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Abstract 

The fesractioncslly-Qcczdrrcate, cooperative (FA/C) dis- 
tributed problem-solving paradigm is one approach for 
organizing distributed problem solving among homo- 
geneous, cooperating agents. A key assumption of 
the FA/C model has been that the agents’ local so- 
lutions can substitute for the raw data in determining 
the global solutions. This is not the case in general, 
however. Does this mean that researchers’ intuitions 
have been wrong and/or that FA/C problem solving is 
not likely to be effective ? We suggest that some do- 
mains have a characteristic that can account for the 
success of exchanging mainly local solutions. We call 
such problems nearly monotonic. This concept is dis- 
cussed in the context of FA/C-based distributed sensor 
interpretation. 

Introduction 
The functionally accurate, cooperative (FA/C) dis- 
tributed problem-solving paradigm (Lesser & Corkill 
1981; Lesser 1991) has been important in cooperative 
distributed problem solving (CDPS) research. Several 
FA/C-based research systems have been built (e.g., 
(Carver, Cvetanovic, & Lesser 1991; Carver & Lesser 
1995a; Lesser & Corkill 1983)). However, until some re- 
cent work of ours (Carver & Lesser 1994; Carver 1995; 
Carver & Lesser 1995b), there had never been any for- 
mal analysis of the conditions that are necessary for an 
FA/C approach to be successful or of the potential per- 
formance of FA/C systems. In this paper we examine 
some of the assumptions behind the FA/C model and 
look at a problem domain characteristic that can make 
the FA/C approach successful. 

The development of the FA/C model was motivated 
by the recognition that in many CDPS domains it is 
impractical/impossible to decompose problems and/or 
transfer data so that individual agents work on inde- 
pendent subproblems. FA/C agents are designed to 
produce tentative, partial solutions based on only local 
information (which may be incomplete, uncertain, or 
inaccurate). They then exchange these results with the 
other agents, exploiting inter-agent constraints among 
the subproblems to resolve uncertainties and inconsis- 
tencies due to the deficiencies in their local information. 
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A critical issue for the FA/C model is whether 
high quality global solutions can be produced with- 
out the need for “excessive” communication among the 
agents (when exchanging and “integrating” local re- 
sults). Most FA/C work has assumed that this is the 
case because it has been assumed that the local partial 
solutions can substitute for the raw data in resolving 
contradictions and uncertainties. Unfortunately, this is 
not true in general. Does this mean that researchers’ 
intuitions have been wrong and/or that FA/C problem 
solving is not likely to be effective? 

In this paper we suggest that some domains have a 
characteristic that justifies the role of local solutions in 
producing global solutions (at least for approximate, 
satisficing problem solving). We call such problems 
nearly monotonic. Basically, while belief and/or solu- 
tion membership may be nonmonotonic with increasing 
evidence, in nearly monotonic problems they become 
nearly monotonic once certain conditions (like fairly 
high belief) are reached. 

This paper discusses the FA/C model and the con- 
cept of nearly monotonic problems in the context of 
distributed sensor interpretation (SI). We concentrate 
on this domain because most FA/C applications have 
been in distributed SI (particularly distributed vehicle 
monitoring), we are engaged in related research on the 
FA/C model for distributed $2, and we have available 
a new analysis tool for SI. SI is also a very complex 
problem and distributed SI plays an important role in 
many situation assessment (decision support) systems. 

The next section briefly describes distributed SI. The 
FA/C Issues section examines the use of local agent 
solutions to determine global solutions in FA/C prob- 
lem solving. What we mean by near monotonicity is 
expanded on in the Nearly Monotonic Problems sec- 
tion. This is followed by a section that examines the 
role near monotonicity can play in developing coordi- 
nation strategies for FA/C-based SI. The Analytic Sup- 
port section provides some support for the existence of 
nearly monotonic SI problems using a framework for 
analyzing SI domains. The paper concludes with a sum- 
mary of our conclusions and future plans. 
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istributed Sensor Interpretation 
By sensor interpretation, we mean the determination 
of high-level, conceptual explanations of sensor and re- 
lated data. For example, vehicle monitoring applica- 
tions involve tracking and identifying vehicles, and pos- 
sibly determining the purpose of individual vehicles and 
patterns of vehicles. The model of SI that we assume 
is essentially that described in (Carver & Lesser 1991; 
Carver & Lesser 1994). An interpretation of a data 
set is an explanation of what caused all of the data. 
Typically it will be a composite of a set of hypotheses 
whose types are from a specified subset of the abstrac- 
tion types (the explanation corpus (Pearl 1988)), each 
of which explains some subset of the data, and which 
together explain all of the data. In general, there will 
be multiple possible interpretations of a data set. 

A solution to an SI problem is an interpretation of the 
available data that is judged “best” according to some 
criteria. One possible definition of best is the most prob- 
able explanation (MPE) (Pearl 1988) given the available 
data. The problem with this definition is that for many 
SI problems it is impractical to compute the MPE or 
exact belief ratings (conditional probabilities). (Carver 
& Lesser 1994) contains an explanation of this issue.’ 
We will simply assume here that even centralized SI 
systems usually must use approximate, satisficing ap- 
proaches to construct solutions (so solutions are only 
approximations of the MPE).2 

In a centralized SI system, all of the data is available 
to the single agent. In a distributed SI system, typi- 
cally each agent has (direct) access to data from only 
a subset of the sensors and each sensor is associated 
with a single agent. As a result, each agent monitors 
only a portion of the overall “area of interest,” so agents 
must somehow combine their data in order to construct 
a global solution. 

FA/C Issues 
As we have said, a critical issue for the FA/C ap- 
proach is whether high quality global solutions can be 
produced without the need for “excessive” communi- 
cation among the agents. 3 Because FA/C agents work 
on possibly interdependent local solutions, they must 
exchange and integrate these solutions to construct a 
global solution. 4 Integrating local solutions may not be 
straightforward, however, because these solutions may 

’ (Pearl 1988) contains a discussion of some of the limita- 
tions of using the MPE even when it can be computed. For 
example, there may be very different utilities for identifying 
(or failing to identify) enemy vs. friendly aircraft. 

2While it is nearly always necessary to trade-off solution 
quality for efficiency in SI problems, approximation can be 
done in a variety of ways-see (Bar-Shalom & Fortmann 
1988; Carver & Lesser 1995b, Cox & Leonard 1994). 

3Precisely what constitutes excessive communication will 
depend on the reasons for taking a distributed approach to 
problem solving. 

4FA/C agents mus t have some mechanism to iden- 
tify interdependencies among their solutions/hypotheses. 

be incomplete and/or highly uncertain, and because so- 
lutions from different agents may be inconsistent (since 
they are based on different incomplete data subsets). 
Conditions under which possibly interdependent local 
solutions can be efficiently integrated is the main issue 
to be addressed in this paper. 

The FA/C model can impose substantial delays over 
a centralized model if the determination of a global so- 
lution requires some agent(s) to have access to d/most 
of the globally available raw data. This would happen, 
for instance, if interrelated local solutions could be in- 
tegrated only with access to their supporting raw data 
and nearly all solutions were interrelated. Delays would 
result because FA/C agents obtain data from external 
sensors by communicating with the agents responsible 
for those sensors as it becomes clear that the data is 
needed (they either explicitly request data from other 
agents or wait for the other agents to decide that the 
data needs to be sent). 

Thus, effective FA/C-based SI requires that agents 
need access to limited amounts of raw data from ex- 
ternal sensors. There are two basic ways in which this 
requirement may be met: (1) only a small subset of 
each agent’s subproblems interact with those of other 
agents (agents’ subproblems are largely independent of 
those in other agents) or (2) local solutions can be inte- 
grated with limited need for their supporting raw data. 
We focus on the second approach in this paper. 

Subproblem independence is problematic for SI, since 
in many domains there is no way to determine a pri- 
ori whether two pieces of data are interrelated and, in 
fact, virtually any two pieces of data may have a non- 
zero relationship. 5 For example, in a situation analysis 
application for tactical air command, targets hundreds 
of miles apart may be interrelated since they might 
be acting in concert as part of some scenario/pattern. 
This means that even widely separated pieces of sensor 
data are potentially interrelated. Furthermore, even 
where subproblem interactions are consistently limited, 
it must be possible to determine what data is relevant 
to which other agents, and this must be able to be done 
in a timely manner, without excessive communication. 

We are interested in understanding whether or when 
local solutions can substitute for the raw data in deter- 
mining the global solutions (where there are inter-agent 
subproblem interrelationships). If agents can transmit 
mainly solution-level hypotheses rather than raw data, 
then communication can be greatly reduced. Interpre- 

(Carver, Cvetanovic, & Lesser 1991; Carver & Lesser 199510) 
describes how it is possible to identify interdependencies 
with SI applications. Agent solutions are interdependent 
whenever data (evidence) for a hypothesis is spread among 
multiple agents or when agent “interest areas” overlap as a 
result of overlapping sensor coverage. 

5 When we spe ak about data being interrelated and about 
the “strength” of this relationship, we mean evidential re- 
lationships: the presence, absence, characteristics, or inter- 
pretations of data can affect the belief in the possible inter- 
pretations of other data. 
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tation hypotheses are abstractions of the sensor data 
and can generally be represented using a fraction of 
the storage that would be required for their support- 
ing data. Communication of solution hypotheses should 
also require receiving agents to do less processing (in- 
terpretation/probabilistic inference) than would be re- 
quired with ‘raw data. In addition’the number of pos- 
sible interpretations of a data set can be very large, fo- 
cusing on the agents’ local solutions can greatly reduce 
communications. 

The developers of the FA/C paradigm certainly be- 
lieved that local solutions (and other abstract hypothe- 
ses, or “results”) could substitute for the raw data in 
determining global solutions. (Lesser & Corkill 1981) 
refered to “consistency checking” of the tentative local 
solutions with results received from other nodes as “an 
important part of the FA/C approach.” When there 
were inter-agent subproblem interactions, agents would 
transmit the& local solutions and check the consistency 
of the related components of these solutions. Consistent 
solution components would be “integrated” using only 
the abstract hypotheses (not the raw data), while in- 
consistencies would trigger additional communication. 
We will refer to this basic procedure for developing a 
global solution ZLS the consistent local solutions strategy. 

This strategy has the potential to reduce communica- 
tions because when local solutions are consistent they 
are integrated wi thout requiring transmission of sup- 
porting raw data. Does 
; - the strategy produce high qual- 
rty global solutions ? To answer this question we must 
first consider what it should mean to integrate local so- 
lutions into a global solution. Assume that there are 
two agents, A1 and AZ, with local data sets D1 and 02, 
respectively. Each agent’s local solution would be the 
“best” interpretation of its own local data set (using 
some common definition of best). Now for the global 
solution, what we would ideally like is the best inter- 
pretation of the joint, global data set (D1 U Dz), using 
the same definition of best interpretation. This is ideal 
because the distributed system would then produce the 
same solutions as an equivalent centralized-system and 
solutions would not vary simply with differences in the 
distribution of the data-among-the group of agents. 

Given this standard for global solutions, what can 
we say about the “consistent local 
Unfortunately, what we can say 

solutions 
is that, 

strategy?” 
in general, 

it provides no guarantees at all about the quality of 
the global solution. Again, consider a situation with 
two agents, and suppose that there are the same two 
alternative interpretations Icr and 1a for each of the 
data sets D1 and Da. It is entirely possible to have 
P(L 1 01) > P(Ib 1 01) and P(L 1 02) > p(Ib 1 h), 
but P(Ia 1 D1, D2) < P(& 1 D1, 02). In other 
words, even though interpretation Ia is the most likely 
(best) solution given each agent’s local data set sep- 
arately, it may not be the globally most likely solu- 
tion even though the local solutions are consistent (here 
identical). Likewise, if P(H I 01) > threshold and 
P(H I 02) > th reshold, it is not necessarily the case 

that P(H 1 Dl, D2) > threshold (where H is an inter- 
pretation hypothesis being selected for membership in 
the approximate solution based on its belief surpassing 
some acceptance threshold). 

These are unavoidable consequences of the nonmono- 
tonicity of domains like SI. The upshot of such observa- 
tions is that integration of even consistent interrelated 
local solutions can require that agents recompute hy- 
pothesis beliefs and redetermine best solutions-just 
as with inconsistent local solutions. In some cases, 
this can require one agent to have complete knowl- 
edge of the other agent’s raw data and evidential infor- 
mation (alternative interpretation hypotheses and their 
interrelationships) .6 

Nearly Monotonic Problems 
We believe that one explanation for the apparent suc- 
cess of FA/C-based SI is that many SI domains have 
a property that makes the “consistent local solutions 
strategy” appropriate and effective. We have termed 
problems with this property nearly monotonic, because 
they nearly behave as if they are monotonic once certain 
conditions have been achieved. For example, while ad- 
ditional evidence can negatively affect the belief in a ve- 
hicle track hypothesis, once a fairly high degree-of-belief 
is attained, it is unlikely that the belief will change sig- 
nificantly and it is unlikely that the hypothesis will not 
be part of the best global solution. Thus, while the 
domain is nonmonotonic in a strict sense, the effects of 
additional evidence are not totally unpredictable: solu- 
tion components with particular attributes (e.g., high 
belief) are unlikely to be affected as additional evidence 
is considered. 

To proceed in examining near monotonicity, the fol- 
lowing notation will be used: 2) is the complete, glob- 
ally available data set; D is some subset of ZJ that 
currently has been processed by an agent; BEL(H) is 
the current belief in hypothesis H given data set D (it 
is P(H 1 D)); BEL*(H) is the “true” belief in hypoth- 
esis H for data set D (it is P(H I Do>); MPE is the 
current MPE solution given data set D ; and MPE* is 
the “true” MPE solution for data set ZJ. 

It is impossible to give a single, precise definition of 
what a nearly monotonic problem is. What we will 
present are several formulas for statistically character- 
izing SI problems, which can be useful in assessing and 
using near monotonicity. The basic approach will be 
to characterize ultimate properties of interpretation hy- 
potheses if/when 2) were processed, given current char- 
acteristics based on partial data/evidence. The ulti- 

6A detailed explanation of the recomputation of belief 
and solution membership for SI is beyond the scope of this 
paper. In belief network terms, think of the integration of 
local solutions in different agents as establishing new evi- 
dential links between the agents’ belief networks and then 
recomputing beliefs by appropriate evidence propagation. 
This may require complete knowledge of another agent’s 
data because recomputation in SI problems cannot in gen- 
eral be done by message passing (Carver & Lesser 1995b). 
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mate hypothesis properties that are of interest are be- 
lief and solution membership. We have considered five 
possible characterizations for near monontonicitv: 
1. a conditional probability density function (condi- 

tional pdf) fB~~*l~(b) that describes the prob- 
ability that the ultimate belief in hypothesis 
H is b given that the current hypothesis be- 
lief is X, defined such that g12 fBEplz(b)db = 
P(pl 5 BEL*(H) 5 p2 I BEL(H) = x, . ..). 
the probability that the ultimate belief in the hypoth- 
esis will be greater than or equal to its current belief, 
P(BEL*(H) 2 BEL(H) I BEL(H) = cc’, . ..). 
the probability that the ultimate belief in the hypoth- 
esis will be greater than or equal to some specified 
level d, P(BEL*(H) > d 1 BEL(H) = 2, . ..). 
the probability that the hypothesis will ultimately be 
in the MPE, P(H E MPE* I BEL(H) = x, . ..). 
the probability that the hypothesis will eventually 
be in the MPE given that it is in the current MPE, 
P(H E MPE* I BEL(H) = x, H E MPE, . ..). 

For each of these characterizations, being nearly 
monotonic would require that once an interpretation 
hypothesis has certain characteristics (based on only 
a portion of the available data) then the probabilities 
will be high enough to make it appropriate to assume 
the hypothesis is in the solution. For example, using 
formula 4, we would like something along the lines of: 
once a vehicle track hypothesis reaches a belief level of 
0.8, the probability that it is in MPE* is greater than 
0.95. This would allow us to use the consistency of such 
a local hypothesis with another agent’s local solution to 
conclude with high confidence that the track is in the 
global solution. 

Which of the above characterizations is most appro- 
priate will depend on: (1) the domain and its character- 
istics; (2) the statistical information that is available; 
and (3) the solution selection strategy. The probabili- 
ties in formulas 2 and 3 can be derived from the pdf of 
formula 1, but are included because detailed knowledge 
such as the pdf may not always be practical to obtain. 
Variations on these formulas can result from the use 
of approximate beliefs and solutions, rather than the 
exact ones used here. 

We are exploring what hypothesis characteristics 
should be conditioning factors in the above formulas. 
Again, this will depend on the particular problem do- 
main, as the predictiveness of different characteristics 
is likely to vary across domains, and systems vary in 
their solution quality requirements. From our experi- 
ence, it appears that for SI problems both hypothesis 
belief and hypothesis type are important factors. An- 
other possibility is the “quantity” of data supporting 
the hypothesis or the fraction of the overall data that 
has been processed. The RESUN SI framework (Carver 
& Lesser 1991) also provides detailed information about 
the reasons for uncertainty in beliefs, and such informa- 
tion may be necessary to identify hypotheses that are 
reliable enough to be assumed for global solutions. 

Solution uality and Coordination 
Nearly monotonic problem domains are of interest for 
CDPS because they can make it possible to produce 
high quality global solutions with low communication 
costs. Near montonicity means that consistency of lo- 
cal solutions can be highly predictive that the merged 
solution would be the best global solution. In this sec- 
tion we will examine the issue of solution quality when 
using the “consistent local solutions strategy.” We will 
also discuss the trade-offs involved in developing FA/C 
coordination strategies to take advantage of near mono- 
tonicity. 

MPE* is one possible standard to use in evaluat- 
ing the quality of a global solution SG produced by an 
FA/C-based SI system. SG could be compared against 
MPE* in terms of P(SG = M PE*), however this is 
often not the most meaningful metric for SI problems. 
First, SG will be tend to be incomplete (SG c MPE*) 
if it is based on incomplete data (a subset of IO), but 
these missing hypotheses are not important in SI appli- 
cations if the data is selected appropriately (i.e., we care 
about targets, but not “noise”). Second, the likelihood 
of individual hypotheses being correct is more useful 
than the likelihood of the complete set of hypotheses 
being correct, because it tends to be the individual hy- 
potheses (e.g., vehicles) which we must decide whether 
to respond to rather than the entire set of solution hy- 
potheses. Because of these factors, in judging solution 
quality we will consider P(H E MPE* I H E SG). 

To produce solution quality results, we first need 
to better define what “consistency” of local solutions 
means and what it means to “integrate” local solutions 
to produce a global solution. Our definition of consis- 
tency of local solutions is an evidential one: solutions 
are consistent if hypotheses that comprise each of the lo- 
cal solutions are pairwise identical, independent, or cor- 
roborative. Two local solutions are inconsistent when 
any of their component hypotheses are contradictory 
(i.e., have a negative evidential relationship). 

Hypotheses can be corroborative in either of two 
ways: when one is evidence for the other (one explains 
the other and the other supports the one), or when they 
are of the same type and can be merged into a single 
consistent hypothesis. Merging typically involves pro- 
ducing a single “more complete” hypothesis from two 
or more “less complete” hypotheses. For instance, two 
partial vehicle track hypotheses may be merged into a 
longer track hypothesis. While the resulting hypothesis 
could always be built from scratch from the combined 
supporting data/evidence of the component hypothe- 
ses, when we refer to the “merging” of hypotheses we 
will assume that this is done from the solution hypothe- 
ses, without reference to their supporting data.7 While 

7The Distributed Vehicle Monitoring Testbed (DVMT) 
(Durfee & Lesser 1987; Lesser & Corkill 1983) had “merge” 
operators that did exactly this. DRESUN (Carver & Lesser 
1995a) allows hypotheses to be “external evidence” for hy- 
potheses of the same type. 
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this is clearly more efficient, in general beliefs for com- 
bination hypotheses cannot be precisely computed in 
this way (i.e., without access to the supporting data). 

The last thing that needs to be done to produce solu- 
tion quality results is to provide a more complete defini- 
tion of what we mean by the “consistent local solutions 
strategy” for developing global solutions:s 
1. 

2. 

3. 

4. 

5. 

6. 

each agent first uses only its own local data to develop 
a (local) solution; 
upon satisfying some solution criteria, an agent com- 
municates its solution’s abstract hypotheses to all 
agents with which it has recognized subproblem in- 
teractions; 
the agent also sends its solution to any agents from 
which it has received solutions that were not included 
in step 2 and it continues to do so as solutions are 
received from any such additional agents; 
the agent now proceeds to integrate its solution, one- 
by-one, with each of the solutions it has received and 
may yet receive prior to termination;. 
processing terminates when all agents have transmit- 
ted their solutions according to steps 2 and 3, and 
have integrated their solution with all received solu- 
tions; 
the global solution is simply the union of all the final, 
integrated agent solutions. 
If two agents’ local solutions are consistent when 

they are exchanged, then the integrated solution will 
be as described above in our discussion of consistency 
and merging: indepen dent hypotheses will be added 
the joint solu tion and corroborative hypotheses will 
linked or merged. If agents’ local solutions are incon- 
sistent when they are exchanged then the agents will 
be forced to engage in further communication (possibly 
involving raw data) to resolve the contradictions and 
determine the “best” joint solution. 

Solution Quality Theorem: To derive some re- 
sults about solution quality, we will make the following 
assumptions: 
o We have available statistical information as in for- 

m ula 4 in the previous section, and this probability 
is well correlated with hypothesis type and belief (so 
no additional conditioning factors are needed) 

o Thus, we have P(H E MPE* I type(H),BEL(H)), 
which we will refer to as PMPE* (H). 

o Agents use the “consistent local solutions strategy” 
described above. 

o Agents compute BEL(H) = P(H I D) for the subset 
D of their own local data that they process before 
transmitting their solutions. 

o In the case of inconsistent local solutions, the agents 

*Our descrip tion of the strategy is intended to be clear ‘This last assumption is included to simplify the theo- 
for the analysis-it is not intended to represent the way one rem, but it can easily be relaxed to allow the agents to select 
would actually implement the strategy. It does not worry a non-MPE joint solution, as long as they do compute proper 
about agents duplicating work when integrating solutions, conditional probabilities. If the assumption is rela.xed, this 
nor how to efficiently produce a final global solution, and results in additional approximations in the global solution. 
so forth. Also, it does not worry about trade-offs in FA/C “The superscrip ts AI and AZ denote which agent’s belief 
problem solving, discussed below. we mean. The superscript Al, AZ denotes the merged result. 

involved compute the MPE joint partial solution 
(based on the data they have jointly processed).g 

Under these conditions, what we can say about the 
quality of the resulting global solution is that QH : 
P(H E MPE* I H E SG) 2 PMpE*(hmaz). h,,, is 
simply H, unless H resulted from the merging of con- 
sistent hypotheses (identical or of the same type). In 
this second case, h,,, is the hypothesis with the maxi- 
mum belief out of all the hypotheses merged to produce 
H (e.g., if H resulted from the combination of hl from 
A1 and h2 from Aa, and BEL(h1) 2 BEL(hz), then 
h ma2 = hl). 

Proof: Under the specified strategy, approximations 
will occur only when agents compute their local solu- 
tions, exchange them, and they are consistent. If they 
are inconsistent then the agents will engage in further 
communication to find the MPE solution to their joint 
data sets. When solutions are consistent, no further 
exchange of information will take place, and the joint 
solution will be the “merge” of the consistent solutions. 
Suppose that agent Al’s solution is 5’1 and agent AZ’s 
solution is S2, and they are consistent. If hypothesis 
H is in 5’1 then either it is (1) independent of every 
hypothesis Hi E S2; (2) identical to some hypothesis 
Hi E S2; or (3) corroborative with one or more hy- 
potheses, say {Hj} C 5’2 (of the same or of different 
types as H). If H is independent of all Hi E 5’2 then 
BELA’sA” = BELA’(H), SO PMPE* (H) is based 
on the local belief BELA1 (H) computed by A1.l’ If 
H is identical with some Hi E 5’2, BELA1 sA2(H) 2 
maximum(BELA1 (H), BELAa(Hi)).Since PMPE* (H) 
will be monotonically nondecreasing with increasing hy- 
pothesis belief, PMPE* (H) following the merge must be 
greater than or equal to its value from either agent’s lo- 
cal data. If H is corroborative with hypotheses in 5’2 
then either (1) it is supporting or explanatory for these 
hypotheses, or (2) it can be merged with a hypothesis 
of the same type. In the first case, BELAlsA2(H) 2 
BELA’(H) by the definition of being corroborative. 
Thus, PMPE* (H) following the merge must be greater 
than or equal to its value from Al’s local data. Now we 
must deal with corroborative hypotheses of the same 
type. Suppose that H is the result of merging hl 
from Al and h2 from Aa. We must have BEL(H) 2 
BEL(hl), BEL(H) > BEL(h2), and so BEL(H) 2 
maximum(BEL(hl), BEL(hz)), by our definition of 
corroborative hypotheses. Thus, we would have 
PMPE* (H) L maximum(PMPEg (h), PMPE= (h)). 

What this theorem tells us is that we can use the 
“consistent local solutions strategy” and potentially get 
a global solution whose components are as likely to be 
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in the MPE global solution as we desire (by select- 
ing appropriate criteria that local solutions must meet 
prior to being exchanged). This is a very useful result 
even though we are not guaranteed to produce the best 
global solution under this strategy, since some type of 
approximation is required for most SI problems. 

Of course, being able to use this strategy to effi- 
ciently achieve a desired likelihood, depends on two 
things being true: (1) agents can produce local solu- 
tions whose hypotheses have high enough belief, and 
(2) local solutions are largely consistent. This suggests 
that effective use of the “consistent local solutions strat- 
egy” requires appropriate structuring of the distributed 
system.’ ’ Usually at least one agent must have suffi- 
cient data to produce a high belief version of each solu- 
tion hypothesis. Agents must also have enough overlap 
in their data coverage that it is unlikely that they will 
produce inconsistent solutions. When these conditions 
are not met, the agents may be forced to communicate 
considerably more information/data among themselves 
in order to produce a global solution of the desired qual- 
ity. 

For FA/C-based SI with limited communication, it 
is clearly advantageous to understand whether the do- 
main is nearly monotonic or not, and if it is to design 
coordination strategies to capitalize on this property. 
Still, the design of a coordination strategy must con- 
sider numerous trade-offs. For instance, to take maxi- 
mum advantage of a problem being nearly monotonic, 
agents should try to produce appropriate (nearly mono- 
tonic) interpretation hypotheses based on their local 
data and only then (or when it is found that this can- 
not be done) exchange them with other agents. The 
problem with this approach is that while it will mini- 
mize the communication of raw data among the agents, 
it may not produce the best performance in terms of 
time to reach a solution. This is because agents may 
not be able to produce nearly monotonic solution hy- 
potheses from their data and their local solutions may 
not be consistent even if they can. Should agents fail to 
produce nearly monotonic solution hypotheses and/or 
produce inconsistent solutions then raw data generally 
will have to be communicated and processed by some 
agents. If the need to do this is discovered only after a 
significant amount of processing time, then production 
of the ultimate solution will be delayed. In this type 
of situation, where agents require “constraint informa- 
tion” from other agents, it is advantageous to receive 
this information as early in processing as possible. 

Analytic Support 
While we have demonstrated that nearly monotonic 
problems have the potential to support efficient FA/C- 

“These basic requirements were noted in (Lesser 1991): 
“some qualitative intuitions on...requirements for the use of 
the FA/C paradigm: local partial solutions are valid suf- 
ficiently often to seed system-wide problem solving with 
enough correct constaints.. . .” 

P.l.l. Start --) Trackld (p = 0.7) 
P.1.2. Start + Trackat (p = 0.3) 
P.2.0. Tracklt -+ Vlt Nit Tracklt+l (p = 1.0) 
P.3.0. Track2t -+ V2i N2t Back2t+l (p = 1.0) 
P.4.1. Vlt --) s2t (p = 0.5) 
P.4.2. Vlt + S3t s5t (p = 0.5) 
P.5.1. v2t + S3t (p = 0.5) 
P.5.2. v2t 3 s2t s4t (p = 0.5) 
P.6.1. Nt + S4t (p = 0.5) 
P.6.2. Nt + S5t (p = 0.3) 
P.6.3. Nt ---) lambda (p = 0.2) 

Figure 1: Simple vehicle tracking IDP grammar. 

based distributed SI, we have not yet shown that real- 
world SI problems are indeed nearly monotonic. This 
could be done by taking data sets, determining the cor- 
rect global solutions in a centralized fashion, and then 
collecting the necessary statistics by selecting random 
subsets of these data sets, interpreting them, and ana- 
lyzing the (partial) solutions relative to the global so- 
lutions. As a first step toward this eventual goal, we 
have instead made use of a recently developed frame- 
work for analyzing SI domains and problem solvers to 
provide some support for the concept of nearly mono- 
tonic problems. 

Complex SI problems can be represented and ana- 
lyzed using the Interpretation Decision Problem (IDP) 
formalism (Whitehair & Lesser 1993; Whitehair 1996). 
In the IDP formalism, the structure of both problem 
domains and problem solvers is represented in terms 
of context free attribute grammars and functions as- 
sociated with the production rules of the grammars. 
The formalism has been used to analyze a variety of 
simulated SI domains and SI problem-solving architec- 
tures. For example, grammars have been constructed 
that represent the SI domains and goal-directed black- 
board architecture used in the Distributed Vehicle Mon- 
itoring Testbed (DVMT) (Durfee & Lesser 1987; Lesser 
& Corkill 1983). 

We will first use a very simple vehicle tracking gram- 
mar to illustrate a nearly monotonic SI domain. In the 
problem domain defined by the grammar rules in Fig- 
ure 1, there are two kinds of vehicles, V 1 and V2. The 
nonterminals Track1 and Track2 correspond to vehicle 
tracks of these two types, respectively. The terminal 
symbols in this grammar, S2, S3, 54, and S5, corre- 
spond to actual sensor data generated by the moving 
vehicles. The nonterminal N represents random noise in 
the environment. The terminal “lambda” that appears 
in rule P.6.3. corresponds to an empty string. The 
subscripts, t+n, correspond to the time in which an 
event occurs. The nonterminals Track1 and Track2 are 
the potential solutions for problem instances generated 
with this grammar. Grammars of this form are referred 
to as Generational IDP Grammars, (IDP,) (Whitehair 
1996). An IDP, generates a specific problem instance 
using the probabilities that are shown in parentheses 
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with each rule. For example, given a nonterminal Vl, 
IDP, will generate an S2 with probability 0.5, or it will 
generate an S3 and S5 with probability 0.5. We re- 
fer to these probabilities as the grammar’s distribution 
function. 

This example grammar is important because it illus- 
trates the relationships that can lead to nearly mono- 
tonic, complex domains. For example, consider a situ- 
ation where the sensor data “S2 S4” is observed. This 
data is ambiguous because it could have been gener- 
ated by either a Track1 or a Track2. A Track1 could 
have generated “S2 S4” by generating a Vl and an N, 
which would have generated an S2 and an S4 respec- 
tively. The probability of a Vl generating an S2 is 0.5 
and the probability of an N generating an S4 is 0.5. A 
Track2 could have generated this data by generating a 
V2, which would have generated “S2 S4” with proba- 
bility 0.5. 

Thus, given the possible interpretations Vl and 
V2 for “S2 S4,” and given that BEL(H) is the 
problem solver’s belief in interpretation hypothe- 
sis H, the values P(U E MPE* 1 BEL(V1)) and 
P(V2 E MPE* 1 BEL(V2)) are approximately equal 
for any values of BEL( V 1) and BEL( V2). This means 
that it is not possible to use the beliefs in Vl and V2 to 
differentiate between a Track1 and a Track2 interpreta- 
tion of “S2 S4.” Thus, the domain is nonmonotonic. 

On the other hand, consider the sequence of vehicle 
(position) hypotheses, “V2t V2t+i V2,+2 V2,+a.” Each 
of these V2 hypotheses would be associated with either 
an “S2 S4” or an S3. If a V2 explains an S3, then the 
probability that the partial results are from a Track2 
is very high (actually it is a certainty). However, if 
a V2 explains an “S2 S4” it is possible that the sen- 
sor data was really generated by “Vl -+ S2” and “N 
4 S4.” However, as the length of the truck (vehicle 
position sequence) “V2t V2,+i V2t+2 V2t+a . . .” in- 
creases, it becomes more and more likely that the MPE 
of the data is a Tracka. l2 In other words, as the length 
of the track increases, P(track E MPE 1 BEL(track)) 
becomes very high. 

This observation is intended to illustrate the follow- 
ing point. In complex, real-world domains, it is often 
the case that certain “equivalence classes” of partial 
results exhibit behavior that is nearly monotonic. In 
the vehicle tracking domain, this occurs for the equiv- 
alence class of partial tracks when the partial tracks 
extend over a significant number of time periods. More 
than likely, this phenomenon holds in other domains as 
well. For example, as the length of an interpreted frag- 
ment of speech increases, it is likely that the associated 

12As the length of the partial track of V2 hypotheses in- 
creases, the probability that it was generated by a Track1 
and noise decreases. If the probability of a single ‘32 S4” 
being generated by a Vl (i.e., by a Trackl) is 0.25 (as in 
the example grammar), then the probability of two “S2 S4” 
events occuring sequentially is 0.25 * 0.25. The probabil- 
ity of three such events occuring sequentially is 0.25 * 0.25 
*0.25. And so forth. 

equivalence class of partial results will exhibit nearly 
monotonic properties. 

As a further demonstration that this phenomena oc- 
curs in complex domains, we used the IDP framework 
to collect statistics for a more complex vehicle track- 
ing problem domain (Whitehair 1996). This grammar 
modeled all of the phenomena that have been studied 
in the DVMT, plus some additional factors. In this do- 
main, we defined three different interpretation types: 
group level (GL), vehicle level (VL), and partial tracks 
of length 4 (PT). We then accumulated statistics us- 
ing the grammar. Problem instances were repeatedly 
generated and their MPE* interpretations determined 
(i.e., the problem was solved). For each such cycle, we 
recorded the credibilities l3 of any instances (hypothe- 
ses) of each of the interpretation types. However, we 
also divided each of the resulting sets into those hy- 
potheses that were subsequently used in MPE* and 
those that were not. 

What we found was that the GL and VL types 
were nonmonotonic with respect to credibility. In 
other words, the credibility in a GL or VL hypoth- 
esis was not a good indicator of whether or not 
the hypothesis was an element of MPE*. The 
distribution of credibiZity( H) was approximately the 
same for all GL and VL hypotheses, regardless of 
whether or not they were actually part of MPE* and 
P(H E MPE* 1 type(H) = vb,crediMity(H) = 0.7) 
was only 0.32. On the other hand, for PT hypothe- 
ses there was a strong correlation between credibility 
and membership in MPE*: if a partial track of length 
4 had a fairly high credibility it was very likely to 
be part of MPE*. For example, P(H E MPE* I 
type(H) = PT, credibility(H) = 0.7) = 0.92, while 
P(H E MPE* I type(H) = PT, credibidity(H) = 0.55) 
= 0.5. Thus, PT hypotheses were nearly monotonic 
(in terms of solution membership) if they achieved a 
reasonable credibility. 

Conclusion 
In this paper, we have shown that while consistency 
checking of local agent solutions has been used in pre- 
vious FA/C-based SI systems, this strategy cannot nec- 
essarily produce high quality global solutions. However, 
we have also shown that in certain domains the strategy 
can be used to efficiently find approximate, satisficing 
solutions. In particular, problems that we call nearly 
monotonic allow for consistency checking of local solu- 
tions to produce reasonable global solutions-when the 
local solutions meet certain criteria. 

This work furthers our understanding of when the 
FA/C model is appropriate for distributed SI and what 
appropriate coordination strategies are. Much remains 
to be done, however. The importance of a problem 

13The IDP analysis tools currently compute a credibility 
rating for each hypothesis. This is not exactly what we have 
termed belief (the conditional probability of the hypothesis). 
Credibility(H) 2 .&EL(H). 
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being nearly monotonic remains an open issue. Near 
monotonicity can support efficient FA/C problem solv- 
ing, but does not alone guarantee efficiency, and FA/C- 
based SI can be efficient even without the property: 
local solutions may frequently be inconsistent or local 
data may provide insufficient belief to make use of the 
property, and in some cases (even inconsistent) local so- 
lutions can be integrated with limited communication 
of raw data-particularly if we need only approximate 
global solutions. The focus of our future research on 
near montonicity will be assessing whether real-world 
SI domains are nearly monotonic and determining how 
important this is for efficient FA/C-based SI. In par- 
ticular, we want to understand what other properties 
might make it possible to detect and resolve inconsis- 
tencies while still limiting the need to communciate raw 
sensor data among agents. 

The concept of nearly monotonic problems should 
be of interest beyond the distributed AI and FA/C 
communities. For example, this characteristic would 
support efficient satisficing problem solving in complex 
centralized SI problems. Here the issue is not limit- 
ing communications among agents, but simply limiting 
the amount of data that is processed to make the prob- 
lem tractable or real-time. Problem solving must be 
approximate and satisficing, and a statistical charac- 
terization of the monotonicity/nonmonotonicity in the 
domain would make it possible to evaluate the reliabil- 
ity of approximate solutions based on incomplete data 
processing. The lesson is that while nonmonotonicity is 
a fact of life in SI and many other domains, it is often 
not completely arbitrary or unpredictable, and models 
of its characteristics might yield important benefits. 
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