
Learning Models of Intelligent Agents

David Carmel and Shaul Markovitch
Computer Science Department
Technion, Haifa 32000, Israel

Email: carmel@cs.technion.ac.il, shaulm@cs.technion.ac.il

Abstract

Agents that operate in a multi-agent system need an
efficient strategy to handle their encounters with other
agents involved. Searching for an optimal interactive
strategy is a hard problem because it depends mostly
on the behavior of the others. In this work, interaction
among agents is represented as a repeated two-player
game, where the agents’ objective is to look for a strat-
egy that maximizes their expected sum of rewards in
the game. We assume that agents’ strategies can be
modeled as finite automata. A model-bused approach
is presented as a possible method for learning an ef-
fective interactive strategy. First, we describe how an
agent should find an optimal strategy against a given
model. Second, we present an unsupervised algorithm
that infers a model of the opponent’s automaton from
its input/output behavior. A set of experiments that
show the potential merit of the algorithm is reported
as well.

Introduction
In recent years, a major research effort has been in-
vested in designing and building intelligent agents -
software or hardware entities that interact with an ex-
ternal environment in an intelligent way. In complex
environments, such as the Internet, intelligent agents
are likely to encounter other agents and may need to
interact with them in order to achieve their goals. For
example, an information gathering agent may have to
interact with information supplying agents in order
to obtain highly relevant information at a low cost.
Other examples are situations where conflict resolu-
tion, task allocation, resource sharing and cooperation
are needed.

When looking for an efficient strategy for interac-
tion, an agent must consider two main outcomes of its
behavior. First, the direct reward for its action during
the current encounter with others. Second, the effect of
its behavior on the future behavior of the other agents.
Designing an “effective” strategy for interaction is a
hard problem because its effectiveness depends mostly
on the strategies of the other agents involved. How-
ever, the agents are autonomous, hence their strate-
gies are private. One way to deal with this prob-

62 Agents

lem is to endow agents with the ability to adapt their
strategies based on their interaction experience. Re-
cent studies (Littman 1994; Sandholm & Crites 1995;
WeiB & Sen 1996) describe various adaptation meth-
ods for agents operating in multiagent systems (MAS).
In this work, we suggest a model-bused approach for
learning an efficient interactive strategy. At any stage
of an interaction, the adaptive agent holds a model of
its opponent’s strategy. During interaction, the agent
exploits the current opponent model to predict its be-
havior and chooses its own action according to that
prediction. When the prediction fails, the agent up-
dates the opponent model to make it consistent with
the new counterexample.

A model bused approach introduces two main ques-
tions. First, given a model of another agent, how
should an agent react optimally against it? Second,
how should an agent adapt an opponent model in the
case of a failure in prediction? We propose a frame-
work based on tools of game theory. Interaction among
agents is represented as a repeated two-player game and
the objective of each agent is to look for an interaction
strategy that maximizes its expected sum of rewards
in the game. We restrict the agents’ strategies to regu-
lar strategies, i.e., strategies that can be represented by
deterministic finite automata (Rubinstein 1986). First,
based on previous work (Papadimitriou & Tsitsiklis
1987), we show that finding the best response strat-
egy can be done efficiently given some common utility
functions for repeated games. Second, we show how
an adaptive agent can infer an opponent model based
on its interaction experience in the past. We present
an unsupervised algorithm that infers a model of the
opponent’s automaton from its input/output behavior
and report some experimental results.

Interaction as a Repeated Game

To formalize the notion of interacting agents we con-
sider a framework where an encounter between two
agents is represented as a two-player game and a se-
quence of encounters as a repeated game; both are tools
of game theory.

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Definition 1 A two-player game is a tupde G =<
RI, Ra, ~1, u2 >, where RI, R2 are finite sets of ulter-
native moves for the players (catted pure strategies),
undul,uz:R1xR2 -+ % are utility functions that de-
fine the utility of a joint move (rl, r2) for the players.

A sequence of encounters among agents is described
as a repeated game, G #, based on the repetition of
G an indefinite number of times. At any stage t of
the game, the players choose their moves, (ri , ri) E
RI x R2, simultaneously. A history, h(t) of G#,
is a finite sequence of joint moves chosen by the
agents until the current stage of the game. h(t) =
((rf, r,“), (rt, ri), . . . , (ri-l, ri-‘)) We will denote the
empty history by X. H(G#) is the set of all finite his-
tories for G#.
A strategy si for G# for player i, i E { 1,2}, is a func-
tion from the set of histories of the game to the set
of the player’s moves. si : H(G#) -+ Ri Si is the set
of all possible strategies for player i in G#. A pair of
strategies (si, sz) defines an infinite sequence of joint
moves while playing the game G#:

gs1,sm = x
gw2(t + 1) = gs1,sz @)ll(s1~ss,,&)), s2(gs1,s$)))

gwm cl e fi nes the history h(t) for the repeated game
played by sr , ~2.

Definition 2 A two-player repeated-game over a
stage game G is a tupde G# =< SI, S2, Ul, U2 >,
where &, S2 are sets of strategies for the players, and
U1, U2 : S1 x S2 -+ !I? are utility functions. Ui defines
the utility of the infinite sequence gsI,s2 for player i.

Definition 3 sypt (sj , Ui) will be culled an optimal
strategy for player i, with respect to strategy sj and
utility Ui, ifl\ds E Si, [Ui(sgPt(sj, U;), sj) 2 Ui(s, sj)].

In this work we consider two common utility functions
for repeated games. The first is the discounted-sum
function:

U,““(q) s2) =
(1 - ri> 2 ^litW(Sl(LJ s~,s,(t>>,s2(ss,,s,(t)))

t=o

0 5 y < 1 is a discount factor for future payoffs. It is
easy to show that Uds (~1, ~2) converges for any y < 1.
The second is the limit-of-the-means function:

We assume that the player’s objective is to maximize
the expected sum of rewards in the repeated game ac-
cording to its utility function.

Best Response Against a Given Model
One of the basic factors that effects the behavior of
agents in MAS is the knowledge that they have about
each other. In this work we assume that each player is
aware of the other player’s actions, i.e., RI, R2 are com-
mon knowledge, while the players’ preferences, Ul, u2,

are private. In such a framework, while the history
of the game is common knowledge, each player pre-
dicts the future course of the game differently. The
prediction of player i, gs,,3J, is -based on the player’s
strategy si , and on the player’s assumption about the
opponent’s strategy, Sj. ij will be called an opponent
model. An adaptive player modifies its opponent model
gj during the game based on its history. Whenever ij
is modified, the player should look for an updated best
response strategy sip” (gj, Ui) with respect to its utility
function, Ui.

Generally, searching for an optimal strategy in the
space of strategies is too complicated for agents with
bounded rationality. In this work we adopt a common
restriction that the players use regular strategies, i.e.,
strategies that can be represented by deterministic fi-
nite automata (DFA) (Rubinstein 1986).

A DFA (Moore machine) is defined as a tuple A4 =
(Q, Gn, qo, 4 Cout, F), where Q is a non empty finite
set of states, Ci, is the machine input alphabet, qo
is the initial state, and C out is the output alphabet.
S : Q x Xi, * Q is a transition function. S is extended
to the range Q x CT, in the usual way: S(q, X) = Q,
S(q,sa) = S(S(q,s),o). A is the null string. F : Q ---+
Gout is the output function. M(s) = F(S(qo, s)) is the
output of M for a string s E Cm. iA41 denotes the
number of states of lL?.

A strategy for player i against opponent j is repre-
sented by a DFA Mi where Ci, = Rj and Gout = Ri.
Given a history ((ry, rg), (r:, r$), . . . , (ri-‘, ri-‘)), the
move selected by A4i is k$(rjrt . . . rj-').

Theorem 1 (Papudimitriou 63’ Tsitsiklis 1987) Given *
a DFA opponent model Mj, there exists a best response
DFA M,O”“(h;lj, Ui) such thut IM8~p”(&j7 Ui)I 5 l&Ijl
with respect to: a. Ui = Ut”. b. Ui = Ui”. Moreover, n
MzFpt(Mj, Vi) can be computed in time polynomial in

Ikj I.

Under the assumption that the opponent’s strategy
can be modeled as a DFA, and in order to pre-
dict the opponent’s actions, the adaptive agent has
to infer the smallest DFA consistent with the sam-
ple of the opponent’s behavior. Finding the small-
est finite automaton consistent with a given sam-
ple has been shown to be NP-Complete (Gold 1978;
Angluin 1978). It has also been shown that the mini-
mal consistent automaton cannot be approximated by
any polynomial-time algorithm (Pitt 1989). Thus, pas-
sive modeling of a given automaton from an arbitrary

Multiagent Learning 63

sample seems to be infeasible. Unsupervised Learning of BFA
Gold (1978) studied the problem of identifying a

DFA from a given sample by representing the machine
using an observation table (S, E, T). S c Ci*, is a
prefix-closed set of strings. E C Ci*, is a suffix-closed
set of strings called tests. T is a two dimensional ta-
ble with one row for each element of S U SC, where
SC = (scr]s E S, (T E &}, and one column for each
element of E. row(s) marks the table row associated
with s. The table entries, T(s, e), are members of Gout.
The rows of the table are partitioned to equivalence
classes: C(s) = (row(s’)lrow(s’) = rozo(s)).

The L* algorithm is not suitable for opponent mod-
eling due to the unavailability of a teacher. Also,
experiments with the opponent might be too expen-
sive or even destructive for the learner. We propose
to deal with this problem by considering unsupervised
approaches. During encounters with the opponent, the
adaptive agent holds a consistent model with the op-
ponent’s behavior in the past, and exploits the model
to predict it’s behavior in the future. When a new
example arrives, it can be a supporting example or a
counterexumple. For the first case, the algorithm does
not change the model. For a counterexample, the al-
gorithm constructs a new observation table that cov-
ers the data, including the new counterexample. Table
construction requires a teacher for answering member-
ship queries. In the absence of such a teacher the agent
consults its previous model. Following that, it arranges
the table to make it closed and consistent, and con-
structs a new model consistent with the new table.

Definition 4 A table is consistent ifl Vsi, s2 E
s, [C(Q) = C(Q) + ‘da E &&(sp) = C(s24.
A table is closed $Vs E SC, 3s’ E S, s E C(s’).

We say that a DFA M is consistent with an obser-
vation table (S, E, 7’) iff for any entry (s,e) in T,
M(se) = T(s, e). The minimal DFA M(S, E, T), that
is consistent with (S, E, T), is defined as follows (An-
gluin 1987): Q = (C(s) : s E S}, qo = C(X),
S(C(s), a) = C(w), F(C(s)) = T(s, A).

We say that a table (S, E, T) covers a sample D if
for any d E D there is an entry (s, e) E T such that
d = (se, a) and T(s, e) = (T. We say that a table
entry (s, e) is supported by a sample D if there is an
example d E D such that d = (se, a), and T(s, e) =
0. An entry (s, e) of the table (S, E, T) is called a
permanent entry if it is supported by D. (s, e) is called
a hole entry otherwise. Two table entries, (sit er) and
(~2, e2), are called tied if slel = s2e2. An assignment is
a vector over Cz,, that assigns an output value to each
hole of a table. An assignment is legal iff tied holes
receive the same value. Finding a legal assignment for
a given table is easy. For example, the assignment that
inserts the same output value for all the holes must be
legal. We call it the trivial assignment. The problem
becomes much harder if we look for a legal assignment
that yields a closed and consistent table. We call it the
optimal assignment.

Theorem 2 (Gold) The problem of finding un opti-
mal assignment for an observation table that covers a
given sample is NP-hard.

Angluin (1987) d escribes an algorithm, named L*, that
efficiently infers an automaton model using a minimal
adequate teacher, an oracle that answers membership
and equivalence queries, for finding an optimal ussign-
ment. Ron and Rubinfeld (1995) describe a modified
version of L* that learns a PAC model of a given DFA
in the presence of a fallible teacher who sometimes pro-
vides incorrect answers. Rivest and Shapire (1993) de-
scribe a procedure that simulates iterated interactions
of a robot with an unknown environment and is based
on L*. Instead of an adequate teacher that answers
queries, the learner is permitted to experiment with
the environment (machine).

The algorithm named US-L*, (unsupervised L*),
maintains the same observation table as L* does. At
the beginning, the algorithm inserts all the prefixes of
the examples into S, and constructs SC to include all
their extensions. E is initialized to include the empty
test A. Entries of the table are filled as follows: When
an entry (s, e) is supported by a past example, it is as-
signed the example’s output value and it is marked as a
permanent entry. When a table entry is not supported
by a past example, it is assigned an output value pre-
dicted by the previous model, and it is marked as a
hole entry.

The algorithm then arranges the table to make it
consistent. In the case of inconsistency, there are two
S-rows, s1 and ~2, belonging to the same equivalence
class, but their g-extensions do not, (i.e., there are
0 E Gin, and e E E, such that T(sia,e) # T(sz0,e)).
Inconsistency is solved by adding the test oe into E,
an extension that separates row(sl) and row(s2) into
two different equivalence classes and yields an addition
of at least one new state to the model. Next, the algo-
rithm arranges the table to become closed exactly as
L* does. When the table is not closed, there is s E SC
without any equal row in S. US-L* moves s from SC
into S and for each 0 E Ci, adds SO into SC. Figure
1 shows a pseudo-code of the algorithm.

Theorem 3 If D is a set of examples of the machine’s
behavior, M is a DFA consistent with D, and t is a new
example. Then US-L* (D, M, t) eventually terminates
and outputs a model consistent with D U (t>, with size
bounded by IM I + It 1. Moreover, if k is the size of the
set of all prefixes of the examples in D U (t), then the
total running time, and the size of the observation table
used by US-L*, are bounded by a polynomial in k and
IML
The proofs for all the theorems in this paper can be
found in (Carmel & Markovitch 1996).

64 Agents

E

Algorithm: US-L*(D, M, t)
D: a set of examples of the machine’s behavior.
M: The current model consistent with D.
t = (s, a):new example of the machine’s behavior

D + D u {C}
if D(s) # M(s), {t is a counterezample}

Init (S, E, T):
S + all prefixes of D
Vs E S and u E C,,

if su @ S, SC + SC U (so}

E - {Xl
Vs E S U SC, T(s, A) + Query(s, A)

Consistency:
While not Consistent(S, E, T)
find two equal rows ~1, ss E S, CT E C,,,
e E E, such that T(sia, e) # T(ssa, e)
E c E U {ue}
Vs E S u SC, T(s,ae) + Query(s,ae)

Closing:
While not Closed(S, E, 2’)
find s E SC such that Vs’ E S, HOW # TOW(S)
move s into S
Vu E c,,, SC + SC u (su}
Ve E E, T(su, e) + Query(su, e)

return M(S, E, T)

Query(s, e):
if (s, e) is supported by D

mark (s, e) as a permanent entry, return D(se)
else

mark (s, e) as a hole entry
if (s, e) has a tied entry (s’, e’) (s’e’ = se}
return T(s’, e’)

else return M(se)

Figure 1: Unsupervised learning algorithm for DFA

Figure 2 describes an example of a learning ses-
sion of the algorithm. Assume that Ci, = {a, 6},
c out = {O,l}. Th e current model, described in Fig-
ure 2(a), is consistent with D. When a counterexam-
ple t = (abb, 1) arrives, the algorithm initializes the
observation table shown in Figure 2(b). The table is
inconsistent. One inconsistency is Your(A) = row(&)
while row(b) # row(&). This inconsistency is solved
by adding a test b into E. See Figure 2(c). A new in-
consistency is introduced by row(X) = row(u) while
row(b) # row(ub). This inconsistency is solved by
adding a test b6 to distinguish between the two rows.
See Figure 2(d). N ow the table is consistent and closed.
Figure 2(e) shows the new model M(S, E, T), returned
by US-L*, that is consistent with D U {t}.

Looking for a better hole-assignment
Theorem 3 guarantees that the learned model is at
most in the size of the given sample. This result is
not satisfying - in the worst case no generalization is
made by the algorithm. In this subsection we introduce
a modified algorithm that tries to avoid extensions of
the table as much as possible by looking for a better
hole assignment.

When the modified algorithm arranges the table to
make it consistent, it first attempts to change the hole
assignments to solve inconsistency instead of adding
new tests. When T(slc~,e) # Tz(s~o.,e), if one entry
is a hole and one is permanent, then the hole entry

M= 0 6 a.b
D= (04). (aJO,). (ab.0) 1

t=(abb,l)

S

SZ

=r 2 t

lb1

E
II b

b

kl

Figure 2: A learning session of US-L*. Holes are marked
by squares.

gets the output value of the permanent entry. When
both are hole entries, the longer one gets the output
value of the shorter one. Changing a value of a hole
entry causes all its tied entries to get the same value for
preserving the legality of the assignment. In order to
prevent an infinite loop, any changed entry is marked
and cannot be changed again. A new test is added
only if both entries are permanent or both entries were
already changed. Figure 3 shows the modified version
of the consistency loop of the algorithm.

Zonsistency:
While not Consistent(S, E, T)
find two equal rows si, s2 E S, u E C,,,

e E E, such that T(sla, e) # T(szu, e)
if both (slur e) and (~20, e) are permanent

or both have been changed before
E + E U {ae}
Vs E S U SC, T(s, ae) + Q”ery(s, ue)

else
if one entry is a hole which was not changed before
(assume (sso, e)), or both entries are hoZes
which were not changed before (assume si < ss)
T(s20, e) (and its tied entries)+ T(slu, e)
mark (5217, e) (and its tied entries) as changed

Figure 3: The modified consistency loop that tries to solve
the inconsistency of the table by changing the hole assign-
ment prior to adding tests

Theorem 4 The total running time of the modified
us-L* , and the size of the observation table used by the
algorithm, are bounded by a polynomial in the sample
size k and the model size IMI.

Figure 4 describes an example of a learning session
of the modified algorithm with the same input as in
Figure 2. The table is inconsistent after initialization.
One inconsistency is row(X) = row(ub) while row(b) #
row(ubb). This inconsistency is solved by changing the
ho/e value of (b, X) (Figure 4(c)). Another inconsis-
tency is row(u) = row(ub) while row(ub) # row(ubb).

Multiagent Learning 65

This inconsistency can not be solved by changing hole
values. Therefore the algorithm adds the test b into
E to distinguish between the two rows (Figure 4(e)).
Now the table is consistent and closed. Figure 4(f)
shows the new consistent model M(S, E, T).

ash

D=(&O), (a.0). (ah.0))

t=(ahh. I)

E

1

h[z1

SC
aa[iil

aha q
ahha m
ahhh ljj

S

E

b@i
mm

aha till
ahha q
ahhb •j

Ihl

Iel

a

Kl

Figure 4: A learning session of the modified US-L*.

When US-L* changes a hole value for solving incon-
sistency of the observation table, the changed hole and
all its tied entries are marked and cannot be changed
again to prevent infinite loops. Without this limita-
tion, an inconsistency that was solved before, can ap-
pear again while solving another inconsistency. How-
ever, there are many situations where re-changing hole
values might save extensions of the table. For exam-
ple, when two equal rows that include changed holes
become unequal after adding a test into E, all holes
belonging to these rows can be changed again in order
to solve other inconsistencies of the table.

To reduce the size of the models generated by the
algorithm, we modified US-L* to receive a limit pa-
rameter that specifies the maximal number of times a
hole entry can be changed. Based on this modified al-
gorithm, we developed- an iterative version of US-L*,
called IT-US-L*, that calls US-L* with an increasing
limit parameter. The algorithm stops when the al-
loted computational resources are exhausted or when
it sees no improvement for several iterations. Theorem
4, which shows the efficiency of the modified version of
US-L”, can be easily extended for the iterative version.
The running time and the size of the observation table
are bounded by a polynomial in the sample size k, the
model size [Ml, and the limit parameter]

Experimentation: Applying US-L* to
model learning in repeated-games

One way of applying US-L* to the problem of model
learning is as on-line learning: during a repeated-game
the player modifies the opponent model based on the

history of the game. An alternative way of learning is
by observation. The adaptive agent observes its oppo-
nent’s games against other agents and constructs an
opponent model based on these observations.

We conducted a set of experiments that tests the
capabilities of US-L* applied to the problem of learn-
ing by observation. For each experiment, a random
opponent automaton with a given number of states
was generated by choosing a random transition func-
tion and a random output function’. A training set
of random histories was generated by creating random
sequences of moves and by feeding them to the oppo-
nent automaton. The training set was given as input
to IT-US-L*. The algorithm learned incrementally: it
maintained a current model and modified it whenever
a counterexample arrives.

The independent variables were the size of the op-
ponent automaton and the size of the training sample.
The dependent variables were the size of the learned
model and the model accuracy, tested on a testing
set of 1000 examples (generated independently of the
training set). The accuracy was measured by counting
the number of disagreements between the model and
the random DFA on the testing set.

1000 experiments were conducted for each pair of
sample size and machine size. Figure 5 shows the av-
erage size and the average error of the learned models
as a function of the sample size and as a function of the
DFA size. It is quite clear that IT-US-L* succeeds in
learning compact models for random machines based
on prefix-closed samples of their behavior, and that
the average size of those models is almost not affected
by the sample size. Furthermore, the average error of
the learned models decreases monotonically with the
sample size. These results suggest that IT-US-L* has
a strong ability to detect the common pattern of the
sample.

In the second experiment we tested US-L* with non-
random automata. We repeated the famous tourna-
ment managed by Axelrod (1984) for the Iterated Pris-
oner’s Dilemma game (IPD) and allowed our adaptive
player to observe the tournament and build models
for all the attendees. We allowed only determinis-
tic players to participate (10 players). After building
the models, the adaptive player joined the tournament
and played against the others using optimal strategies
which were computed against their models (see Theo-
rem 1) by using the limit-of-the-means utility function.
The adaptive player won the tournament.

The optimal strategy against most of the players was
all-C, a strategy that always cooperates. but there
were some altruistic players, such as Tit-for-tulo-Tut
(Axelrod 1984), in which the adaptive player found a
better response: “defect and then ask for forgiveness
(cooperate)“. Figure 6 shows the learned model for

‘The random machines were minimized by taking out
all un-reachable states end by using the DFA-minimization
algorithm (Hopcroft & Ullman 1979).

66 Agents

100

90

a0

70

d 60 .-
ul
5 50

B
2 40

30

20

10

0
400 500 600 700

Samtie Size
400 500 600 700

Samtie Size

Figure 5: The average model size learned by US-L” and
the average error of the learned models as a function of the
sample size, for different sizes of the target machine.

Tit-for-two- Tut player and
by the adaptive player.

the winning cycle computed

Figure 6: The model learned by US-L” for the strategy
Tit-for-two- Tut. The winning cycle is condensed.

Summary
It has been recognized that learning capabilities are
important for an agent that needs to interact with
other agents. In this work we propose a mode/-bused
approach where the agent learns a model of its oppo-
nent’s strategy based on its past behavior, and uses
the model to predict its future behavior. We restrict
our attention to opponent strategies that can be rep-
resented by DFA. Learning a minimal DFA without a
teacher was proved to be hard. We presente an un-
supervised algorithm, US-L*, based on Angluin’s L*
algorithm. that maintains a model consistent with its
past examples.

We conducted a set of experiments where random
automata that represent different strategies were gen-
erated, and the algorithm tried to learn them based on
a random set of game-histories. The algorithm man-
aged to learn very compact models with high accu-
racy. The experimental results suggest that for ran-
dom prefix-closed samples the algorithm behaves well.
However, following Angluin’s result on the difficulty of
learning almost uniform complete samples (1978), it is
obvious that our algorithm does not solve the complex-
ity issue of inferring a DFA from a general prefix-closed
sample. We are currently looking for classes of prefix-
closed samples where US-L* behaves well.

The work presented here is only a first step in the
area of opponent modeling. The US-L* algorithm en-
ables an adaptive player to model an other agent’s
strategy in order to find a proper response. The
tasks of modeling adaptive players, modeling players
that hide their interactive strategies, or avoiding other
agent’s attempts to model your strategy, are extremely
difficult and deserve further research.

References
Angluin, D. 1978. On the complexity of minimum
inference of regular sets. Information and Control
39, 33 7- 350.
Angluin, D. 1987. Learning regular sets from queries
and counterexamples. Information and Computation
75, 87-106.
Axelrod, R. 1984. The Evolution of Cooperation. New
York: Basic Books.
Carmel, D., and Markovitch, S. 1996. Learning mod-
els of intelligent agents. Technical Report CIS9606,
Technion.
Gold, E. M. 1978. Complexity of automaton identifi-
cation from given data. Information and Control 37,
302-320.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduc-
tion to Automata Theory, Languages and Computu-
tion. Addison-Wesley, Mass.
Littman, M. L. 1994. Markov games as a framework
for multi-agent reinforcement learning. Proceedings
of the eleventh International Conference on Machine
Learning 157-163.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of markov decision processes. Muthemut-
its of Operations Research 12(3):441 - 450.

Pitt, L. 1989. Inductive inference, DFAs and com-
putational complexity. In Jantke, K. P., ed., AnuEogi-
cul and Inductive Inference, Lecture Notes in AI 397.
Springer-Verlag. 18-44.
Rivest, R. L., and Schapire, R. E. 1993. Inference of
finite automata using homing sequences. Information
and Computation 103(2) 299-347.
Ron, D., and Rubinfeld, R. 1995. Learning fallible
deterministic finite automata. Machine Learning 18
149-185.
Rubinstein, A. 1986. Finite automata play the re-
peated Prisoner’s Dilemma. Journal of Economic
Theory 39, 83-96.
Sandholm, T. W., and Crites, R. H. 1995. Multi-
agent reinforcement learning and the iterated Pris-
oner’s Dilemma. Biosystems Journal, 37 147 - 166.
Weil3, G., and Sen, S. 1996. Adaptation and Learning
in Multi-agent Systems, Lecture Notes in AI 1042.
Springer-Verlag.

Multiagent Learning 67

