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Abstract 

In multiagent systems, an agent does not usu- 
ally have complete information about the pref- 
erences and decision making processes of other 
agents. This might prevent the agents from mak- 
ing coordinated choices, purely due to their ig- 
norance of what others want. This paper de- 
scribes the integration of a learning module into 
a communication-intensive negotiating agent ar- 
chitecture. The learning module gives the agents 
the ability to learn about other agents’ prefer- 
ences via past interactions. Over time, the agents 
can incrementally update their models of other 
agents’ preferences and use them to make better 
coordinated decisions. Combining both commu- 
nication and learning, as two complement knowl- 
edge acquisition methods, helps to reduce the 
amount of communication needed on average, 
and is justified in situations where communica- 
tion is computationally costly or simply not de- 
sirable (e.g. to preserve the individual privacy). 

Introduction 
Multiagent systems are networks of loosely-coupled 
computational agents that can interact with one an- 
other in solving problems. In such systems, it is often 
not feasible for any agent to have complete and up-to- 
date knowledge about the state of the entire system. 
Rather, the agents must be able to work together, with- 
out prior knowledge about other agents’ mental (inter- 
nal) states. 

Traditional work in distributed problem solving re- 
lies heavily on the communication between problem 
solving nodes in order to provide the kind of coordina- 
tion necessary in a distributed system (Bond & Gasser 
1988). Research in theories of agency based on the 
formulation of agents’ mental states also uses commu- 
nication as the only method for acquiring knowledge 
about other agents’ mental states (Woodridge & Jen- 
nings 1995). Driven by the costs and problems as- 
sociated with communication, recent work in multia- 
gent learning has suggested learning as an alternative 
knowledge acquisition method. It has been shown that 
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even without communication, agents can learn to co- 
ordinate their tasks in simple multiagent settings (Sen 
& Sekaran 1995),(S en, Sekaran, & Hale 1994). 

Our on-going research goal is to design a generic ar- 
chitecture for negotiating agents. In this domain, the 
importance of learning from previous experiences was 
documented in (Sycara 1989) where case-based reason- 
ing techniques were used to reduce the communication 
overhead in the PERSUADER system. Since nego- 
tiation is a communication-intensive task, rather than 
using learning as a complete replacement for communi- 
cation (Sen & Sekaran 1995), we view both communi- 
cation and learning as two complementary knowledge 
acquisition techniques, each with its own strengths and 
weaknesses. Communication, typically, is more expen- 
sive (in terms of time and resource) than computa- 
tion and can become a bottleneck of the negotiation 
process. However when one asks the right question 
and gets back the correct response, the information 
one gathers is certain. On the other hand, learning 
is performed locally by each individual agent and is 
thus less costly, however, the information acquired is 
mostly uncertain. The contrasting characteristics of 
the two knowledge acquisition methods make a hybrid 
approach an attractive alternative. 

This paper describes how to integrate a learn- 
ing component into a reactive agent architecture in 
which the agents negotiate by refining a joint intention 
gradually until a common consensus is reached (Bui, 
Venkatesh, & Kieronska 1995). Here, we assume that 
the agents are cooperative and sincere. We use a sim- 
ple learning mechanism that allows an agent to make 
predictions about other agents’ preferences by building 
statistical models of others’ preference functions from 
its past interactions with them. The learning mech- 
anism helps to reduce the amount of communication 
needed, and thus improves the overall efficiency of the 
negotiation process. The approach is illustrated with 
an example from the distributed meeting scheduling 
domain. 

The paper is organised as follows: the following sec- 
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tion introduces the negotiation context under which 
our agents interact; next, we describe the learning 
mechanism and how it is integrated into the agent’s 
architecture; finally we show some initial experimental 
results in the distributed meeting scheduling domain 
and provide a preliminary evaluation of the approach. 

The negotiation context 
Definitions 
We use the term negotiation contezt to refer to situ- 
ations where a group of agents with different prefer- 
ences are trying to achieve a common agreement. Due 
to the distributed nature of the problem, the agents, 
at best, possess only partial knowledge about other 
agents’ preferences. Such problems turn out to be 
ubiquitous in Distributed Artificial Intelligence (Bond 
& Gasser 1988). Although a number of negotiation 
protocols (Smith 1980),(Conry, Meyer, & Lesser 1988) 
and agent architectures (Laasri et al. 1992) have 
been proposed, attempts to formalise and construct 
a generic agent architecture have proved to be quite 
complex (Woodridge & Jennings 1994). 

In order to aid the clarity of further discussions, we 
define here a formal notion of a simple negotiation con- 
text N as follows: 

A group of agents A involved in the negotia- 
tion. Subsequently, we will use the capital letters 
A, B, C.. . to denote members of A. 

o A domain V represents the set of all possible agree- 
ments. Let 6 C V be a subset containing some agree- 
ments. We use the notion of intention Int(A, 6) to 
denote agent A “intends to look for the final agree- 
ment” within 6. Similarly, JInt(A, 6) denotes the 
joint intention of all the agents in A to look for the 
final agreement within 6. If Jlnt(A, 5) holds, 6 is 
termed the current agreement set of the agents in A. 

For each agent A E A, a function fA : V + R 
(the set of real numbers) represents the preferences 
of agent A over the set of possible agreements V. For 
6 C V, TA(6) denotes the mean Of fA(d), d E 6. One 

can think of the preference fA (d) as the amount of 
money A would earn if d were accepted as the final 
agreement. The preferences are thus additive, and 
we define the preferences of the group A by the sum 
of its members’ preferences F4(d) = xAEA fA(d) ‘. 

The negotiation process 
Throughout the negotiation process, the agents at- 
tempt to find a common agreement by refining their 

l Since the pr oduct of positive numbers corresponds to 
a sum via a logarithmic transformation, the results of this 
paper still applies when the group’s preferences are defined 
as the product of the (positive) individual’s preferences. 

joint intentions incrementally. At the start of the ne- 
gotiation process, 5 = V. The incremental behaviour 
of the negotiation process is guided by an agreement 
tree defined as a tree structure whose nodes are agree- 
ment sets with the following properties: (1) the root 
node is V9 (2) all the leaf nodes are singleton sets, and 
(3) the set of all children of a node is a partition of 
that node. 

At the k-th iteration of the negotiation process, each 
agent A would attempt to refine the current joint 
agreement set 61, (at level k in the tree structure) to 
some new tentative agreement set S$l+1 C Sk (at level 
k+l). The choice of Sf+l depends on A’s perception of 
the expected utility of those possible agreements within 
the agreement set 6f+1. The choice of refinement be- 
comes the agent’s individual intention and is broadcast 
to other agents in the group. 

If all individual refinement choices agree, the group’s 
refinement choice becomes the new joint agreement set 
of the agents. Otherwise, the differences in the indi- 
vidual refinement choices are resolved through further 
communication between the agents in three steps: (1) 
each agent collects other agents’ preferences of its own 
refinement choice; (2) each agent calculates the group’s 
preference for its refinement choice and uses this pref- 
erence as a new ranking value for its own choice; and 
(3) the agents choose a winner among themselves on 
the basis of maximal ranking value (to assure a clear 
winner, a small random perturbation can be added to 
the ranking value in step 2). Subsequently, the win- 
ner’s refinement choice is adopted by the whole group 
of agents. 

At the end of the k-th iteration, all the agents in 
the group should form a new agreement set &+I c 61, 
or decide that the agreement set 61, is over-constrained 
and backtrack to 6k-1. The iterative negotiation pro- 
cess ends when either an agreement set 6, = (d} at 
the leaf level is reached, or 50 = V is over-constrained 
itself. In the former case, a solution is found whereas 
in the latter case, the negotiation is regarded as failing. 

roblems with incomplete knowledge 

Crucial to the performance of the above negotiation 
protocol is the decision involved in choosing the refine- 
ment of an agreement set. Ideally, the agents should 
choose a refinement &+I for 51, so as to maximise the 
grOUp'S preferenCeS Fd. 

Given that an agent A’s preference value for a refine- 
ment choice 5 is TA(S), th e sum of all group members’ 
preferences for 6 is-@d(b) = x&A ?A(@. In the ideal 
case where every agent uses Fd (6) to select a refine- 
ment, all individual refinements and intentions will be 
the same, hence a new agreement set can be formed 
immediately without further complication. 
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To see why the ideal case might not happen in prac- 
tice, let’s reWrite pd(6) as: 

Unfortunately, the component Fother,A (6) is usually 
not readily available to A since it requires knowledge 
about other agents’ preference functions. In situations 
where other agents are eager to reveal their preference 
functions, A can directly ask other agents about their 
preferences (ask-first selection method). Such an ap- 
proach requires additional communication and may not 
be feasible in circumstances where exposure of individ- 
ual preference is not desirable. 

When asking others is costly, the agents can choose 
the refinement by maximizing only their own prefer- 
ences (don’t-ask selection method). However, this ap- 
proach usually leads to diverging and conflicting indi- 
vidual intentions and requires a lengthy conflict reso- 
lution stage. 

We propose the use of learning as an alternative 
knowledge acquisition method to counter the prob- 
lem of incomplete knowledge. If it is not desirable 
to acquire the knowledge from asking questions di- 
rectly, why not learn to predict what the answers would 
be? Furthermore, in our negotiation context, making 
a false prediction will not result in a catastrophe (the 
worst situation is when extra exchange of messages 
is needed). With a mechanism to make reasonably 
good predictions about other agents’ preferences, we 
are likely to improve the efficiency of the whole nego- 
tiation process. 

Learning other agents’ preferences 
Learning data 
A negotiating agent throughout its lifetime will partic- 
ipate in a potentially large number of different negoti- 
ation contexts. Although each negotiation context has 
a different set of participating members, closely affili- 
ated agents are likely to engage in the same negotiation 
context more often. Furthermore, the domains of these 
negotiation contexts are usually subsets of a common 
domain. For example, in resource allocation, the set 
of resources to be allocated might be different from 
one negotiation to another, however, they are usually 
drawn out of one common set of resources frequently 
shared by the agents. In meeting scheduling, the time 
windows for the meetings to be scheduled are different, 
however, again, they are subsets of one common time 
line. 

We denote this common domain of all negotiation 
contexts by V*. Formally, V* is the union of the do- 
mains of all negotiation contexts: V* = Un/Vti where 
VN denotes the domain of the negotiation context N. 

An agent has the opportunities to acquire sample 
data about others’ preference functions via the number 
of exchanges of preferences taking place in previous 
negotiation contexts. For example, from the agent A’s 
viewpoint, the accumulated samples of f~ are the set 
of values f~ (o!) for some random d’s drawn out of V* . 
This sample data in turn can help the agent in making 
predictions about others’ preferences should they be in 
the same negotiation context in the future. 

earning mechanism 

This subsection describes how an agent can use a sim- 
ple learning mechanism to accumulate samples of other 
agents’ preference functions and make statistically- 
based predictions of their future values. 

To see how the mechanism works, consider a negoti- 
ation context with A = (A, B, C}. Facing the problem 
of choosing a refinement for the current agreement set, 
agent A is trying to guess the values of agents B and 
C’s preference functions fB and fc. 

Like most learning methods, the first stage is feature 
selection. In this stage, the domain V* is partitioned 
into a number of subsets (Ei}, where each subset cor- 
responds to a region in the feature space. The values 
of fB(d) with d chosen randomly from Ei then define a 
random variable XB,E; on the sample space Ei. Given 
a point d E Ei’ the estimation of fB(d) is characterised 
by p(fBtd> = z/d E Ei) which is the probability den- 
sity function of XB,E;. 

If we know that a refinement choice b is a subset 
of Ei, we can proceed to approximate the function 
F &her,A(6) = TB(6)+Fc(6) by a random variable XE;, 
the sum of two random variables XB,E; and XC,E;, 
with the mean y,$ = XB E; + rc,E; and the stan- 
dard deviation o2 ( XE; ) = ~“(XB,E~)+O”(XC,E~). For 
the purpose of predicting Fother,A(fs), agent A can use 
its expected value z,?& with ~(XE,) as the prediction 
expected error 2. 

To minimise the prediction expected error, the par- 
tition (Ei} should be formed so that given an agent 
B, its preference values for the agreements in Ei is 
uniform (e.g. 0(X&) is small). This partition is sim- 
ilar to the organizational structure for storing cases 
in the case-based reasoning approach (Sycara 1989). 
The formation of such a partition largely depends on 
the domain structure and knowledge. In the meeting 
scheduling domain, we choose to partition V* (which 
is the time line) into periodic intervals such as all Mon- 
day mornings, Monday afternoons, Tuesday mornings, 
etc. Since the users tend to have appointments that 

2A further conjecture based on the central limit theo- 
rem is that, when there are many agents participating in 
the negotiation context and when their preferences are sta- 
tistically independent, the probability density function of 
XE; would be approximately gaussian. 
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happen on a regular basis, these periodic intervals can The distributed meeting scheduling 
yield good predictive value. domain 

If A has to choose among two refinement choices S1 
and 62, the agent will use the following steps to decide 
which refinement choice to take: 

We chose the distributed meeting scheduling domain as 
a testbed for the performance of the learning agents. 
In distributed meeting scheduling, the agents are the 
managers of the users’ personal schedules. In a typical 
meeting scheduling situation, given an allowed time- 
window, a group of agents have to decide on a com- 
mon slot within the given time-window as their agreed 
meeting time. Meanwhile, each member of the group 
has different preferences of what the desired slot should 
be and no agent has complete information about other 
agents’ preferences. The problem is further compli- 
cated by the desired property to preserve the privacy 
of the personal schedules. This places an upper bound 
on the amount of information that can be exchanged 
among the group of agents. 

a Identify the sample spaces that Si belongs to. As- 
sume that Si C Ei. 

@ From the samples of fB and fc accumulated from 
A’s previous exchanges of preferences with B and 
C, calculate the average of fB(d) and fc(d) with 
d E Ei. The results give the estimates of XB,E; and 
ZCY,E; respectively. If the distribution of XB,E; (or 
XC,Ei) h g c an es over time, a better estimation can 
be obtained if A only remembers and averages the 
most recent m values of fB (d), (d E Ei) for some 
positive integer m. We have: 

0 Choose 6’ such that FF”(@) is maximum. 

Generally, for an arbitrary number of agents in the 
group, the function used by A in evaluating its refine- 
ment choices Fyt is given by: 

FTt(6) = ?A@) + x %,Es 
Ocd-A 

where EJ 3 6. 
From A’s point of view, FTt is the expected value 

of the group’s preference function Fd. The learning 
mechanism involves incrementally updating the func- 
tion FTt when new data is available. To incorporate 
learning into the neptiation scheme, instead of using 
the usual function f A (6) to evaluate A’s refinement 
choices, the new function FTt is used. Since 3’Ft in- 
cludes the pattern of other agents’ preferences, it can 
facilitate A and other learning agents in making better 
coordinated decisions. 

Benefits of learning 

Evaluation of the hybrid method requires the consid- 
eration of many factors, such as how often the agents 
need to conduct new negotiations and if there are any 
patterns to individual agent’s preferences. In this sec- 
tion, we present preliminary results of applying the 
proposed hybrid method to solve the meeting schedul- 
ing problem. 

A single meeting scheduling scenario involves a set of 
participating agents, a time window (W), the duration 
for the meeting being scheduled (6), and for each agent 
A a set of existing appointments (App~ = (api}) such 
that V’i # j, ami namj = 0. For each appointment app 
we use cost(app) to denote its cancellation cost. The 
continuous timeline is discretised and modelled by the 
set Time = {to + i 1 i = 0, 1,. . .}. Such a meeting 
scheduling scenario constitutes a negotiation context 
in which: 

a~ The set of all agents A are the set 
pating in the meeting scheduling. 

of agents partici- 

e The set of all possible agreements V is derived from 
W and I as 2, = (t E Time 1 [t, t + Z] C_ W}. 

o For each agent A and a possible agreement t E V, 
the preference of A for t is 

fA(t) = c -c0.9t(upp) 
aPP E &PA 

~PPm,t+q #0 

The domain of all negotiation contexts I)* becomes 
the timeline itself V* = Time. For the learning mecha- 
nism, we partition Time into periodic intervals such as 
morning, afiernoon (daily intervals) or monday morn- 
ing, monday afternoon (weekly intervals). We choose 
this partition since the preferences of the agents also 
tend to have daily and weekly periods. 

Preliminary analysis 
Table 1 compares the expected performance of three 

refinement selection methods: don’t- ask: (choose the re- 
finement to maximise own preference), ask-first (query 
other agents’ preferences first before choosing a refine- 
ment), and learning (as described above). We assume 
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Refinement Function Prior-decision messages Post-decision messages 
selection method maximized Querying others Resolving conflict 

Ask-first Fd hl(L)n2 
Don’t-ask fA 0 o(lo!&)n2) 
Learning Expected value of Fd 0 Wos(L)n2> 

Table 1: Comparison between refinement selection methods 

that the agents are using a binary tree as their agree- 
ment tree. The performance of each method is mea- 
sured in terms of the total number of messages ex- 
changed among the set of agents in one negotiation 
context. Here n denotes the number of participating 
agents and L is the number of possible agreements. 
The numbers show that the ask-first selection method 
always incurs a number of messages of (Zog( L)n2) or- 
der of magnitude, which is the expected performance 
of the don’t-ask: and learning selection method in the 
worst case. The trade-off exists, however, since the for- 
mer method always guarantees to find the best optimal 
solution while the latter two do not. 

Further, it is interesting to evaluate the relative per- 
formance of the agents using ddt-ask: selection and 
those augmented with a learning component. Since 
learning agents are more aware of other agents’ pref- 
erence functions, they can be better coordinated in 
selecting a refinement choice even without any prior- 
decision communication. Experiments with these two 
types of selection methods are presented in the next 
subsection. 

Experiments 

Our preliminary set of experiments involve two agents 
implemented in Dynaclips 3.1/Clips 6.0 running under 
SunOS operating system. The agents can run with or 
without the learning module. The aim of the experi- 
ment is to collect initial data confirming the benefits 
of the agents running with the learning module as op- 
posed to those running without learning. 

We model the timeline as a set of discrete points 30 
minutes apart. Each day, and for a period of 20 days, 
the agents have to schedule a meeting with the dura- 
tion of 2 units and within the time-window [8,16.30]. 
The possible agreement set ZJ with its tree structure 
is shown in figure 1. The agents’ preferences are pe- 
riodic, with the period of 1 day. Noise can be added 
to the preference functions and this is interpreted as 
new non-periodic appointments, or the cancellation of 
existing periodic appointments. 

The results of the experiment shown in figure 2 
demonstrate that learning agents perform relatively su- 
perior when compared to the agents running without 
the learning module. The difference in performance, 
however, is reduced as the level of noise is increased. 
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Day 
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I , I 
I Morning 

+‘ 

Afternoon [ 
I 

I I : : 
I I I I 

D = {8,8.30,9,.., 15.30) 

W = [S, 16.301 

I=2 

Figure 1: The domain V and its tree structure 

This agrees with common sense as learning method 
would only show its benefits if the agents’ preferences 
are periodic and can be learned. Also, the more often 
the non-learning agents are in conflict, the relatively 
better are the learning agents. This is because the 
learning mechanism works by learning from previous 
conflicts to prevent the same type of conflict from oc- 
curring in the future. 

iscussion and Conclusions 

In this paper, we have presented a method to incorpo- 
rate a learning component into the negotiating agent 
architecture. This gives the agents the ability to learn 
about other agents’ preferences from the interactions 
during their past negotiations. With the knowledge 
learned, the experienced agents are able to make better 
coordinated decisions in the future negotiations with 
their peers, thus improving the performance of the sys- 
tem over time. This illustrates that learning techniques 
can be used as an alternative knowledge acquisition to 
complement direct querying in negotiation. Although 
not designed to replace direct queries, the ability to 
complement direct queries with learning can be useful 
when communication costs are high, or when high level 
of inter-agent communication is not desirable (e.g. to 
preserve individual privacy). 

Such a technique proves to be quite useful in the 
distributed meeting scheduling domain. In this do- 
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Figure 2: Relative performance of ordinary agents and learning agents 

main, the agents’ preferences tend to be repetitive 
with a fixed period; thus the learning mechanism can 
be simple and yet gives positive results. When there 
are a large number of agents involved, a saving in the 
amount of communication can save useful system re- 
sources required by the schedulers. Furthermore, it 
also preserves the privacy of the individual schedules. 

The work presented here can be extended in a num- 
ber of different directions. Firstly, based on the results 
of our initial experiments, we are planning to carry out 
more experiments to investigate the behaviour of the 
learning agents when there are a large number of agents 
and when the groups of agents are formed dynamically. 
Secondly, to evaluate the benefits of learning to its full 
extent, it is necessary to develop a common framework 
in which the accuracy of learned knowledge and the 
cost of communication can be examined together. 
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