
Incorporating Opponent Models into Adversary Search

David Carmel and Shaul Markovitch

Computer Science Department
Technion, Haifa 32000, Israel

carmel@cs.technion.ac.il shaulm@cs.technion.ac.il

Abstract

This work presents a generalized theoretical frame-
work that allows incorporation of opponent models
into adversary search. We present the M* algorithm,
a generalization of minimax that uses an arbitrary op-
ponent model to simulate the opponent’s search. The
opponent model is a recursive structure consisting of
the opponent’s evaluation function and its model of
the player. We demonstrate experimentally the po-
tential benefit of using an opponent model. Pruning
in M* is impossible in the general case. We prove a
sufficient condition for pruning and present the cup*
algorithm which returns the M* value of a tree while
searching only necessary branches.

Introduction
The minimax algorithm (Shannon 1950) has served as
the basic decision procedure for zero-sum games since
the early days of computer science. The basic assump-
tion behind minimax is that the player has no knowl-
edge about the opponent’s decision procedure. In the
absence of such knowledge, minimax assumes that the
opponent selects an alternative which is the worst from
the player’s point of view.

However, it is quite possible that the player does
have some knowledge about its opponent. Such knowl-
edge may be a result of accumulated experience in
playing against the opponent, or may be supplied by
some external source. How can such knowledge be ex-
ploited? In game theory, the question is known as the
best response problem - looking for an optimal response
to a given opponent model (Gilboa 1988). However,
there is almost no theoretical work on using opponent
models in adversary search. Korf (1989) outlined a
method of utilizing multiple-level models of evaluation
functions. Carmel and Markovitch (1993) developed
an algorithm for utilizing an opponent model defined
by an evaluation function and a depth of search.

Jansen (1990) describes two situations where it is
important to consider the opponent’s strategy. One is a
swindle position, where the player has reason to believe
that the opponent will underestimate a good move, and
will therefore play a poorer move instead. Another

120 Agents

situation is a trap position, where the player expects
the opponent to overestimate and therefore play a bad
move. Another situation, where an opponent model
can be beneficial, is a losing position (Berliner 1977).
When all possible moves lead to a loss, an opponent
model can be used to select a swindle move.

The goal of this research is to develop a theoreti-
cal framework that allows exploitation of an opponent
model. We start by defining an opponent model to
be a recursive structure consisting of a utility func-
tion of the opponent and the player model (held by
the opponent). We then describe two algorithms, M*
and M&xzsJ~ g eneralizations of minimax that can use
an opponent model. Pruning in M* is not possible
in the general case. However, we have developed the
a@+ algorithm that allows pruning given certain con-
straints over the relationship between the player’s and
the model’s strategies.

The Af* algorithm
Let S be the set of possible game states. Let

;
:s4 2’ be the successor function. Let cp :
- S be an opponent model that specifies the

opponent’s selected move for each state. The A4
algorithm takes a position s E S, a depth limit
d, a static evaluation function f : S - %, an
arbitrary opponent model cp, and returns a value.

i

fG9 dg

M(s, 4 f 9 4 = s,y$,(f (4) d=l

max (M(v(s’), d-2, f, v)) d > 1 s’ea(s)

The algorithm selects a move in the following way.
It generates the successors of the current position. It
then applies cp on each of the successors to obtain the
opponent’s response and evaluates each of the resulting
states by applying the algorithm recursively (with re-
duced depth limit). It then selects the successor with
the highest value. The algorithm returns the static
evaluation of the input position when the depth limit
is zero.

Note that A4 returns a value. M can also be defined
to return the state with the maximal value instead of

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

the value itself. To simplify the discussion, from now
on we will assume that M returns either the state or
the value according to the context.

Let M&J, Id) be the regular minimax algorithm that
searches to depth d using an evaluation function fs.
Minimax uses itself with d - 1 and -fs as an opponent
model, therefore it can be defined as a special case of
M:

M&o) 4-f) (4 = WY dYfO7 M&fo),d-1))
Assume that the player uses an evaluation function

fi. A natural candidate to serve as the model ‘p in the
M algorithm is M* with another evaluation function
fe. We call this special case of M the M1 algorithm:

MiPl ,fo),d) (4 = ws’dYflYM&J),d-l))-
The M1 algorithm works by simulating the oppo-

nent’s minimax search (to depth d - 1) to find its se-
lected move and evaluates the selected move by calling
itself recursively (to depth d - 2).

9

(a) (b)

Figure 1: The search trees spanned by calling Ml. Part
(a) shows the two calls to minimax for determining the
opponent’s choice. Part (b) shows the recursive calls to
M1 for evaluating the nodes selected by the opponent.

Figure 1 shows an example of a search to depth 3
performed by the M1 algorithm. Part (a) shows the
two calls to minimax to simulate the opponent’s search.
Note that the opponent is a maximizer. Part (b) of
the figure shows the two recursive calls to Ml applied
to the boards selected by the opponent. Note that
while the opponent’s minimax procedure believes that
in node e the player selects the move leading to node
Ic, the player actually prefers node j.

We can define the M” algorithm, for any n, to be
the M algorithm with cp = Mn-l. Mn can be formally
defined as follows:

Mia(&z,...,fo),d)(s~ = M(s’ fn’ 4 Mig+,fo),61))
Thus, a player using the M1 algorithm assumes that its
opponent uses MO (minimax), a player using the M2
algorithm assumes that its opponent uses Ml, etc. We
will define the M* algorithm that includes every Mn
algorithm as a special case. M* receives as a param-
eter a player which includes information about both
the player’s evaluation function and its model of the
opponent.

Definition 1 A player is a pair defined us follows:
1. Given an evaluation function f, P = (f, NIL) is a

player (with a modeling-level 0).
2. Given an evaluation function f and a player 0 (with

modeling level n - l), P = (f, 0) is a player (with a
modeling level n).

The first element of a player is culled the player’s
strategy and the second element is culled the opponent
model.

Thus, a zero-level modeling player, (fo , NIL), is one
that does not model its opponent. A one-level model-
ing player, (fly (fo, NIL)), is one that has a model of
its opponent, but assumes that its opponent is a zero-
level modeling player. A two-level modeling player,
(f27 (fl, (fo, NW), is one that uses a strategy f2, and
has a model of its opponent, (f 1, (fo, NIL)). The op-
ponent’s model uses a strategy j-1 and has a model,
(fo, NIL), of the player. The recursive definition of
a player is in the spirit of the Recursive Modeling
Method by Gmytrasiewicz, Durfee and Wehe (1991).

M* receives a position, a depth limit, and a player,
and outputs a move selected by the player and its value.
The algorithm generates the successor boards and sim-
ulates the opponent’s search from each of them in order
to anticipate its choice. This simulation is achieved by
applying the algorithm recursively with the opponent
model as the player. The player then evaluates each
of its optional moves by evaluating the outcome of its
opponent’s reaction by applying the algorithm recur-
sively using its own strategy.

f2=8 I2=4 f2=4 f-2=7 f2=-6 fk 1 c?=lO f2=2
fl=-6 fl=6 fl=-8 fl z-7 fl=7 fl=-2 fl=-4 fl=O
Kk4 RI=-8 NklO ffk 3 N)=-4 iI)= 4 II,= 4 In= 6

Figure 2: The set of recursive cJls generated by calling
M*(a, 3, (fz(fl, fo))). Each call is written next to the node
it is called from. The dashed lines show which move is
selected by each call.

Figure 2 shows an example of a search tree spanned
by M*(a, 3, fs(fl, fe)). The numbers at the bottom
are the static values of the leaves. The recursive calls
applied to each node are listed next to the node. The
dashed lines indicate which move is selected by each
recursive call.

The player simulates its opponent’s search from
nodes b and c. The opponent simulates the player by
using its own model of the player from nodes d and e.
At node d the model of the player used by the oppo-
nent (fo) selects node h. The opponent then applies its

Negotiation & Coalition 121

fi function to node h and concludes that node h, and
therefore node d, are worth -6. The opponent then
applies the player’s model (fs) to node e , concludes
that the player select node j, applies its own function
(fi) to node j, and decides that node j, and therefore
node e, are worth -8. Therefore, the opponent model,
when applied to node b, selects the move that leads to
node d. The player then evaluates node d using its own
criterion (fz). It applies M* to node d and concludes
that node d, and therefore node b, are worth 8. Simu-
lation of the opponent from node c yields the selection
of node g. The player then evaluates g according to its
own strategy and finds that it is worth 10 (the value of
node n). Note that when the opponent simulates the
player from node g, it wrongly assumes that the player
selects node o. Therefore, the player selects the move
that leads to c with a value of 10. Note that using a
regular minimax search with f2 would have resulted in
selecting the move that leads to node b with a value of
7. The formal listing of the M* algorithm is shown in
figure 3.

Procedure M’ (pas, d, (fpt, 0))
z,",= 0 then return (NIL,f,l(pos))

max:-value + -co
s + o(pos)
for each s E S

ifd = 1 then pl-v + fpl(s)
else

(op-b, op-v) + M’ (s, d - 1,O)
(pl-b,pl-v) + M’ (OP-b, d - 2, (fpz,

if pl-v > max-value
max-value +- pl-v
max-board - s

return (max-board, max-value)

Figure 3: The M* algorithm

The Mn algorithm calls M” when n reaches 0. How-
ever, note that M* does not contain such a call. This
will work correctly when the modeling level is larger
than the search depth. If the modeling level of the
original player n is smaller than the depth of the search
tree d, we replace the O-level modeling player fo by

d-n

ifo, (-fo, (fo, . . a>‘.

A one-pass version of M*
It is obvious that the M* algorithm performs multiple
expansions of parts of the search tree. We have de-
veloped another version of the M* algorithm, called
M* l-pass) that expands the tree one time only, just
as minimax does. The algorithm expands the search
tree in the same manner as minimax. However, node
values are propagated differently. Whereas minimax
propagates only one value, M* propagates n + 1 val-
ues, (V,, . . . , VO). The value V;: represents the merit
of the current node according to the i-level model, fa.
M* I-pass passes values associated with the player and

values associated with the opponent in a different man-
ner. In a player’s node (a node where it is the player’s
turn to play) ‘, for values associated with the player
(KY K-2,. * -)Y V;: receives the maximal Vi value among
its children. For values associated with the opponent
(K-1, G-3, * * .> , K receives the Vi value of the child
that gave the maximal value to K-1 . For example, the
opponent believes (according to the model) that the
player evaluates nodes by I/n-z. At a player’s node,
the opponent assumes that the player will select the
child with maximal Vn-2 value. Therefore, the value
of the current node for the opponent is the V, - 1 value
of the selected child with the maximal Vn-2 value. At
an opponent’s node, we do the same but the roles of
the opponent and the player are switched.

V[2]= 8
V[l]=-6 d
V[O]= 4

x
f2=8 k-4
fl=-6 fl= 6
m=4 f&-8

f2=4 f2= I
fl=-8 fl=-7
ffkI0 fo=3

Figure 4: The value vectors propagated by M;--pass. This
is the same tree as the one shown in Figure 2.

Figure 4 shows an example for a tree spanned by
M*- . This is the same tree as the one shown in
Fi&Fgsi. Let us look at node e to understand the way
in which the algorithm works. Three players evaluate
node e: the player, the opponent model, and the op-
ponent’s model of the player. The opponent’s model
of the player evaluates all the successors using evalu-
ation function f0 and selects board j with a value of
10. The opponent model knows that it has no effect
on the decision taken at node e, since it is the player’s
turn to move. It therefore assigns node e the value of
j, selected by the player model, using its own evalu-
ation function f 1, (f l(j) = -8). The player actually
prefers node k with the higher f2 value (f2(k) = 7).
Thus, the vector propagated from node e is (7, -8,10).
Note that the values in the vectors correspond to the
results of the recursive calls in figure 2. Figure 5 lists
the MT-pass algorithm.

Properties of n/r*
The following theorem shows that M* and MTepass
return the same value.
Theorem 1 Assume that P is a n-level modeling
player. Let (v, b) = M*(pos, d, P), and let (V[n]) =
MTepass (pos, d, P). Then v = V[n].

‘Traditionally such a node is called a MAX node. How-
ever, we assume that both players are maximizers.

122 Agents

Procedure MTGPass (~08, d, Un, (fn-I, (. . , fo) . .>>I
if d = 0 then return (fn(pos), . . . , fo(pos))
else S +- o(pos)

v + (- cKl,...,---00)
for each s E S

WCC-V + M1+--pass(s,d- l,(fn,(fn-l,...,fo)...))
for each i associated with current player

if succ-V[i] > V[i] then
V[i] + succ-V[i]
if i < n then V[i + l] + succ-V[i + l]

return (V[n], . , V[d])

Figure 5: MT--pass: A version of the M” algorithm that
performs only one pass over the search tree

The proof for all the theorems in this paper can be
found in (Carmel & Markovitch 1996).

It seems as though MTspass is always prefered over
M* because it expands less nodes. MTspass expands
each node in the tree only once, while M* re-expands
many nodes. However, while MTspass performs less
expansions than M*, it may perform more evaluations.
An upper limit on the number of node expansions and
evaluations in M* and MTBpass is given in the following
theorem.
Theorem 2 Assume that M* and Mrepass search a
tree with a uniform branching factor b and depth d.

1. The number of calls to the expansion function by M*
is bounded by (b + l)d-l. The number of calls by
h/i* l-pass is s.

2. The number of calls to evaluation functions by M” is
bounded by (b + l)d. the number of calls by MTepass
is dbd.

The theorem implies that M* and MTWpass each has
an advantage. If it is more important to reduce the
number of node expansions than the number of evalu-
ation function calls then one should use MT-

P
ass. Oth-

erwise, M* should be used. For example, or d = 10
and b = 30 and a one-level modeling player, M* ex-
pands 1.3 times more nodes than Mrspass but M;-pass
performs 1.5 times more calls to evaluation functions.
Note that when the set of evaluation functions consist
of the same features (perhaps with different weights),
the overhead of multiple evaluation is reduced signifi-
cantly.

We have already shown that M* is a generalization
of minimax. An interesting property of M* is that it al-
ways selects a move with a value greater or equal to the
value of the move selected by minimax that searches
the same tree with the same strategy.
Theorem 3 Assume that M* and Minimax use the
same evaduation function f. Then
Minimaz(pos, d, f) 5 iW*(pos, d, (f, 0)) for any op-
ponent model 0.

The theorem states that if you have a good reason to
believe that your opponent’s model is different than
yours, you could only benefit by using M* instead of

minimax. The reader should note that the above theo-
rem does not mean that M* selects a move that is bet-
ter according to some objective criterion, but rather
a subjectively better move (from the player’s point of
view, according to its strategy). If the player does
not have a reliable model of its opponent, then playing
minimax is a good cautious strategy.

Adding pruning to
One of the most significant extensions of the minimax
algorithm is the o/3 pruning technique. Is it possible
to add such an extension to M* as well? Unfortu-
nately, if we assume a total independence between fi
and fo, it is easy to show that such a procedure cannot
exist. Knowing a lower bound for the opponent’s eval-
uation of a node does not have any implications on the
value of the node for the player. A similar situation
arises in MAXN, a multi-player game tree search algo-
rithm. Luckhardt and Irani (1986) conclude that prun-
ing is impossible in MAXN without further restrictions
about the players’ evaluation functions. Korf (1991)
showed that a shallow pruning for MAXN is possible if
we assume an upper bound on the sum of the players’
functions, and a lower bound on every player’s func-
tion.

The basic assumption used for the original CYP al-
gorithm is that fi + fo = 0 (the zero-sum assump-
tion). This assumption is used to infer a bound on a
value of a node for a player based directly on the oppo-
nent’s value. A natural relaxation to this assumption
is Ifi + fol 5 23. This assumption means that while fi
and -fo may evaluate a board differently, this differ-
ence is bounded. For example, the player may prefer
a rook over a knight while the opponent prefers the
opposite. In such a case, although the player’s value
is not a direct opposite of the opponent’s value, we
can infer a bound on the player’s value based on the
opponent’s value and B.

The above assumption can be used in the context of
the M?-pass algorithm to determine a bound on Vi +
V;:- 1 at the leaves level. But in order to be able to
prune using this assumption, we first need to determine
how these bounds are propagated up the search tree.

Lemma 1 Assume that A is a node in the tree
spanned by MTopass. Assume that ,!?I,. . . , Sk are
its successors. If there exist non-negative bounds
Bo, . , . , B,, such that for each successor Sj, and for
each model i, II+, [i] + Vs, [i - l] 1 2 Bi . Then, for
each model 1 5 i 5 n,]V~[i]+v~[i- 111 5 Bi +2.
B&l.

Based on lemma 1, we have developed an algorithm,
a/?* 1 that can perform a shallow and deep pruning
assuming bounds on the absolute sum of functions of
the player and its opponent model. crp* takes as in-
put a position, a depth limit, and for each model i, a
strategy fi, an upper bound Ba on lfi + fi-1 I, and a

Negotiation & Coalition 123

cutoff value oi . It returns the M* value of the root by
searching only those nodes that might affect this value.

The algorithm works similarly to the original cyp al-
gorithm, but is much more restricted as to which sub-
trees can be pruned. The ap* algorithm only prunes
branches that all models agree to prune. In regular
cup, the player can use the opponent’s value of a node
to determine whether it has a chance to attain a value
that is better than the current cutoff value. This is
based on the opponent’s value being exactly the same
as the player’s value (except for the sign). In CY~* , the
player’s function and the opponent’s function are not
identical, but their difference is bounded. The bound
on Vi + Vi-1 depends on the distance from the leaves
level. At the leaves level, it can be directly computed
using the input Bi . At distance d, the bound can be
computed from the bounds for level d - 1 as stated by
lemma 12.

A cutoff value CQ for a node v is the highest current
value of all the ancestors of 2, from the point of view
of player i. ok is modified at nodes where it is player
i’s turn to play, and is used for pruning where it is
player i - l’s turn to play. At each node, for each i
associated with the player whose turn it is to play, o;
is maximized any time Vi is modified. For each i such
that i - 1 is associated with the current player, the
algorithm checks whether the i player wants its model
(the i - 1 player) to continue its search.

fl=8 fl= 9 fl=4
m=-6 m=-9 fo=-5

Ifl+mi52

Figure 6: An example of pruning performed by cup*.

Figure 6 shows a search tree where every leaf I sat-
isfies the bound constraint Ifi + f*(a)1 5 2. This
bound allows the player to perform a cutoff of branch
g, knowing that the value of node c for the opponent
will be at least -5. Therefore, its value will be at most
7 for the player.

The ap* algorithm is listed in figure 7. The following
theorem proves that ap* always returns the M* value
of the root.

Theorem 4 Let V = cup* (pos, d, P, (-00, . . . , -00)).
Let V’ = ll!f* l-pasJ(p~~, d, P’) where P’ is P without
the bounds. Assume that for any leaf d of the game tree

2~j3* computes the bound B for each node. However, a
table of the B values can be computed once at the begin-
ning of the search, since they depend only on the B, and
the depth.

Procedure a/3*(pos, d,
((fn, bn)(. . . , (fo, bo)) . . .>>(@n, ” , ao))

iJ,“,= 0 then return (fn(po8), , fo(pos))

B + ComputeBounds(d, (bn, . . , bo))
v + (-00,. . . , -00)
s + a(pos)
for each s E S

succ-V + @*(s,d - 1,
((fn, bn)(. . , (fo, a,>>. .>)(a,, . . , (Yo))

loop for each i associated with current player
if succ-V[i] > V[i] then

V[i] + succ-V[i]
if i < n then V[i + l] + succ-V[i + l]

0, + max(Qr, V[i])
if for every i not associated with current player

[a, 2 B[i] - V[i - l]] then return (V[n], , V[dl)
return (V[n], . , . , V[d])

Procedure ComputeBounds(4 (bn, . .
ifd= 0 then return (bn, . . , bo)

,bd)
else
succ_B + ComputeBounds(d - 1, (b, , . . , bo))
loop for each i associated with current player

B[i] t succ-B[i] + 2 succ-B[i - l]
if i < n then B[i + l] + succ-B[i + l]

return B

Figure 7: The cup* algorithm

spanned from position pos to depth d, 1 fi (a)+ fiel (/)I 5
bi. Then, V = V’.

As the player function becomes more similar to
its opponent model (but with an opposite sign), the
amount of pruning increases up to the point where
they use the same function where cup* prunes as much
as cup.

Experimental study: The potential
benefit of M*

We have performed a set of experiments to test the
potential merit of the M* algorithm. The experiments
involve three players: MSTAR, MM and OP. MSTAR is
a one-level modeling player. MM and 0P are regular
minimax players (using a/? pruning). The experiments
were conducted using the domain of checkers. Each
tournament consisted of 800 games. A limit of 100
moves per game was set during the tournament.

In the first experiment all players searched to depth
4. MM and M* used one function while 0P used an-
other with equivalent power. MSTAR knows its op-
ponent’s function while MM implicitly assumes that
its opponent uses the opposite of its own function.
Both MSTAR and MM, limited by their own search
depth, wrongly assume that OP searches to depth
3. The following table shows the results obtained.

Wins Draws Losses Points
MM vs. OP 94 616 90 804
MSTAR vs. OP 126 618 56 870

The first row of the table shows that indeed the two
evaluation functions are of equivalent power. The sec-

124 Agents

ond row shows that MSTAR indeed benefited using the
extra knowledge about the opponent.

In the second experiment all players searched to
depth 4. The three players used the same evalua-
tion function f(b,pl) = Mat(b,pd) - & . Tot(b) where
Mat(b, pa) returns the material advantage of player pl
and Tot(b) is the total number of pieces. However,
while M* knows its opponent’s function, MM implic-
itly assumes that its opponent, o, uses the function
f(b, 0) = -f(b,pZ) = -Mut(b,pl) + & * Tot(b) =
Mat (b, o) + & . Tot(b) . Therefore, while OP prefers ex-
change positions, MM assumes that it prefers to avoid
them. The following table shows the results obtained.

Wins Draws Losses Points
MM vs. OP 171 461 168 803
MSTAR vs. OP 290 351 159 931

This result is rather surprising. Despite the fact that
all players used the same evaluation function, and
searched to the same depth, the modeling program
achieved a significantly higher score.

We repeated the last experiment replacing the
AI* rwpass algorithm with a@*and measured the amount
of pruning. The bound used for pruning is jfr + fa 1 =
pczt(b,pZ) - & * Tot(b) + Aht(b,o) - & * Tot(b)1 5
2 . Tot(b). While the average number of leaves-per-
gave for a search to depth 4 by MT- ass was 723, ap*
managed to achieve an average of lgf leaves-per-move.
(w/? achieved an average of 66 leaves-per-move.

The last results raise an interesting question. As-
sume that we allocate a modeling player and an un-
modeling opponent the same search resources. Is
the benefit achieved by modeling enough to over-
come the extra depth that the non-modeling player
can search due to the better pruning? We have
tested the question in the context of the above ex-
periment. We wrote an iterative deepening versions
of both a@ and ap* and let the two play against each
other with the same limit on the number of leaves.

Wins Draws Losses Points
al3* vs. OP 226 328 246 780

This result is rather disappointing. The benefit of
modeling was outweighed by the cost of the reduced
pruning. In general this is an example of the known
tradeoff between knowledge and search. The question
of when is it worthwhile to use the modeling approach
remains open and depends mostly on the particular
nature of the search tree and evaluation functions.

Conclusions
This paper describes a generalized version of the mini-
max algorithm that can utilize different opponent mod-
els. The iU* algorithm simulates the opponent’s search
to determine its expected decision for the next move,
and evaluates the resulted state by searching its asso-
ciated subtree using its own strategy.

Experiments performed in the domain of checkers
demonstrated the advantage of A&* over minimax. Can
the benefit of modeling outweigh the cost of reduced
pruning? We don’t have a conclusive answer for that
question. We expect the answer to be dependent on the
particular domain and particular evaluation functions
used.

There are still many remaining open questions. How
does an error in the model effect performance? How
can a player use an uncertain model? How can a player
acquire a model of its opponent? We tackled these
questions but could not include the results here due
to lack of space (a full version of the paper that in-
cludes these parts is available as (Carmel & Markovitch
1996) .)

In the introduction we raised the question of utilizing
knowledge about the opponent’s decision procedure in
adversary search. We believe that this work presents a
significant progress in our understanding of opponent
modeling, and can serve as a basis for further theoret-
ical and experimental work in this area.

eferences
Berliner, H. 1977. Search and knowledge. In Proceed-
ing of the International Joint Conference on Artificial
Intelligence (IJCAI 77), 975-979.
Carmel, D., and Markovitch, S. 1993. Learning
models of opponent’s strategies in game playing. In
Proceedings of the AAAI Fald Symposium on Games:
Planning and Learning, 140-147.
Carmel, D., and Markovitch, S. 1996. Learning and
using opponent models in adversary search. Technical
Report CIS report 9609, Technion.
Gilboa, I. 1988. The complexity of computing best
response Automata in repeated games. Journal of
economic theory 45:342 -352.
Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K.
1991. A decision theoretic approach to coordinating
multiagent interactions. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelli-
gence (IJCAI 91), 62 - 68.
Jansen, P. 1990. Problematic positions and specu-
lative play. In Marsland, T., and Schaeffer, J., eds.,
Computers, Chess and Cognition. Springer New York.
169-182.
Korf, R. E. 1989. Generalized game trees. In Proceed-
ing of the International Joint Conference on Artificial
Intelligence (IJCAI 89), 328-333.
Korf, R. E. 1991. Multi-player alpha-beta pruning.
Artificial Intelligence 48, 99-111.
Luckhardt, C. A., and Irani, K. B. 1986. An algorith-
mic solution of n-person games. In Proceeding of the
Ninth National Conference on Artificial Intelligence
(AAAI-86), 158-162.
Shannon, C. E. 1950. Programming a computer for
playing chess. Philosophical Magazine, 41, 256-275.

Negotiation & Coalition 125

