent( S, E, T) 
find two equal rows ~1, ss E S, CT E C,,, 
e E E, such that T(sia, e) # T(ssa, e) 
E c E U {ue} 
Vs E S u SC, T(s,ae) + Query(s,ae) 

Closing: 
While not Closed(S, E, 2’) 
find s E SC such that Vs’ E S, HOW # TOW(S) 
move s into S 
Vu E c,,, SC + SC u (su} 
Ve E E, T(su, e) + Query(su, e) 

return M(S, E, T) 

Query(s, e): 
if (s, e) is supported by D 

mark (s, e) as a permanent entry, return D(se) 
else 

mark (s, e) as a hole entry 
if (s, e) has a tied entry (s’, e’) (s’e’ = se} 
return T(s’, e’) 

else return M(se) 

Figure 1: Unsupervised learning algorithm for DFA 

Figure 2 describes an example of a learning ses- 
sion of the algorithm. Assume that Ci, = {a, 6}, 
c out = {O,l}. Th e current model, described in Fig- 
ure 2(a), is consistent with D. When a counterexam- 
ple t = (abb, 1) arrives, the algorithm initializes the 
observation table shown in Figure 2(b). The table is 
inconsistent. One inconsistency is Your(A) = row(&) 
while row(b) # row(&). This inconsistency is solved 
by adding a test b into E. See Figure 2(c). A new in- 
consistency is introduced by row(X) = row(u) while 
row(b) # row(ub). This inconsistency is solved by 
adding a test b6 to distinguish between the two rows. 
See Figure 2(d). N ow the table is consistent and closed. 
Figure 2(e) shows the new model M(S, E, T), returned 
by US-L*, that is consistent with D U {t}. 

Looking for a better hole-assignment 
Theorem 3 guarantees that the learned model is at 
most in the size of the given sample. This result is 
not satisfying - in the worst case no generalization is 
made by the algorithm. In this subsection we introduce 
a modified algorithm that tries to avoid extensions of 
the table as much as possible by looking for a better 
hole assignment. 

When the modified algorithm arranges the table to 
make it consistent, it first attempts to change the hole 
assignments to solve inconsistency instead of adding 
new tests. When T(slc~,e) # Tz(s~o.,e), if one entry 
is a hole and one is permanent, then the hole entry 

M= 0 6 a.b 
D= ( 04). (aJO,). (ab.0) 1 

t=(abb,l) 

S 

SZ 

=r 2 t 

lb1 

E 
II b 

b 

kl 

Figure 2: A learning session of US-L*. Holes are marked 
by squares. 

gets the output value of the permanent entry. When 
both are hole entries, the longer one gets the output 
value of the shorter one. Changing a value of a hole 
entry causes all its tied entries to get the same value for 
preserving the legality of the assignment. In order to 
prevent an infinite loop, any changed entry is marked 
and cannot be changed again. A new test is added 
only if both entries are permanent or both entries were 
already changed. Figure 3 shows the modified version 
of the consistency loop of the algorithm. 

Zonsistency: 
While not Consistent(S, E, T) 
find two equal rows si, s2 E S, u E C,,, 

e E E, such that T(sla, e) # T(szu, e) 
if both (slur e) and (~20, e) are permanent 

or both have been changed before 
E + E U {ae} 
Vs E S U SC, T(s, ae) + Q”ery(s, ue) 

else 
if one entry is a hole which was not changed before 
(assume (sso, e)), or both entries are hoZes 
which were not changed before (assume si < ss) 
T(s20, e) (and its tied entries)+ T(slu, e) 
mark (5217, e) (and its tied entries) as changed 

Figure 3: The modified consistency loop that tries to solve 
the inconsistency of the table by changing the hole assign- 
ment prior to adding tests 

Theorem 4 The total running time of the modified 
us-L* , and the size of the observation table used by the 
algorithm, are bounded by a polynomial in the sample 
size k and the model size IMI. 

Figure 4 describes an example of a learning session 
of the modified algorithm with the same input as in 
Figure 2. The table is inconsistent after initialization. 
One inconsistency is row(X) = row(ub) while row(b) # 
row(ubb). This inconsistency is solved by changing the 
ho/e value of (b, X) (Figure 4(c)). Another inconsis- 
tency is row(u) = row(ub) while row(ub) # row(ubb). 
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This inconsistency can not be solved by changing hole 
values. Therefore the algorithm adds the test b into 
E to distinguish between the two rows (Figure 4(e)). 
Now the table is consistent and closed. Figure 4(f) 
shows the new consistent model M(S, E, T). 

ash 

D=(&O), (a.0). (ah.0)) 

t=(ahh. I ) 

E 

1 

h[z1 

SC 
aa[iil 

aha q  
ahha m 
ahhh ljj 

S 

E 

b@i 
mm 

aha till 
ahha q  
ahhb •j 

Ihl 

Iel 

a 

Kl 

Figure 4: A learning session of the modified US-L*. 

When US-L* changes a hole value for solving incon- 
sistency of the observation table, the changed hole and 
all its tied entries are marked and cannot be changed 
again to prevent infinite loops. Without this limita- 
tion, an inconsistency that was solved before, can ap- 
pear again while solving another inconsistency. How- 
ever, there are many situations where re-changing hole 
values might save extensions of the table. For exam- 
ple, when two equal rows that include changed holes 
become unequal after adding a test into E, all holes 
belonging to these rows can be changed again in order 
to solve other inconsistencies of the table. 

To reduce the size of the models generated by the 
algorithm, we modified US-L* to receive a limit pa- 
rameter that specifies the maximal number of times a 
hole entry can be changed. Based on this modified al- 
gorithm, we developed- an iterative version of US-L*, 
called IT-US-L*, that calls US-L* with an increasing 
limit parameter. The algorithm stops when the al- 
loted computational resources are exhausted or when 
it sees no improvement for several iterations. Theorem 
4, which shows the efficiency of the modified version of 
US-L”, can be easily extended for the iterative version. 
The running time and the size of the observation table 
are bounded by a polynomial in the sample size k, the 
model size [Ml, and the limit parameter] 

Experimentation: Applying US-L* to 
model learning in repeated-games 

One way of applying US-L* to the problem of model 
learning is as on-line learning: during a repeated-game 
the player modifies the opponent model based on the 

history of the game. An alternative way of learning is 
by observation. The adaptive agent observes its oppo- 
nent’s games against other agents and constructs an 
opponent model based on these observations. 

We conducted a set of experiments that tests the 
capabilities of US-L* applied to the problem of learn- 
ing by observation. For each experiment, a random 
opponent automaton with a given number of states 
was generated by choosing a random transition func- 
tion and a random output function’. A training set 
of random histories was generated by creating random 
sequences of moves and by feeding them to the oppo- 
nent automaton. The training set was given as input 
to IT-US-L*. The algorithm learned incrementally: it 
maintained a current model and modified it whenever 
a counterexample arrives. 

The independent variables were the size of the op- 
ponent automaton and the size of the training sample. 
The dependent variables were the size of the learned 
model and the model accuracy, tested on a testing 
set of 1000 examples (generated independently of the 
training set). The accuracy was measured by counting 
the number of disagreements between the model and 
the random DFA on the testing set. 

1000 experiments were conducted for each pair of 
sample size and machine size. Figure 5 shows the av- 
erage size and the average error of the learned models 
as a function of the sample size and as a function of the 
DFA size. It is quite clear that IT-US-L* succeeds in 
learning compact models for random machines based 
on prefix-closed samples of their behavior, and that 
the average size of those models is almost not affected 
by the sample size. Furthermore, the average error of 
the learned models decreases monotonically with the 
sample size. These results suggest that IT-US-L* has 
a strong ability to detect the common pattern of the 
sample. 

In the second experiment we tested US-L* with non- 
random automata. We repeated the famous tourna- 
ment managed by Axelrod (1984) for the Iterated Pris- 
oner’s Dilemma game (IPD) and allowed our adaptive 
player to observe the tournament and build models 
for all the attendees. We allowed only determinis- 
tic players to participate (10 players). After building 
the models, the adaptive player joined the tournament 
and played against the others using optimal strategies 
which were computed against their models (see Theo- 
rem 1) by using the limit-of-the-means utility function. 
The adaptive player won the tournament. 

The optimal strategy against most of the players was 
all-C, a strategy that always cooperates. but there 
were some altruistic players, such as Tit-for-tulo-Tut 
(Axelrod 1984), in which the adaptive player found a 
better response: “defect and then ask for forgiveness 
(cooperate)“. Figure 6 shows the learned model for 

‘The random machines were minimized by taking out 
all un-reachable states end by using the DFA-minimization 
algorithm (Hopcroft & Ullman 1979). 
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Figure 5: The average model size learned by US-L” and 
the average error of the learned models as a function of the 
sample size, for different sizes of the target machine. 

Tit-for-two- Tut player and 
by the adaptive player. 

the winning cycle computed 

Figure 6: The model learned by US-L” for the strategy 
Tit-for-two- Tut. The winning cycle is condensed. 

Summary 
It has been recognized that learning capabilities are 
important for an agent that needs to interact with 
other agents. In this work we propose a mode/-bused 
approach where the agent learns a model of its oppo- 
nent’s strategy based on its past behavior, and uses 
the model to predict its future behavior. We restrict 
our attention to opponent strategies that can be rep- 
resented by DFA. Learning a minimal DFA without a 
teacher was proved to be hard. We presente an un- 
supervised algorithm, US-L*, based on Angluin’s L* 
algorithm. that maintains a model consistent with its 
past examples. 

We conducted a set of experiments where random 
automata that represent different strategies were gen- 
erated, and the algorithm tried to learn them based on 
a random set of game-histories. The algorithm man- 
aged to learn very compact models with high accu- 
racy. The experimental results suggest that for ran- 
dom prefix-closed samples the algorithm behaves well. 
However, following Angluin’s result on the difficulty of 
learning almost uniform complete samples (1978), it is 
obvious that our algorithm does not solve the complex- 
ity issue of inferring a DFA from a general prefix-closed 
sample. We are currently looking for classes of prefix- 
closed samples where US-L* behaves well. 

The work presented here is only a first step in the 
area of opponent modeling. The US-L* algorithm en- 
ables an adaptive player to model an other agent’s 
strategy in order to find a proper response. The 
tasks of modeling adaptive players, modeling players 
that hide their interactive strategies, or avoiding other 
agent’s attempts to model your strategy, are extremely 
difficult and deserve further research. 
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