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Abstract 

Utility theory offers an elegant and powerful theoret- 
ical framework for design and analysis of autonomous 
adaptive communication networks. Routing of mes- 
sages in such networks presents a real-time instance of 
a multi-criterion optimization problem in a dynamic 
and uncertain environment. In this paper, we incre- 
mentally develop a set of heuristic decision functions 
that can be used to guide messages along a near- 
optimal (e.g., minimum delay) path in a large network. 
We present an analysis of properties of such heuris- 
tics under a set of simplifying assumptions about the 
network topology and load dynamics and identify the 
conditions under which they are guaranteed to route 
messages along an optimal path. The paper concludes 
with a discussion of the relevance of the theoretical re- 
sults presented in the paper to the design of intelligent 
autonomous adaptive communication networks and an 
outline of some directions of future research. 

Introduction 
With the unprecedented growth in size and and com- 
plexity of communication networks, the development 
of intelligent and adaptive approaches to network man- 
agement (including such functions as routing, conges- 
tion control, etc.) have assumed considerable theoreti- 
cal as well as practical significance. Knowledge rep- 
resentation and heuristic techniques (Pearl 1984) of 
artificial intelligence, utility-theoretic methods of de- 
cision theory, as well as techniques of adaptive control 
offer a broad range of powerful tools for the design 
of intelligent, adaptive, and autonomous communica- 
tion networks. This paper develops and analyzes some 
utility-theoretic heuristics for adaptive routing in large 
communication networks. 

Routing (Bertsekas & Gallager 1992) in a communi- 
cation network refers to the task of propagating a mes- 
sage from its source towards its destination. For each 
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message received, the routing algorithm at each node 
must select a neighboring node to which the message is 
to be sent. Such a routing algorithm may be required 
to meet a diverse set of often conflicting performance 
requirements (e.g., average message delay, network uti- 
lization, etc.). This makes routing an instance of a 
multi-criterion optimization problem. 

For a network node to be able to make an opti- 
mal routing decision, as dictated by the relevant per- 
formance criteria, it requires not only up-to-date and 
complete knowledge of the state of the entire network 
but also an accurate prediction of the network dynam- 
ics during propagation of the message through the net- 
work. This, however, is impossible unless the rout- 
ing algorithm is capable of adapting to network state 
changes in almost real time. 

In practice, routing decisions in large communica- 
tion networks are based on imprecise and uncertain 
knowledge of the current network state. This impreci- 
sion is a function of the network dynamics, the mem- 
ory available for storage of network state information 
at each node, the frequency of, and propagation de- 
lay associated with, update of such state information. 
Thus, the routing decisions have to be based on knowl- 
edge of network state over a local neighborhood supple- 
mented by a summary of the network state as viewed 
from a given node. Motivated by these considerations, 
a class of adaptive heuristic routing algorithms have 
been developed over the past few years (Mikler, Wong, 
& Honavar 1994). Experiments demonstrate that such 
algorithms have a number of interesting properties in- 
cluding: automatic load balancing and message delay 
minimization. The work described in this paper is a 
step toward the development of a theoretical frame- 
work for the design and the analysis of such heuristics. 

In what follows, we draw upon concepts of utility 
theory (French 1986) to design and analyze utility- 
theoretic heuristics for routing in large communication 
networks. Various heuristics are designed and their 
properties are precisely analyzed. The paper concludes 
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with a discussion of the relevance and limitations of the 
main results and some directions for further research. 

Utility-Theoretic euristics for Routing 

Routing messages in large communication networks so 
as to optimize some desired set of performance crite- 
ria presents an instance of resource-bounded, multi- 
criteria, real-time, optimization problem. Our pro- 
posed solution to this problem involves the use of 
utility-theoretic heuristics. Utility is a measure that 
quantifies a decision maker9s preference for one action 
over another (relative to some criteria to be maxi- 
mized) (French 1986). When the result of an action 
is uncertain, it is convenient to use the expected util- 
ity of each action to pick actions which maximize the 
expected utility. The heuristic function enables each 
node nj in the network to select a best neighbor in 
its neighborhood to route a message A4 (which it has 
received or generated) towards its destination. 

The utility Ut of node ni (with respect to a des- 
tination nd) is computed by a neighboring node, nj 9 

as nj attempts to route a message A4 that it has re- 
ceived, along a desired (e.g., minimum delay) path, to 
M’s destination, nd. A node nj preference-orders its 
neighbors ni according to their respective utilities. We 
say that the router at nj is indifferent to the choice be- 
tween two neighbors nk and say n1 if U,d = Uf (where 
nd is the destination of the message A4 being routed 
by nj). We denote the indifference between two nodes 
as nk - nl. We say that a neighboring node nk is pre- 
ferred (by the router at nj) over another neighbor nl 
if u,d > uld. We denote this preference by nk + nl. 

For the purpose of the analysis that follows, it is 
assumed that the network is a regular rectangular 
grid (with adjacent nodes being unit distance of each 
other). Additional assumptions concerning load and 
load dynamics are made as necessary. A suitably de- 
fined reward function provides the directional guidance 
necessary to route each message towards its destina- 
tion. 

In the regular grid network, let Di,d denote the Man- 
hattan distance between a node ni and nd. Other 
topologies may require the use of other distance mea- 
sures. We define the partial reward for node ni as 
f$ = ff@i,d), h f w ere R is a reward function chosen 
such that v’ivj D;,d 5 Dj,d e fR(Dj,d) < fR(Di,d). 

There are many possible choices for the reward func- 
tion f~(.) A particular example of fR( .) is given by 
fR(Di,d) = (m + n) - $$$, where n and m are the 
dimensions of the grid network. Note that the results 
that follow are independent of any particular choice 
of fR( .) so long as the reward increases as a message 
approaches its destination. 

We define a cumulative reward RP obtained by a 
message M traveling along a path P (from its source 
n8 to its destination nd) as RP = zn,EP Rf 

At each node ni along its path P, the delay encoun- 
tered by a message M is modeled by a non-negative, 
bounded cost Ci. That is, Vi 0 _< Ca 5 <. It is further 
assumed that the penalty Ci remains constant during 
the time it takes to make a routing decision for message 
A4 at node ni. If cumulative delay is to be minimized, 
a natural interpretation of C’i is the delay (on account 
of load) at ni. However, since delays can become un- 
bounded when there is queueing, it may be necessary 
to discard some messages in order to keep the delay 
bounded at the expense of message loss. If cumula- 
tive load is to be minimized, Ci is guaranteed to be 
bounded by the maximum utilization p 5 1. 

The total cost incurred by a message along a path 
P is given by Cp = C, ,eP C; . We can now define the 
net partial pay08 ZSd received by a message M when 
it reaches the node ni on its way to its destination nd 
as .ZZG = Rt - Ci. Correspondingly, the total payoff 
along a path P is given by Zp = RP - Cp. Let II be a 
minimum cost path from a source n, to a destination 
nd. The cost C” along this path is given by C” = 
minvp{CP}. 

In the discussion that follows, in order to simplify 
our analysis, we proceed under the assumption that 
the network is uniformly loaded. This assumption is 
captured by the following definition: 

Definition 1 If Vi, Ci = K (0 5 tc 2 <), we refer to 
the network as a uniform cost network. 

In a uniform cost network, a simple utility function 
U” defined by Uf = Z,d is sufficient to route each mes- 
sage along a minimum cost path to its destination. The 
uniform cost assumption renders the cost component 
in the payoff function irrelevant to the routing deci- 
sion. This is no longer true when the network is not 
a uniform cost network. In what follows, we relax the 
uniform cost assumption by allowing a single hotspot 
(a node with a high load relative to its neighbors) in 
an otherwise uniform cost network. 

Routing in presence of a Single 

Definition 2 A hotspot, nh, in an otherwise uniform 
cost network is a single network node which has a 
higher load than its neighbors so that a message R4 
traveling through it incurs a cost Ch > K (where 
Ci = K Vi # h). 

Note that since the costs Ci are bounded by c, it 
follows that Ch 5 c. Further note that the above 
definition of a hotspot does not say anything about 
the relative difference in costs Ch and Ci. A more 
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realistic definition of a hotspot might insist that the 
cost of routing a message through a hotspot is signif- 
icantly larger than that of routing the same message 
through a node in the neighborhood of the hotspot. 
Also, when a network deviates substantially from the 
uniform cost assumption, it is more useful to focus on 
the load distribution in the vicinity of a node rather 
than hotspots. However, to make the analysis mathe- 
matically tractable, the discussion that follows focuses 
on routing in an otherwise uniform cost networks with 
a single hotspot. 

As the uniform cost assumption is relaxed by allow- 
ing a single hotspot nh with cost Ch > Cj Vj # h in 
the network, it is easy to show that relying on partial 
payoffs alone as utilities for routing messages can result 
in sub-optimal routes. Consider a grid network with 
node coordinates increasing as a message M travels 
east and south. From the uniform cost assumption, we 
have Ci = Cj = K Vi, j # h. Let x~, g8, xd, and yd be 
the x and y coordinates of M’s source and destination, 
respectively. Let xh and ?Jh be the x and y coordinates 
of a hotspot in one of the following configurations: 

1. 2s 5 xh 5 xd A ys 5 Yh 2 Yd 

2. 2s 2 xh > xd A ys 2 yh 2 Yd 

Here, the probability that a shortest path from n, to 
?2d passes through the hotspot nh is non-zero. That 
is, 3 a node ni in the neighborhood of hotspot nh that 
must decide how to route M so as to minimize the total 
cost incurred by M. As we show below, if this decision 
is based on a preference ordering induced by the naive 
utility function 77’ given by Uid = Zt, messages can be 
routed through the hotspot thereby incurring a higher 
cost than they would have otherwise. 

Assumption 1 For the discussion below, we as- 
sume that the reward functions chosen guarantee that 
Vnk Vni in the network such that 1 Rf - Ri I> < when- 
ever Di,d # Dj,d. 

This ensures that the cost Ci of a node ni, (and nh 
in particular) does not offset the guidance provided 
through Rf unless two nodes with equal rewards are 
being compared. 

In the following we distinguish 4 canonical cases (see 
figure 1). We focus in our analysis on configuration 1 
above. Similar arguments hold for configuration 2. 

Case 0 
This case combines 4 scenarios of placing nodes n,, 
nd, and nh in the grid network, each of which presents 
a trivial routing problem. In these scenarios, at least 
two of the nodes n,, nd, and nh are identical. That 
is, 72, = nd = nh, ns = nd, ns = nh # nd, and 

Figure 1: Sample node placement 

ns # nh = nd. Clearly, in the first two scenarios, 
no routing decisions are needed as the message source 
coincides with the destination. Whenever the mes- 
sage source coincides with the hotspot as in the third 
scenario, the routing algorithm will select a neighbor 
nk E Hi with the highest utility. Hence, the routing 
algorithm performs as in the case of a uniform cost 
network (without hotspots). For the fourth scenario, 
Assumption 1 assures that nd yields the highest partial 
reward Rf , Vi, despite the fact that the cost incurred 
by hotspot conditions reduces its partial payoff. Hence, 
routing decisions can be made without taking cost Ci 
into consideration, as in the case of a network without 
hotspots. 

Case 1 
Let PAi,j denote the number of minimum hop paths 
from a node ni to node nj. This case encompasses all 
placements of nodes n,, nh, and nd, such that 

1. P&,h > 1 A P&,d > 1 or 

2. p&h = 1 A P&d 2 1 where P&,d > 1 

Here, the hotspot nh does not share either the x or y 
coordinates of ns or nd. That is, (xs < xh < xd) A 
(Ys < Yh < yd). H ere, the all partial minimum hop 
paths from n, to nh may be part of a minimum cost 
path from n, to nd if all nodes ni that neighbor the 
hotspot take action to route A4 so as to circumvent 
nh. Thus, the utility function U” given by Uid = ZZG is 
guaranteed to route M on a minimum cost path to its 
destination nd. 

Lemma 1 In a uniform cost network with a single 
hotspot nh located such that (xs < xh < xd) A (ys < 
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yh < yd), a routing algorithm which propagates a mes- 
sage M such that U” is maximized at every intermedi- 
ate step will yield an optimal path IYI with cost Crr. 

Case 2 
Here, n,, nd, and nh are placed such that (xs < xh < 
xd) A (YS < Yh = yd) or (xS < xh = xd) A (yS < Yh < 

yd), i.e.; (P&h > 1) A (p&d = 1). 
Assuming the former, there exists a node ni with 

coordinates (xi, yi) with (xs < xi < xh) A (yi = yh = 

yd) from which the number of minimum hop routes 
PAi,d = 1. Since in a uniform cost network nk - nl, 
Vk, I # h the naive utility function e/O can guide a mes- 
sage M through ni, thereby committing to a path P 
with cost Cp > C n. Assuming that M is only routed 
using utilities to choose among minimum hop routes, 
the additional cost (Cp - Cn) is inflicted on M by 
12h. If M is permitted to deflect from a minimum hop 
route, the additional cost (CP - Cn) is inflicted by nh 
itself or due to the extended length of P in circumvent- 
ing nh. 

Case 3 
This scenario consists of all placements of n,, nd, and 
72h such that (xs = xh = xd) A (YS 5 yh 5 yd) Or 

(xs 5 xh < Ed) A (ys = yh = yd). Since there is only 
a single optimal path II from n, to nd, i.e., PA,,-j = 1, 
message M must either visit nh or deflect from the 
minimum hop path in order to circumvent nh. U”, 
however is not sufficiently informative to guarantee an 
optimal routing decision. Hence, M may be routed 
along a path P for which Cp > Cn. 

Assumption 2 In the following we assume that a 
node nj upon receiving a message M from a neighbor 
node ni E Hj will refrain from propagating M back to 
ni . 

This is a natural assumption that is meant to avoid 
the so-called bouncing of messages back to a node from 
which it was routed. 

Lemma 2 In a uniform cost network with a single 
hotspot nh, a routing algorithm based on U” will de- 
flect a message M at most once in order to circumvent 
nh provided bouncing is avoided (via Assumption 2). 

The analysis of the performance of a routing algo- 
rithm based on U” for each of the 4 cases above yields 
the following theorem: 

Theorem 1 In a uniform cost network with a single 
hotspot nh with Ch > K (where Vi # h, Ci = K), a 
routing algorithm which propagates a message M such 
that U” is maximized at every intermediate step is 
guaranteed to yield a path P with cost Cp such that 
cp - cn 5 maX((ch - &),26). 

The proof of this theorem is given in (Mikler, Honavar, 
& Wong 1996). 

Eliminating Suboptimality Using A 
Modified Utility Function 

Zf, is determined solely from local information Sub- 
optimal routing scenarios discussed above arise primar- 
ily as a result of a lack of knowledge at ni at the time 
it is routing a message M to a neighbor nj, regarding 
the likely cost of completing the path from nj to the 
destination of M, namely, nd. As shown in section 2.4, 
source-hotspot-destination configurations correspond- 
ing to scenarios described in Case 2 and Case 3 can 
result in sub-optimal routes (i.e., Cp > C”) when 
routing decisions are based on U”. 

In what follows, we will modify U” to obtain a utility 
function which is guaranteed to eliminate suboptimal 
routing decisions that arise in source-hotspot destina- 
tion placements corresponding to the scenarios in Case 
2 and Case 3. We proceed in two steps: First, we de- 
fine a utility function U1 that eliminates suboptimal 
routing decisions that arise in scenarios corresponding 
to Case 3. We then modify U1 by introducing a cost 
estimator function to obtain a utility function U2 de- 
signed to eliminate suboptimal routing decisions that 
arise in Case 2 scenarios as well. 

Eliminating Sub-Qptimality in Case 3 

Definition 3 Let U1 be a utility function given by: 

lp = 
Rf ifK<Cj<3~A$k(R~=R~) 

Acnj # nd> 
2: otherwise 

U1 exploits the fact that messages are to be routed in 
a uniform cost network with a single hotspot. If rout- 
ing decisions are based on the preference ordering in- 
duced by U1 in an otherwise uniform cost network with 
a single hotspot, every message originating in a source 
n, and a destination nd that correspond to a source- 
hotspot destination placement described in Case 3 is 
guaranteed to be propagated along an optimal path II 
between n, to nd. Using U1, ni can decide whether or 
not to propagate M through a hotspot nh in its neigh- 
borhood or to circumvent the hotspot by routing M 
through a different neighbor nk # nh. In other words, 
the preference ordering induced by U1 ensures that at 
a node neighboring a hotspot in a Case 3 scenario we 
have: 

@ (ch - ck) = (ch - K) > 26 ( nk % nh 

(ch - ck) = (ch - %)<2Kenh>nk. 
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Thus all routing decisions based on U1 in Case 3 sce- 
narios result in optimal (minimum cost) routes. How- 
ever, it is easy to see that U1 does not eliminate the 
possibility of a sub-optimal route in a source-hotspot- 
destination configurations corresponding to the sce- 
nario in Case 2. 

Eliminating Sub-Optimality in Case 2 As shown 
by the preceding analysis, U1 can result in a 
sub-optimal routing decision in a source-hotspot- 
destination configuration corresponding to the scenario 
in Case 2. In particular, any routing decision in a 
configuration corresponding to Case 2 will result in 
a sub-optimal path P if it results in the propaga- 
tion of a message M to a node nk E P such that 
xk < xh < xd A yk = yh = yd or xk = xh = 

xd A Yk < yh < yd- Routing decisions based on a 
preference ordering induced by U1 can lead to such a 
situation since in a neighborhood Hi of ni such that 
nh $i! Hi, v’nj nk E Hi, nk - nj provided Ri = Rf. 
Note that Case 2 scenarios include all placements of n,, 
nh, and nd, such that V {ni 1 xi # xd Ayi # yd} 3 k,l, 
such that (nk E II) V (nl E III). 

These observations suggest the possibility of using 
an estimate of the cost along paths from nk to nd as 
a component of a modified utility function U2 so as 
to induce a preference ordering between nodes (where 
no such preference ordering is induced by U1 ) so as to 

eliminate suboptimal routing decisions altogether. In 
other words, U2 should be able to induce a preference 
ordering among nodes nk and nl in the neighborhood 
of a node ni (the node making the routing decision for 
a message M) such that: (nk E H) A (nr # II) d 
nk + nl. We now proceed to define a cost estimator 
function Ef as follows: 

Definition 4 A cost estimator function I$( .) esti- 
mates the cost Ef of a minimal cost path to a des- 
tination nd from a node nk. 

It would be nice if the cost estimator function de- 
fined above helps U2 to induce the desired preference 
ordering necessary to guarantee routing along an op- 
timal path in the scenario corresponding to Case 2. 
We capture this property by defining what are called 
admissible cost estimator functions. 

Definition 5 A cost estimator function is said to be 
admissible if V nodes ni in the network, for all nodes 
nk, nl in the neighborhood Hi of ni, it is guaranteed 
that (nk E n) A (nl $$ n) * E,d < EfE 

Definition 6 We define a utility function U2 as fol- 
lows: 

ifx, =zd v ys =pd 
Cj - Ef otherwise 

In the discussion that follows, it is assumed that the 
cost estimator function Eg is admissible. 

The estimate returned by E,d(.) must be based, at 
the very least, on some knowledge of the current cost 
distribution in the network. More precise estimates 
would require knowledge of the network dynamics. If 
costs associated with each node are allowed to change 
with time, as would be the case in a more realistic rout- 
ing task, since E,d is computed at the time a message 
M is being considered for propagation through nk, to 
a destination nd, E,d has to reflect changes in network 
load over time. We need to represent at each node, 
the cost distribution over the network in a form that 
is independent of specific destination nodes (because 
the destinations become known only after arrival of 
the respective messages). Any such representation, in 
order to be useful in practice in large networks, must 
not require the storage and update at (or broadcast 
to) each node, of cost values for all the nodes in the 
network regions of the network. Ideally, it must ade- 
quately summarize the load values in large regions of 
the network as viewed from a given node. 

These considerations (among others) led us to de- 
fine a view, vk, which is maintained in every node in 
the network (Mikler, Wong, & Honavar 1994). In a 
rectangular grid network, this view consists of four 
components, one for each of the four directions - 
north, south, east, and west. Thus we have: vk = 
[V,“, v,s, v,E, V,“]. 

Each component Vi : (S E {N, S, E, W}) represents 
a weighted average of costs C; along the minimum hop 
path from nk to the border of the grid network in the 
direction specified by 6. Consider two nodes, ni and 
nks located such that nk E Hi and nk is to the east of 
ni, i.e., xi < xk A yi = yk. Then ViE is given by: 

V.E = ck + ‘kE 
2 2 

KN ,ys, and T/;rw are computed using analogous for- 
mulae. 

In the discussion that follows, we assume that suf- 
ficient time has elapsed for the view computation to 
stabilize following major load changes in the network 
before the view is used in the computation of cost es- 
timates using E,d( .). 

In practice, this assumption need not be satisfied 
exactly so long as the views are adequately precise to 
ensure the admissibility of the cost estimator function 
defined below. Assuming that nd is located such that 
Xs <xd A Ys <Yd- Let 0; =I xi - xd 1 and Dy =I 
Yi - &J I denote the distance from ni to nd in x and y 
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direction, respectively. Ef(.) is given by: 

of 
It is easy to verify that this estimator (which is one 
several alternatives that are possible) is admissible. 

Lemma 3 For all nodes ni in the network, for each 
message M from a source n, to a destination nd that 
reaches a node ni, the routing decision at ni based on 
the preference ordering induced by U2 wild route M 
along a path P selected only from the set of minimum 
hop paths from ni to nd, unless PAi,d = 1 and (nh E 
P) A(nh E Hi). 

The preceding discussion sets the stage for Theo- 
rem 2 (proved in Mikler, Honavar, & Wong 1996) that 
establishes a major property of the utility function 
U2, namely, that it eliminates suboptimal routes in an 
otherwise unformly loaded grid network with a single 
hotspot. 

Theorem 2 In a uniform cost network with a single 
hotspot nh with an associated cost Ch > K: (where vi # 
h,Ci = tc), a routing algorithm which makes routing 
decisions at each node based on a preference ordering 
induced by U2 is guaranteed to propagate 
M along a minimum cost path I-I. 

each message 

Discussion and Summary 
In this paper, we have formulated some simple utility- 
theoretic heuristic decision functions for guiding mes- 
sages along a near-minimum-delay path in a large net- 
work. We have analyzed some of the interesting prop- 
erties of such heuristics under a set of simplifying as- 
sumptions regarding network topology and load dy- 
namics. For a network with a regular grid topology 
and certain assumption about load dynamics we have 
identified the precise conditions under which a simple 
and computationally efficient utility-theoretic heuris- 
tic decision function is guaranteed to route a message 
along a minimum delay path. This analysis was, at 
least in part, motivated by a desire to understand and 
explain the results of a wide range of experiments (Mik- 
ler, Honavar, & Wong, 1994) using heuristics that are 
very similar in spirit to U2 in more precise mathemat- 
ical terms. 

Given the simplifying assumptions used in our anal- 
ysis, it is natural to question the applicability of the 
results when the simpifying assumptions may not hold. 
It is worth pointing out that experiments with heuris- 
tics similar to U2 display automatic loud balancing in 
the network. This suggests that the simplifying as- 
sumption of uniform network load (except at a hot 
spot) is useful at least as a crude first approximation of 

a more realistic scenario. In the presence of hotspots, 
the routing functions compensates for this change by 
redistributing traffic away from the hotspots. This 
suggests that our analytical results are likely to be 
useful to guide the design utility-theoretic heuristics 
for a a more complex network. Work in progress is 
aimed at extending our analysis to a range of increas- 
ingly complex scenarios such as: irregular grids; non- 
uniform load distributions; multiple hotspots or con- 
tiguous hotspot regions. 

The performance of utility-theoretic heuristics, as 
described in this paper, critically depends on the exis- 
tence of an adequately precise estimator of the relevant 
performance measure. It would be useful to analyze 
different estimators and the resulting heuristics - espe- 
cially since the design of good heuristics for complex 
problems is commonly based on solution of simplified 
or relaxed versions of the original problem (Pearl 1984 j 0 
Other interesting research directions include the inves- 
tigation of methods for adaptation or tuning of heuris- 
tics in real-time. For this we may draw upon machine 
learning techniques that modify existing heuristics as a 
function of measured network behavior or as a function 
of information gathered through directed experiments 
initiated by the network during otherwise idle periods. 
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