
Scaling Up: Distributed earning

Foster John Provost aniel N. ennessy

NYNEX Science & Technology Computer Science Department
400 Westchester Avenue University of Pittsburgh
White Plains, NY 10604 Pittsburgh, PA 15260

foster@nynexst.com hennessy@cs.pitt.edu

Abstract
Machine-learning methods are becoming increasingly
popular for automated data analysis. However,
standard methods do not scale up to massive scientific
and business data sets without expensive hardware.
This paper investigates a practical alternative for
scaling up: the use of distributed processing to take
advantage of the often dormant PCs and workstations
available on local networks. Each workstation runs a
common rule-learning program on a subset of the
data. We first show that for commonly used rule-
evaluation criteria, a simple form of cooperation can
guarantee that a rule will look good to the set of
cooperating learners if and only if it would look good
to a single learner operating with the entire data set.
We then show how such a system can further
capitalize on different perspectives by sharing learned
knowledge for significant reduction in search effort.
We demonstrate the power of the method by learning
from a massive data set taken from the domain of
cellular fraud detection. Finally, we provide an
overview of other methods for scaling up machine
learning.

heterogeneous workstations. We use a standard rule-
learning algorithm, modified slightly to allow cooperation
between learners.

At a high level, our metaphor for distributed learning is
one of cooperating experts, each of which has a slightly
different perspective on the concept to be learned. We
define cooperation as the learning-time sharing of
information to increase the quality of the learned
knowledge or to reduce or redirect the search. The learners
communicate with each other by passing messages. The
group can take advantage of the communication by asking
questions or by sharing learned knowledge.

Introduction
Machine-learning techniques are prime candidates for
automated analysis of large business and scientific data
sets. Large data sets are necessary for higher accuracy
(Catlett, 1991 b), for learning small disjuncts with
confidence, and to avoid over-fitting with large feature sets.
However, the standard tools of the machine-learning
researcher, such as off-the-shelf learning programs on
workstation platforms, do not scale up to massive data sets.
For example, Catlett estimates that ID3 (Quinlan, 1986)
would take several months to learn from a million records
in the flight data set from NASA (Catlett, 199 1 a).

We present a practical method for scaling up to very
large data sets that can be guaranteed to learn rules
equivalent to those learned by a monolithic learner, a
learner operating on the entire data set. In the next section
we show how to guarantee that every rule that a monolithic
learner would judge to be satisfactory would appear to be
satisfactory to at least one of our distributed learners. Next
we discuss how distributed rule learners can take advantage
of this property by cooperating to ensure that the ensemble
learns only rules that are satisfactory over the entire data
set. We present results demonstrating the distributed
system’s ability to scale up when learning from a massive
set of cellular fraud data. Later we show how further
cooperation can increase the scaling substantially. Finally
we discuss other approaches to scaling up.

artitioning and Accuracy Esti

One solution to this scaling problem is to invest in or to
gain access to very powerful hardware. Another is to
design alternative methods that can deal better with
massive data sets. In this paper, we investigate a third
solution, namely, to take advantage of existing processing
power distributed across a local network and often under-
utilized. In particular, we focus on partitioning the set of
examples and distributing the subsets across a network of

If learning algorithms had access to the probability
distribution over the example space, then a useful
definition of the quality of a learned rule would be the
probability that the class indicated by the rule is correct
when its conditions apply to an example. Unfortunately,
the probability distribution is not usually available. Thus,
statistics from the training set typically are used to estimate
the probability that a rule is correct. The positive
predictive value discussed by Weiss, et al. (1990), is a
frequency-based accuracy estimate; the ruIe certainty factor
used by Quinlan (1987) is a frequency-based accuracy
estimate adjusted for small samples, and several rule-
learning programs use the Laplace accuracy estimate
(Clark & Boswell, 1991; Segal & Etzioni, 1994; Webb,
1995; Quinlan & Cameron-Jones, 1995). We show that a

74 Agents

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

distributed learner can make performance guarantees with
respect to each of these rule quality metrics.

It is useful to begin by defining some terms. A rule, Y, is
a class description that will either cover or not cover each
example in a data set, E. Thus, coverage statistics can be
determined for r and E. Let P and N be the numbers of
positive and negative examples in E. The number of true
positives, TP, and the number of false positives, FP, count
the positive and negative examples covered by r. For a
subset, Ei, of E , Ti, Ni, TPi, and FP i are defined
analogously.

Let us define a rule evaluation criterion to be the
combination of a rule evaluation function, f(r,E), which
takes a rule and an example set and produces a scalar
evaluation score, and a threshold, c. With respect to the
rule evaluation criterion, a rule, r, is satisfactory over an
example set, E, iff(r,E) 2 c. Rule evaluation criteria can be
defined for each of the three rule quality metrics referenced
above by defining the appropriate rule evaluation function.
For positive predictive value, f(r,E) = ppv(r,E) =
Tp/(TP+FP); for the certainty factor used by Quinlan,
ftc E) = cf(r,E) = (TP-O..5)/(TP+FP); for the Laplace
accuracy estimate, f(r, E) = le(r,E) = (TP+I)/(TP+FP+k),
where k is the number of classes in the data.

Given a set of examples, E, and a partition of E into N
disjoint subsets, Ei, i = I.. N, the invariant-partitioning
property (introduced by Provost & Hennessy (1994)) is the
phenomenon that for some rule evaluation criteria the
following holds for all partitions of E: if a rule r is
satisfactory over E, then there exists an i such that r is
satisfactory over Ei. The implication of the invariant-
partitioning property is that distributed learning algorithms
can be designed such that each processor has only a subset
of the entire set of examples, but every rule that would
appear satisfactory to a monolithic learner will appear
satisfactory to at least one distributed learner. It is
straightforward to show that the invariant-partitioning
property holds for positive predictive value.

Unfortunately, it is also straightforward to show that the
property does not hold for the rule certainty factor used by
Quinlan or for the Laplace accuracy estimate. However, by
extending the property to allow weakened criteria on the
subsets we can provide the same performance guarantees
for these rule evaluation functions.

In particular, given a set of examples, E, a partition of E
into N disjoint subsets, Ei, i=I..N, and a secondary function
f’(r,E, N), define a rule to be acceptable over an example
subset, Ei, if f*(r, Ei,N) 2 c, i.e., the rule is satisfactory with
respect to f’. The extended invariant-partitioning property
is the phenomenon that for some rule evaluation criteria the
following holds for all partitions of E: if a rule r is
satisfactory over E, then there exists an i such that r is
acceptable over Ei. The usefulness of the extended property
hinges on the definition off:

The global performance guarantee with the extended
property is the same as with the original, namely, every
rule that is satisfactory to a monolithic learner will be
acceptable to at least one distributed learner. With the

original property, a rule was acceptable only if it was
satisfactory. A weaker definition of acceptability will
allow more rules to be found by the distributed learners.
Below we utilize cooperation to ensure that spurious rules
are eliminated. We now show that for a non-trivial f the
extended property holds for the Laplace accuracy estimate.

Define the Laplace estimate criterion as: f(r,E)=le(r,E),
Define f’(r, E,N)

F”; UN)/(TP+ FP+WN).
le’(r,E,N)

As expectid, le’(r, E, N) G le(r,EI
which means that the criterion used on the subsets is
approximately the same as that used on the entire data set.
In fact, it is easy to verify that for N= I, le’(r, E, N) = le(r, E);
as N;, 00, le’(r,E,N) *ppv(r,E,N), and for N>I, le’(r,E,N)
is between le(r, E) and ppv(r, E).

Assume that for a rule, r: (TP+I)/(TP+FP+k) 2 L, but,
given a partition of N subsets of E: b/i, (TPi +l/N)/(TPi +
FPi+WN) < L (i.e., r is not acceptable over any Ei), then:
I) Vi {TPi + l/N < L * (TPi + FPi + UN)]
2) aTPi +1/W) < ZL * (TPi+FPi + k/N))
3) gTPi +1/N) < L * gTPi+FPi + UN)
4) TP+ 1 <L. (TP+FP+k)
5) (TP+l)/(TP+FP+k) < L ==> Contradiction
Furthermore, it can be shown that le’ is tight; it is the
strongest function for which the extended invariant-
partitioning property will hold. By using a similar
derivation, it is easy to show that the extended property
applies to the certainty factor used by Quinlan. It also
applies to the certainty factor normalized for skewed
distributions. Specifically, f(r, E) = cf-normalized(r, E) =
(TP-O..5)/(TP+pFP), where p is the ratio of positive
examples to negative examples in the training set.

Cooperating istributed Lear
We have designed and implemented DRL (Distributed
Rule Learner) taking advantage of the invariant-
partitioning property. DRL partitions and distributes the
examples across a network of conventional workstations
each running an instance of a rule learning program. In
DRL the learners cooperate based on the communication of
partial results to each other. The invariant-partitioning
property guarantees that any rule that is satisfactory on the
entire data set will be found by one of the sub-learners.
Simple cooperation assures that only rules that are
satisfactory on the entire data set will be found. Later we
will discuss more elaborate cooperation.

RL
DRL is based upon RL (Clearwater & Provost, 1990). RL
performs a general-t - o specific beam search of a
syntactically defined space of rules, similar to that of other
MetaDENDRAL-style rule learners (Buchanan & Mitchell,
1978; Segal & Etzioni, 1994; Webb 1995), for rules that
satisfy a user-defined rule evaluation criterion. For this
work, we use cf-normalized (defined above).

DRL first partitions the training data into N disjoint
subsets, assigns each subset to a machine, and provides the

Multiagent Learning 75

infrastructure for communication when individual learners
detect an acceptable rule. When a rule meets the evaluation
criterion for a subset of the data, it becomes a candidate for
meeting the evaluation criterion globally; the extended
invariant-partitioning property guarantees that each rule
that is satisfactory over the entire data set will be
acceptable over at least one subset. As a local copy of RL
discovers an acceptable rule, it broadcasts the rule to the
other machines to review its statistics over the rest of the
examples. If the rule meets the evaluation criterion
globally, it is posted as a satisfactory rule. Otherwise, its
local statistics are replaced with the global statistics and the
rule is made available to be further specialized. Initially,
the review of acceptable rules has been implemented as an
additional process that examines the entire data set.

Empirical Demonstration
We have been using a rule-learning program to discover

potential indicators of fraudulent cellular telephone calling
behavior. The training data are examples of cellular
telephone calls, each described by 31 attributes, some
numeric, some discrete with hundreds or thousands of
possible values. The data set used for the experiments
reported here comprises over l,OOO,OOO examples. High-
probability indicators are used to generate subscriber
behavior profilers for fraud detection. We chose a set of
parameters that had been used in previous learning work on
the fraud data for monolithic RL as well as for DRL.
The invariant-partitioning property is observed. In
order to examine whether the invariant-partitioning
property is indeed observed (as the above theory predicts),
we examined the rules learned by the multiple processors
in runs of DRL using multiple processes on multiple
workstations (as described below) and compared them to
the rules learned by a monolithic RL using the union of the
DRL processors’ data sets. As expected, the individual
DRL processes learned different rule sets: some did not
find all the rules found by the monolithic RL; some
produced spurious rules that were not validated by the
global review. However, as predicted by the invariant-
partitioning property, the final rule set produced by DRL
was essentially the same as the final rule set produced by
the monolithic RL. The only difference in the rule sets was
that DRL found some extra, globally satisfactory rules not
found by RL. This is due to the fact that RL conducts a
heuristic (beam) search. Because of the distribution of
examples across the subsets of the partition, some
processors found rules that had fallen off the beam in the
monolithic search. Thus, the distributed version actually
learned more satisfactory rules than the monolithic version
in addition to learning substantially faster.
Scaling up. Figure 1 shows the run times of several
different versions of the rule learner as the number of
examples increases: monolithic RL (RL), a semi-serial
version of DRL, and DRL running on four processors plus
a fifth for the rule review. RL’s run time increases linearly
in the number of examples, until the example set no longer
fits in main memory, at which point the learner thrashes,

constantly paging the example set during matching. It is
possible to create a serial version of DRL that operates on
the subsets one after the other on a single machine, in order
to avoid memory-management problems when the example
sets become large. However, because it does not exhibit
true (learning-time) cooperation, there is a significant
overhead involved with the further specialization of locally
acceptable rules that are not globally satisfactory, which is
necessary to guarantee performance equivalent to
monolithic RL. Semi-serial-DRL uses a second processor
for the rule review, thus avoiding much of the
aforementioned overhead. Figure 1 also includes a line
corresponding to five times the run time of DRL (DRL*S)
to illustrate the efficiency of the distribution.

For a fixed number of examples, the run time for each
DRL processor does not change significantly as the number
of processors increases, suggesting that communication
overhead is negligible. For the DRL system used in this
demonstration, thrashing set in at just over 300,000
examples (as expected).

8000

7000

6000

-m- RL

q -semi-

serial

I

DRL

g 4000
‘S

E! 3000

2000

1000

0

-*- DRL”5

- DRL

number of examples

Figure 1. Run time vs. number of examples for the
fraud data. (averages over 3 runs). DRL uses 4

workstations + 1 for rule review.

We are interested in the real-time expense of using such
systems, so these are real-time results, generated on a
university laboratory network of DECstation 5000’s with
32M of main memory. Since the major non-linearity
hinges on the amount of main memory, we also
experimented with dedicated Spare 1 O’s with 64M of main
memory. For RL’s run time, the shape of the graph is the
same. Runs with 100,000 examples per processor take
approximately 20 minutes on the Spare 1 OS; thrashing sets
in just under 300,000 examples. This implies that with 5

76 Agents

machines available, DRL can process a million examples
while you go get lunch.

The semi-serial version of DRL provides a practical
method for dealing with very large example sets even when
many processors are not available. The invariant-
partitioning property allows it to make the same
performance guarantees as DRL; the partitioning makes it
very efficient by avoiding the scaling problems associated
with memory management.

Further cooperation
The study described above uses a simple form of
cooperation to provide a guarantee of an output equivalent
to that of a monolithic learner operating with the entire data
set. In this section we discuss three further ways in which
cooperation can be used to benefit a set of distributed rule
learners. Specifically, we discuss sharing learned
knowledge for (i) maximizing an accuracy estimate, (ii)
pruning portions of the rule space that are guaranteed not to
contain satisfactory rules, and (iii) pruning portions of the
rule space heuristically.

The invariant-partitioning property is based on learning
rules whose evaluation function is greater than a threshold.
Some existing rule learners search for rules that maximize
the positive predictive value (Weiss, et al., 1990) or the
Laplace estimate (Webb, 1995; Segal & Etzioni, 1994).
DRL can approximate the maximization process by starting
with a high threshold and iteratively decreasing the
threshold if no rules are found. However, a system of
distributed learners can take advantage of cooperation to
maximize the rule evaluation function directly.
Specifically, each learner keeps track of the score of the
globally best rule so far (initially zero). When a learner
finds a rule whose local evaluation exceeds the threshold
defined by the global best, it sends the rule out for global
review. The invariant-partitioning property guarantees that
the rule with the maximum global evaluation will exceed
the global best-so-far on some processor. Initially there will
be a flurry of communication, until a rule is found with a
large global evaluation. Communication will then occur
only if a learner finds a rule that exceeds this threshold.

Another benefit of cooperation is that one learner can
reduce its search based on knowledge learned by another
learner. A thorough treatment of pruning for rule-learning
search is beyond the scope of this paper, but Webb (1995)
discusses how massive portions of the search space can be
pruned in the admissible search for the rule that maximizes
the Laplace accuracy estimate. In a distributed setting, if a
learner discovers that a portion of the space is guaranteed
not to contain satisfactory rules, it can share this knowledge
with the other learners. Consider a simple, intuitive
example: we are not interested in rules whose coverage is
below a certain level. When a learner finds a rule whose
coverage is below threshold, it sends the rule out for
review. If the review verifies that the rule is indeed below
threshold globally, then the learner shares the rule with the
group. It is guaranteed that every specialization of this rule
will also be below threshold, so the portion of the rule

space below this rule can be pruned. Webb shows how the
search space can be rearranged dynamically to maximize
the effect of pruning.

Cooperation can also be used to reduce search
heuristically. Rule-learning programs are used primarily
for two types of learning: (i) discovery of rules that
individually are interesting to domain experts, e.g., i n the
fraud domain, and (ii) learning a disjunctive set of rules
that are used to build a classifier, e.g., a decision list (Clark
& Niblett, 1989). Often the basis for building classifiers is
the common “covering” heuristic: iteratively learn rules
that cover at least one example not covered by the current
rule set (Michalski, et al., 1986; Clark & Niblett, 1989;
Segal & Etzioni, 1994). Distributed learning systems can
get much leverage from cooperation based on the covering
heuristic. Specifically, as individual learners find good
rules they can share them with the group. Allowing
different learners to search the space in different orders will
increase the effect of the cooperation. Consider the
following extreme example: a large search space contains
10 rules that together cover the example set, and there are
10 distributed learners each of which starts its search with a
different one of these rules. In this case, after each learner
searches I rule (plus the subsequent review and sharing),
the learning is complete. We hypothesize that such
cooperation can lead to super-linear speedups over a
monolithic learner (cF, work on superlinear speedups for
constraint satisfaction problems (Kornfeld, 1982;
Clearwater, et al., 199 1)).

IOOOy
- DRL

- DRL
800 /SC

700 -*- DRL

$ 600

- I
E" 500

'S

5 400

300

200

100

0

0 20000 40000 60000

number of examples

Figure 2. The effect of the covering heuristic on
using 2 workstations 1 for rule review. /SC de
simple covering. /cc notes cooperative covering.

Multiagent Learning 77

Figure 2 shows the effects of the covering heuristic on Unfortunately, pinpointing a small set of relevant domain
the run time of DRL (averages over 3 runs). Let us knowledge begs the very question of machine learning.
distinguish between simple covering (/SC), using the
covering heuristic within a run of RL to cover an example
(sub)set, and cooperative covering (/cc), sharing learned
rules to cover the example set by the ensemble of learners.
As shown in the figure, for these runs simple covering
provided approximately a factor of two speedup over DRL
without covering. Cooperative covering provided another
factor of two speedup, on the average.

Related Work: Scaling Up Machine Learning
There are several approaches one might take to apply
symbolic machine learning to very large problems. A
straightforward, albeit limited, strategy for scaling up is to
use a fast, simple method. Holte (1993) showed that
degenerate decision trees, decision stumps, performed well
for many commonly used databases. While the algorithm
for learning decision stumps is fast, the method prohibits
the learning of complex concepts.

A second strategy is to optimize a learning program’s
search and representation as much as possible, which may
involve the identification of constraints that can be
exploited to reduce algorithm complexity, or the use of
more efficient data structures (Segal and Etzioni, 1994;
Webb, 1995). These techniques are complementary to the
scaling obtained by distributed processing.

The most common method for coping with the
infeasibility of learning from very large data sets is to
select a smaller sample from the initial data set. Catlett
(1991 b) studied a variety of strategies for sampling from a
large data set. Despite the advantages of certain sampling
strategies, Catlett concluded that they are not a solution to
the problem of scaling up to very large data sets. Fayyad,
et al. (1993), use sampling techniques, inter alia, to reduce
a huge data set (over 3 terabytes of raw data). One method
they use is to partition the data set, learn rules from
subsamples, and use a covering algorithm to combine the
rules. This method is similar to incremental batch learning
and coarse-grained parallel methods (both described
below). Catlett (1991 b; 1992) also found that by looking at
subsets when searching for good split values for numeric
attributes, the run time of decision-tree learners can be
reduced, without a corresponding loss in accuracy.

Incremental batch learning (Clearwater, et al., 1989;
Provost & Buchanan, 1995), a cross between sampling and
incremental learning, processes subsamples of examples in
sequence to learn from large training sets. Such an
approach is effective for scaling up because even for
learners that scale up linearly in the number of examples, if
the example set does not fit in main memory, memory-
management thrashing can render the learner useless. Such
methods can take advantage of the invariant-partitioning
property and the covering heuristic to approximate the
effects of cooperation, as in a serial version of DRL.

Gaines (1989) analyzed the extent that prior knowledge
reduces the amount of data needed for effective learning.

Aronis and Provost (1994) use parallelism to enable the use
of massive networks of domain knowledge to aid in
constructing new terms for inductive learning.

Finally, three approaches to decomposition and
parallelization can be identified. First, in rule-space
parallelization, the search of the rule space is decomposed
such that different processors search different portions of
the rule space in parallel (Cook and Holder, 1990).
However, this type of parallelization does not address the
problem of scaling up to very large data sets.

The second parallelization approach, taken by Lathrop,
et al. (1990), and by Provost and Aronis (1996), utilizes
parallel matching, in which the example set is distributed
to the processors of a massively parallel machine. Provost
and Aronis show that the parallel-matching approach can
scale a rule-learner up to millions of training data. Our
work differs from the massively parallel approaches in that
our goal is to take advantage of existing (and often under-
utilized) networked workstations, rather than expensive
parallel machines.

Finally, our work is best categorized by the third
approach to parallel learning, the coarse-grained approach,
in which the data are divided among a set of powerful
processors. Each processor (in parallel) learns a concept
description from its set of examples, and the concept
descriptions are combined. Brazdil and Torgo (1990) take
an approach similar to a distributed version of the approach
of Fayyad, et al., (described above), in which a covering
algorithm is used to combine rules learned from the
subsets, but they do not experiment with very large data
sets. Chan and Stolfo (1993) also take a coarse-grained
approach and allow different learning programs to run on
different processors. Not unexpectedly, as with sampling,
such techniques may degrade classification accuracy
compared to learning with the entire data set. This
degradation has been addressed by learning to combine
evidence from the several learned concept descriptions
(Chan & Stolfo, 1994). Our method differs from other
coarse-grained parallel learners (and from incremental
batch learning, and the method of Fayyad, et al.), because it
utilizes cooperation between the distributed learners.
Cooperation allows guarantees to be made about
performance of learned rules relative to the entire data set,
and can yield substantial speedups due to sharing of
learned knowledge.

Conclusion
We demonstrate a powerful yet practical approach to the
use of parallel processing for addressing the problem of
machine learning on very large data sets. DRL does not
require the use of expensive, highly specialized, massively
parallel hardware. Rather, it takes advantage of more
readily available, conventional hardware making it more
broadly applicable. Furthermore, DRL provides a
performance guarantee.

78 Agents

Preliminary results indicate that we can scale up by
another order of magnitude by further optimizing the
search of the underlying learning system. For the fraud
data, a prototype system that uses spreading activation
instead of matching as the basic learning operation learns
from 100,000 examples plus hierarchical background
knowledge in under 5 minutes and l,OOO,OOO examples in
five hours (Aronis & Provost, 1996). This suggests that the
DRL system (as configured above) using spreading
activation instead of matching will learn from l,OOO,OOO
examples in about an hour.

Acknowledgements
John Aronis has been involved in many stimulating
discussions on scaling up machine learning. The NYNEX
S & T Machine Learning Project and the University of
Pittsburgh Dept. of Medical Informatics provided support.

eferences
Aronis, J. M., & Provost, F. J. (1994). Efficiently
Constructing Relational Features from Background
Knowledge for Inductive Machine Learning. In
Proceedings of the AAAI-94 Workshop on KDD.
Aronis, J. & Provost, F. (1996). Using Spreading
Activation for Increased Efficiency in Inductive Learning.
Intelligent Systems Lab, Univ of Pittsburgh, Tech Report
ISL-96-7.
Brazdil, P. & Torgo, L. (1990). Knowledge Acquisition via
Knowledge Integration. In Wielinga (ed.), Current Trends
in Knowledge Acquisition, 90- 104. Amsterdam: 10s Press.
Buchanan, B., & Mitchell, T. (1978). Model-directed
Learning of Production Rules. In Waterman 8z Hayes-Roth
(ed.), Pattern Directed Znference Systems. Academic Press.
Catlett, J. (1991a). Megainduction: a Test Flight. In
Proceedings of the Eighth International Workshop on
Machine Learning, p. 596-599. Morgan Kaufmann.
Catlett, J. (1991 b). Megainduction: machine learning on
very large databases. Ph.D. Thesis, University of
Technology, Sydney.
Catlett, J. (1992). Peepholing: choosing attributes
efficiently for megainduction. In Proceedings of the Ninth
Int. Con. on Machine Learning, 49-54. Morgan Kaufmann.
Chan, P., & Stolfo, S. (1993). Toward Parallel and
Distributed Learning by Meta-Learning. In Proceedings of
the AAAI-93 Workshop on KDD.
Chan, P., & Stolfo, S. (1994). Toward Scalable and Parallel
Inductive Learning: A Case Study in Splice Junction
Prediction. In the working notes of the ML-94 Workshop
on Machine Learning and Molecular Biology.
Clark, P., & Boswell, R. (1991). Rule Induction with CN2:
Some recent improvements. In Proceedings of the Fifth
European Working Session on Learning, p. 15 l-163.
Clark, P., & Niblett, T. (1989). The CN2 Induction
Algorithm. Machine Learning, 3, p. 261-283.

Clearwater, S., Cheng, T., Hirsh, H., & Buchanan, B.
(1989). Incremental batch learning. In Proc. of the 6th Znt.
Wkshp on Machine Learning, 366-370. Morgan Kaufmann.
Clearwater, S., Huberman, B., & Hogg, T. (1991).
Cooperative Solution of Constraint Satisfaction Problems.
Science, 2§4(1991), p. 1181-l 183.
Clearwater, S., & Provost, F. (1990). RL4: A Tool for
Knowledge-Based Induction. In Proc. of the 2nd Znt. IEEE
Con8 on Tools for AI, p. 24-30. IEEE C.S. Press.
Cook, D., & Holder, L. (1990). Accelerated Learning on
the Connection Machine. In Proc. of the 2nd IEEE Symp.
on Parallel and Distributed Processing, p. 448-454.
Fayyad, U., Weir, N., & Djorgovski, S. (1993). SKICAT:
A Machine Learning System for Automated Cataloging of
Large Scale Sky Surveys. In Proc. of the Tenth Int. Conf.
on Machine Learning, p. 112-l 19. Morgan Kaufmann.
Gaines, B. R. (1989). An Ounce of Knowledge is Worth a
Ton of Data. In Proc. of the Sixth Int. Workshop on
Machine Learning, p. 156-159. Morgan Kaufmann.
Holte, R. C. (1993). Very simple classification rules
perform well on most commonly used datasets. Machine
Learning, 11(l), p. 63-90.
Kornfeld, W. A. (1982). Combinatorially Implosive
Algorithms. Comm. of the ACM, 25(lo), p. 734-738.
Lathrop, R. H., Webster, T. A., Smith, T. F., & Winston, P.
H. (1990). ARIEL: A Massively Parallel Symbolic
Learning Assistant for Protein Structure/Function. In AI at
MIT: Expanding Frontiers. Cambridge, MA: MIT Press.
Michalski, R., Mozetic, I., Hong, J., & Lavrac, N. (1986).
The Multi-purpose Incremental Learning System AQ15
and its Testing Application to Three Medical Domains. In
Proceedings of AAAI-86, p. 104 1 - 1045. AAAI-Press.
Provost, F. J., & Aronis, J. (1996). Scaling Up Inductive
Learning with Massive Parallelism. Machine Learning, 23.
Provost, F. J., & Buchanan, B. G. (1995). Inductive Policy:
The Pragmatics of Bias Selection. Machine Learning,
2Q(l/2), p. 35-61.
Provost, F., & Hennessy, D. (1994). Distributed machine
learning: scaling up with coarse-grained parallelism. In
Proceedings of the Second International Conference on
Intelligent Systems for Molecular Biology.
Quinlan, J. (1986). Induction of Decision Trees. Machine
Learning, 1, p. 81-106.
Quinlan, J. (1987). Generating production rules from
decision trees. In Proceedings of IJCAZ-87, p. 304-307.
Morgan Kaufmann.
Quinlan, J. R., & Cameron-Jones, R. M. (1995).
Oversearching and Layered Search in Empirical Learning.
In Proc. of ZJCAZ-9.5, 10 19- 1024. Morgan Kaufmann.
Segal, R., & Etzioni, 0. (1994). Learning Decision Lists
using Homogeneous Rules. In Proceedings of AAAZ-94, p.
619-625. AAAI Press.
Webb, G. I. (1995). OPUS: An Efficient Admissible
Algorithm for Unordered Search. Journal of Artificial
Intelligence Research, 3, p. 43 l-465.
Weiss, S. M., Galen, R. S., & Tadepalli, P. V. (1990).
Maximizing the Predictive Value of Production Rules.
Artificial Intelligence, 45, p. 47-7 I.

Multiagent Learning 79

