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Abstract 
Machine-learning methods are becoming increasingly 
popular for automated data analysis. However, 
standard methods do not scale up to massive scientific 
and business data sets without expensive hardware. 
This paper investigates a practical alternative for 
scaling up: the use of distributed processing to take 
advantage of the often dormant PCs and workstations 
available on local networks. Each workstation runs a 
common rule-learning program on a subset of the 
data. We first show that for commonly used rule- 
evaluation criteria, a simple form of cooperation can 
guarantee that a rule will look good to the set of 
cooperating learners if and only if it would look good 
to a single learner operating with the entire data set. 
We then show how such a system can further 
capitalize on different perspectives by sharing learned 
knowledge for significant reduction in search effort. 
We demonstrate the power of the method by learning 
from a massive data set taken from the domain of 
cellular fraud detection. Finally, we provide an 
overview of other methods for scaling up machine 
learning. 

heterogeneous workstations. We use a standard rule- 
learning algorithm, modified slightly to allow cooperation 
between learners. 

At a high level, our metaphor for distributed learning is 
one of cooperating experts, each of which has a slightly 
different perspective on the concept to be learned. We 
define cooperation as the learning-time sharing of 
information to increase the quality of the learned 
knowledge or to reduce or redirect the search. The learners 
communicate with each other by passing messages. The 
group can take advantage of the communication by asking 
questions or by sharing learned knowledge. 

Introduction 
Machine-learning techniques are prime candidates for 
automated analysis of large business and scientific data 
sets. Large data sets are necessary for higher accuracy 
(Catlett, 1991 b), for learning small disjuncts with 
confidence, and to avoid over-fitting with large feature sets. 
However, the standard tools of the machine-learning 
researcher, such as off-the-shelf learning programs on 
workstation platforms, do not scale up to massive data sets. 
For example, Catlett estimates that ID3 (Quinlan, 1986) 
would take several months to learn from a million records 
in the flight data set from NASA (Catlett, 199 1 a). 

We present a practical method for scaling up to very 
large data sets that can be guaranteed to learn rules 
equivalent to those learned by a monolithic learner, a 
learner operating on the entire data set. In the next section 
we show how to guarantee that every rule that a monolithic 
learner would judge to be satisfactory would appear to be 
satisfactory to at least one of our distributed learners. Next 
we discuss how distributed rule learners can take advantage 
of this property by cooperating to ensure that the ensemble 
learns only rules that are satisfactory over the entire data 
set. We present results demonstrating the distributed 
system’s ability to scale up when learning from a massive 
set of cellular fraud data. Later we show how further 
cooperation can increase the scaling substantially. Finally 
we discuss other approaches to scaling up. 

artitioning and Accuracy Esti 

One solution to this scaling problem is to invest in or to 
gain access to very powerful hardware. Another is to 
design alternative methods that can deal better with 
massive data sets. In this paper, we investigate a third 
solution, namely, to take advantage of existing processing 
power distributed across a local network and often under- 
utilized. In particular, we focus on partitioning the set of 
examples and distributing the subsets across a network of 

If learning algorithms had access to the probability 
distribution over the example space, then a useful 
definition of the quality of a learned rule would be the 
probability that the class indicated by the rule is correct 
when its conditions apply to an example. Unfortunately, 
the probability distribution is not usually available. Thus, 
statistics from the training set typically are used to estimate 
the probability that a rule is correct. The positive 
predictive value discussed by Weiss, et al. (1990), is a 
frequency-based accuracy estimate; the ruIe certainty factor 
used by Quinlan (1987) is a frequency-based accuracy 
estimate adjusted for small samples, and several rule- 
learning programs use the Laplace accuracy estimate 
(Clark & Boswell, 1991; Segal & Etzioni, 1994; Webb, 
1995; Quinlan & Cameron-Jones, 1995). We show that a 
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distributed learner can make performance guarantees with 
respect to each of these rule quality metrics. 

It is useful to begin by defining some terms. A rule, Y, is 
a class description that will either cover or not cover each 
example in a data set, E. Thus, coverage statistics can be 
determined for r and E. Let P and N be the numbers of 
positive and negative examples in E. The number of true 
positives, TP, and the number of false positives, FP, count 
the positive and negative examples covered by r. For a 
subset, Ei, of E , Ti, Ni, TPi, and FP i are defined 
analogously. 

Let us define a rule evaluation criterion to be the 
combination of a rule evaluation function, f(r,E), which 
takes a rule and an example set and produces a scalar 
evaluation score, and a threshold, c. With respect to the 
rule evaluation criterion, a rule, r, is satisfactory over an 
example set, E, iff(r,E) 2 c. Rule evaluation criteria can be 
defined for each of the three rule quality metrics referenced 
above by defining the appropriate rule evaluation function. 
For positive predictive value, f(r,E) = ppv(r,E) = 
Tp/(TP+FP); for the certainty factor used by Quinlan, 
ftc E) = cf(r,E) = (TP-O..5)/(TP+FP); for the Laplace 
accuracy estimate, f(r, E) = le(r,E) = (TP+I)/(TP+FP+k), 
where k is the number of classes in the data. 

Given a set of examples, E, and a partition of E into N 
disjoint subsets, Ei, i = I.. N, the invariant-partitioning 
property (introduced by Provost & Hennessy (1994)) is the 
phenomenon that for some rule evaluation criteria the 
following holds for all partitions of E: if a rule r is 
satisfactory over E, then there exists an i such that r is 
satisfactory over Ei. The implication of the invariant- 
partitioning property is that distributed learning algorithms 
can be designed such that each processor has only a subset 
of the entire set of examples, but every rule that would 
appear satisfactory to a monolithic learner will appear 
satisfactory to at least one distributed learner. It is 
straightforward to show that the invariant-partitioning 
property holds for positive predictive value. 

Unfortunately, it is also straightforward to show that the 
property does not hold for the rule certainty factor used by 
Quinlan or for the Laplace accuracy estimate. However, by 
extending the property to allow weakened criteria on the 
subsets we can provide the same performance guarantees 
for these rule evaluation functions. 

In particular, given a set of examples, E, a partition of E 
into N disjoint subsets, Ei, i=I..N, and a secondary function 
f’(r,E, N), define a rule to be acceptable over an example 
subset, Ei, if f*(r, Ei,N) 2 c, i.e., the rule is satisfactory with 
respect to f’. The extended invariant-partitioning property 
is the phenomenon that for some rule evaluation criteria the 
following holds for all partitions of E: if a rule r is 
satisfactory over E, then there exists an i such that r is 
acceptable over Ei. The usefulness of the extended property 
hinges on the definition off: 

The global performance guarantee with the extended 
property is the same as with the original, namely, every 
rule that is satisfactory to a monolithic learner will be 
acceptable to at least one distributed learner. With the 

original property, a rule was acceptable only if it was 
satisfactory. A weaker definition of acceptability will 
allow more rules to be found by the distributed learners. 
Below we utilize cooperation to ensure that spurious rules 
are eliminated. We now show that for a non-trivial f the 
extended property holds for the Laplace accuracy estimate. 

Define the Laplace estimate criterion as: f(r,E)=le(r,E), 
Define f’(r, E,N) 

F”; UN)/(TP+ FP+WN). 
le’(r,E,N) 

As expectid, le’(r, E, N) G le(r,EI 
which means that the criterion used on the subsets is 
approximately the same as that used on the entire data set. 
In fact, it is easy to verify that for N= I, le’(r, E, N) = le(r, E); 
as N;, 00, le’(r,E,N) *ppv(r,E,N), and for N>I, le’(r,E,N) 
is between le(r, E) and ppv(r, E). 

Assume that for a rule, r: (TP+I)/(TP+FP+k) 2 L, but, 
given a partition of N subsets of E: b/i, (TPi +l/N)/(TPi + 
FPi+WN) < L (i.e., r is not acceptable over any Ei), then: 
I) Vi {TPi + l/N < L * (TPi + FPi + UN)] 
2) aTPi +1/W) < ZL * (TPi+FPi + k/N)) 
3) gTPi +1/N) < L * gTPi+FPi + UN) 
4) TP+ 1 <L. (TP+FP+k) 
5) (TP+l)/(TP+FP+k) < L ==> Contradiction 
Furthermore, it can be shown that le’ is tight; it is the 
strongest function for which the extended invariant- 
partitioning property will hold. By using a similar 
derivation, it is easy to show that the extended property 
applies to the certainty factor used by Quinlan. It also 
applies to the certainty factor normalized for skewed 
distributions. Specifically, f(r, E) = cf-normalized(r, E) = 
(TP-O..5)/(TP+pFP), where p is the ratio of positive 
examples to negative examples in the training set. 

Cooperating istributed Lear 
We have designed and implemented DRL (Distributed 
Rule Learner) taking advantage of the invariant- 
partitioning property. DRL partitions and distributes the 
examples across a network of conventional workstations 
each running an instance of a rule learning program. In 
DRL the learners cooperate based on the communication of 
partial results to each other. The invariant-partitioning 
property guarantees that any rule that is satisfactory on the 
entire data set will be found by one of the sub-learners. 
Simple cooperation assures that only rules that are 
satisfactory on the entire data set will be found. Later we 
will discuss more elaborate cooperation. 

RL 
DRL is based upon RL (Clearwater & Provost, 1990). RL 
performs a general-t - o specific beam search of a 
syntactically defined space of rules, similar to that of other 
MetaDENDRAL-style rule learners (Buchanan & Mitchell, 
1978; Segal & Etzioni, 1994; Webb 1995), for rules that 
satisfy a user-defined rule evaluation criterion. For this 
work, we use cf-normalized (defined above). 

DRL first partitions the training data into N disjoint 
subsets, assigns each subset to a machine, and provides the 
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infrastructure for communication when individual learners 
detect an acceptable rule. When a rule meets the evaluation 
criterion for a subset of the data, it becomes a candidate for 
meeting the evaluation criterion globally; the extended 
invariant-partitioning property guarantees that each rule 
that is satisfactory over the entire data set will be 
acceptable over at least one subset. As a local copy of RL 
discovers an acceptable rule, it broadcasts the rule to the 
other machines to review its statistics over the rest of the 
examples. If the rule meets the evaluation criterion 
globally, it is posted as a satisfactory rule. Otherwise, its 
local statistics are replaced with the global statistics and the 
rule is made available to be further specialized. Initially, 
the review of acceptable rules has been implemented as an 
additional process that examines the entire data set. 

Empirical Demonstration 
We have been using a rule-learning program to discover 

potential indicators of fraudulent cellular telephone calling 
behavior. The training data are examples of cellular 
telephone calls, each described by 31 attributes, some 
numeric, some discrete with hundreds or thousands of 
possible values. The data set used for the experiments 
reported here comprises over l,OOO,OOO examples. High- 
probability indicators are used to generate subscriber 
behavior profilers for fraud detection. We chose a set of 
parameters that had been used in previous learning work on 
the fraud data for monolithic RL as well as for DRL. 
The invariant-partitioning property is observed. In 
order to examine whether the invariant-partitioning 
property is indeed observed (as the above theory predicts), 
we examined the rules learned by the multiple processors 
in runs of DRL using multiple processes on multiple 
workstations (as described below) and compared them to 
the rules learned by a monolithic RL using the union of the 
DRL processors’ data sets. As expected, the individual 
DRL processes learned different rule sets: some did not 
find all the rules found by the monolithic RL; some 
produced spurious rules that were not validated by the 
global review. However, as predicted by the invariant- 
partitioning property, the final rule set produced by DRL 
was essentially the same as the final rule set produced by 
the monolithic RL. The only difference in the rule sets was 
that DRL found some extra, globally satisfactory rules not 
found by RL. This is due to the fact that RL conducts a 
heuristic (beam) search. Because of the distribution of 
examples across the subsets of the partition, some 
processors found rules that had fallen off the beam in the 
monolithic search. Thus, the distributed version actually 
learned more satisfactory rules than the monolithic version 
in addition to learning substantially faster. 
Scaling up. Figure 1 shows the run times of several 
different versions of the rule learner as the number of 
examples increases: monolithic RL (RL), a semi-serial 
version of DRL, and DRL running on four processors plus 
a fifth for the rule review. RL’s run time increases linearly 
in the number of examples, until the example set no longer 
fits in main memory, at which point the learner thrashes, 

constantly paging the example set during matching. It is 
possible to create a serial version of DRL that operates on 
the subsets one after the other on a single machine, in order 
to avoid memory-management problems when the example 
sets become large. However, because it does not exhibit 
true (learning-time) cooperation, there is a significant 
overhead involved with the further specialization of locally 
acceptable rules that are not globally satisfactory, which is 
necessary to guarantee performance equivalent to 
monolithic RL. Semi-serial-DRL uses a second processor 
for the rule review, thus avoiding much of the 
aforementioned overhead. Figure 1 also includes a line 
corresponding to five times the run time of DRL (DRL*S) 
to illustrate the efficiency of the distribution. 

For a fixed number of examples, the run time for each 
DRL processor does not change significantly as the number 
of processors increases, suggesting that communication 
overhead is negligible. For the DRL system used in this 
demonstration, thrashing set in at just over 300,000 
examples (as expected). 
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Figure 1. Run time vs. number of examples for the 
fraud data. (averages over 3 runs). DRL uses 4 

workstations + 1 for rule review. 

We are interested in the real-time expense of using such 
systems, so these are real-time results, generated on a 
university laboratory network of DECstation 5000’s with 
32M of main memory. Since the major non-linearity 
hinges on the amount of main memory, we also 
experimented with dedicated Spare 1 O’s with 64M of main 
memory. For RL’s run time, the shape of the graph is the 
same. Runs with 100,000 examples per processor take 
approximately 20 minutes on the Spare 1 OS; thrashing sets 
in just under 300,000 examples. This implies that with 5 
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machines available, DRL can process a million examples 
while you go get lunch. 

The semi-serial version of DRL provides a practical 
method for dealing with very large example sets even when 
many processors are not available. The invariant- 
partitioning property allows it to make the same 
performance guarantees as DRL; the partitioning makes it 
very efficient by avoiding the scaling problems associated 
with memory management. 

Further cooperation 
The study described above uses a simple form of 
cooperation to provide a guarantee of an output equivalent 
to that of a monolithic learner operating with the entire data 
set. In this section we discuss three further ways in which 
cooperation can be used to benefit a set of distributed rule 
learners. Specifically, we discuss sharing learned 
knowledge for (i) maximizing an accuracy estimate, (ii) 
pruning portions of the rule space that are guaranteed not to 
contain satisfactory rules, and (iii) pruning portions of the 
rule space heuristically. 

The invariant-partitioning property is based on learning 
rules whose evaluation function is greater than a threshold. 
Some existing rule learners search for rules that maximize 
the positive predictive value (Weiss, et al., 1990) or the 
Laplace estimate (Webb, 1995; Segal & Etzioni, 1994). 
DRL can approximate the maximization process by starting 
with a high threshold and iteratively decreasing the 
threshold if no rules are found. However, a system of 
distributed learners can take advantage of cooperation to 
maximize the rule evaluation function directly. 
Specifically, each learner keeps track of the score of the 
globally best rule so far (initially zero). When a learner 
finds a rule whose local evaluation exceeds the threshold 
defined by the global best, it sends the rule out for global 
review. The invariant-partitioning property guarantees that 
the rule with the maximum global evaluation will exceed 
the global best-so-far on some processor. Initially there will 
be a flurry of communication, until a rule is found with a 
large global evaluation. Communication will then occur 
only if a learner finds a rule that exceeds this threshold. 

Another benefit of cooperation is that one learner can 
reduce its search based on knowledge learned by another 
learner. A thorough treatment of pruning for rule-learning 
search is beyond the scope of this paper, but Webb (1995) 
discusses how massive portions of the search space can be 
pruned in the admissible search for the rule that maximizes 
the Laplace accuracy estimate. In a distributed setting, if a 
learner discovers that a portion of the space is guaranteed 
not to contain satisfactory rules, it can share this knowledge 
with the other learners. Consider a simple, intuitive 
example: we are not interested in rules whose coverage is 
below a certain level. When a learner finds a rule whose 
coverage is below threshold, it sends the rule out for 
review. If the review verifies that the rule is indeed below 
threshold globally, then the learner shares the rule with the 
group. It is guaranteed that every specialization of this rule 
will also be below threshold, so the portion of the rule 

space below this rule can be pruned. Webb shows how the 
search space can be rearranged dynamically to maximize 
the effect of pruning. 

Cooperation can also be used to reduce search 
heuristically. Rule-learning programs are used primarily 
for two types of learning: (i) discovery of rules that 
individually are interesting to domain experts, e.g., i n the 
fraud domain, and (ii) learning a disjunctive set of rules 
that are used to build a classifier, e.g., a decision list (Clark 
& Niblett, 1989). Often the basis for building classifiers is 
the common “covering” heuristic: iteratively learn rules 
that cover at least one example not covered by the current 
rule set (Michalski, et al., 1986; Clark & Niblett, 1989; 
Segal & Etzioni, 1994). Distributed learning systems can 
get much leverage from cooperation based on the covering 
heuristic. Specifically, as individual learners find good 
rules they can share them with the group. Allowing 
different learners to search the space in different orders will 
increase the effect of the cooperation. Consider the 
following extreme example: a large search space contains 
10 rules that together cover the example set, and there are 
10 distributed learners each of which starts its search with a 
different one of these rules. In this case, after each learner 
searches I rule (plus the subsequent review and sharing), 
the learning is complete. We hypothesize that such 
cooperation can lead to super-linear speedups over a 
monolithic learner (cF, work on superlinear speedups for 
constraint satisfaction problems (Kornfeld, 1982; 
Clearwater, et al., 199 1)). 
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Figure 2. The effect of the covering heuristic on 
using 2 workstations 1 for rule review. /SC de 
simple covering. /cc notes cooperative covering. 
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Figure 2 shows the effects of the covering heuristic on Unfortunately, pinpointing a small set of relevant domain 
the run time of DRL (averages over 3 runs). Let us knowledge begs the very question of machine learning. 
distinguish between simple covering (/SC), using the 
covering heuristic within a run of RL to cover an example 
(sub)set, and cooperative covering (/cc), sharing learned 
rules to cover the example set by the ensemble of learners. 
As shown in the figure, for these runs simple covering 
provided approximately a factor of two speedup over DRL 
without covering. Cooperative covering provided another 
factor of two speedup, on the average. 

Related Work: Scaling Up Machine Learning 
There are several approaches one might take to apply 
symbolic machine learning to very large problems. A 
straightforward, albeit limited, strategy for scaling up is to 
use a fast, simple method. Holte (1993) showed that 
degenerate decision trees, decision stumps, performed well 
for many commonly used databases. While the algorithm 
for learning decision stumps is fast, the method prohibits 
the learning of complex concepts. 

A second strategy is to optimize a learning program’s 
search and representation as much as possible, which may 
involve the identification of constraints that can be 
exploited to reduce algorithm complexity, or the use of 
more efficient data structures (Segal and Etzioni, 1994; 
Webb, 1995). These techniques are complementary to the 
scaling obtained by distributed processing. 

The most common method for coping with the 
infeasibility of learning from very large data sets is to 
select a smaller sample from the initial data set. Catlett 
(1991 b) studied a variety of strategies for sampling from a 
large data set. Despite the advantages of certain sampling 
strategies, Catlett concluded that they are not a solution to 
the problem of scaling up to very large data sets. Fayyad, 
et al. (1993), use sampling techniques, inter alia, to reduce 
a huge data set (over 3 terabytes of raw data). One method 
they use is to partition the data set, learn rules from 
subsamples, and use a covering algorithm to combine the 
rules. This method is similar to incremental batch learning 
and coarse-grained parallel methods (both described 
below). Catlett (1991 b; 1992) also found that by looking at 
subsets when searching for good split values for numeric 
attributes, the run time of decision-tree learners can be 
reduced, without a corresponding loss in accuracy. 

Incremental batch learning (Clearwater, et al., 1989; 
Provost & Buchanan, 1995), a cross between sampling and 
incremental learning, processes subsamples of examples in 
sequence to learn from large training sets. Such an 
approach is effective for scaling up because even for 
learners that scale up linearly in the number of examples, if 
the example set does not fit in main memory, memory- 
management thrashing can render the learner useless. Such 
methods can take advantage of the invariant-partitioning 
property and the covering heuristic to approximate the 
effects of cooperation, as in a serial version of DRL. 

Gaines (1989) analyzed the extent that prior knowledge 
reduces the amount of data needed for effective learning. 

Aronis and Provost (1994) use parallelism to enable the use 
of massive networks of domain knowledge to aid in 
constructing new terms for inductive learning. 

Finally, three approaches to decomposition and 
parallelization can be identified. First, in rule-space 
parallelization, the search of the rule space is decomposed 
such that different processors search different portions of 
the rule space in parallel (Cook and Holder, 1990). 
However, this type of parallelization does not address the 
problem of scaling up to very large data sets. 

The second parallelization approach, taken by Lathrop, 
et al. (1990), and by Provost and Aronis (1996), utilizes 
parallel matching, in which the example set is distributed 
to the processors of a massively parallel machine. Provost 
and Aronis show that the parallel-matching approach can 
scale a rule-learner up to millions of training data. Our 
work differs from the massively parallel approaches in that 
our goal is to take advantage of existing (and often under- 
utilized) networked workstations, rather than expensive 
parallel machines. 

Finally, our work is best categorized by the third 
approach to parallel learning, the coarse-grained approach, 
in which the data are divided among a set of powerful 
processors. Each processor (in parallel) learns a concept 
description from its set of examples, and the concept 
descriptions are combined. Brazdil and Torgo (1990) take 
an approach similar to a distributed version of the approach 
of Fayyad, et al., (described above), in which a covering 
algorithm is used to combine rules learned from the 
subsets, but they do not experiment with very large data 
sets. Chan and Stolfo (1993) also take a coarse-grained 
approach and allow different learning programs to run on 
different processors. Not unexpectedly, as with sampling, 
such techniques may degrade classification accuracy 
compared to learning with the entire data set. This 
degradation has been addressed by learning to combine 
evidence from the several learned concept descriptions 
(Chan & Stolfo, 1994). Our method differs from other 
coarse-grained parallel learners (and from incremental 
batch learning, and the method of Fayyad, et al.), because it 
utilizes cooperation between the distributed learners. 
Cooperation allows guarantees to be made about 
performance of learned rules relative to the entire data set, 
and can yield substantial speedups due to sharing of 
learned knowledge. 

Conclusion 
We demonstrate a powerful yet practical approach to the 
use of parallel processing for addressing the problem of 
machine learning on very large data sets. DRL does not 
require the use of expensive, highly specialized, massively 
parallel hardware. Rather, it takes advantage of more 
readily available, conventional hardware making it more 
broadly applicable. Furthermore, DRL provides a 
performance guarantee. 
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Preliminary results indicate that we can scale up by 
another order of magnitude by further optimizing the 
search of the underlying learning system. For the fraud 
data, a prototype system that uses spreading activation 
instead of matching as the basic learning operation learns 
from 100,000 examples plus hierarchical background 
knowledge in under 5 minutes and l,OOO,OOO examples in 
five hours (Aronis & Provost, 1996). This suggests that the 
DRL system (as configured above) using spreading 
activation instead of matching will learn from l,OOO,OOO 
examples in about an hour. 
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