
Incorporating Opponent Models into Adversary Search 

David Carmel and Shaul Markovitch 

Computer Science Department 
Technion, Haifa 32000, Israel 

carmel@cs.technion.ac.il shaulm@cs.technion.ac.il 

Abstract 

This work presents a generalized theoretical frame- 
work that allows incorporation of opponent models 
into adversary search. We present the M* algorithm, 
a generalization of minimax that uses an arbitrary op- 
ponent model to simulate the opponent’s search. The 
opponent model is a recursive structure consisting of 
the opponent’s evaluation function and its model of 
the player. We demonstrate experimentally the po- 
tential benefit of using an opponent model. Pruning 
in M* is impossible in the general case. We prove a 
sufficient condition for pruning and present the cup* 
algorithm which returns the M* value of a tree while 
searching only necessary branches. 

Introduction 
The minimax algorithm (Shannon 1950) has served as 
the basic decision procedure for zero-sum games since 
the early days of computer science. The basic assump- 
tion behind minimax is that the player has no knowl- 
edge about the opponent’s decision procedure. In the 
absence of such knowledge, minimax assumes that the 
opponent selects an alternative which is the worst from 
the player’s point of view. 

However, it is quite possible that the player does 
have some knowledge about its opponent. Such knowl- 
edge may be a result of accumulated experience in 
playing against the opponent, or may be supplied by 
some external source. How can such knowledge be ex- 
ploited? In game theory, the question is known as the 
best response problem - looking for an optimal response 
to a given opponent model (Gilboa 1988). However, 
there is almost no theoretical work on using opponent 
models in adversary search. Korf (1989) outlined a 
method of utilizing multiple-level models of evaluation 
functions. Carmel and Markovitch (1993) developed 
an algorithm for utilizing an opponent model defined 
by an evaluation function and a depth of search. 

Jansen (1990) describes two situations where it is 
important to consider the opponent’s strategy. One is a 
swindle position, where the player has reason to believe 
that the opponent will underestimate a good move, and 
will therefore play a poorer move instead. Another 
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situation is a trap position, where the player expects 
the opponent to overestimate and therefore play a bad 
move. Another situation, where an opponent model 
can be beneficial, is a losing position (Berliner 1977). 
When all possible moves lead to a loss, an opponent 
model can be used to select a swindle move. 

The goal of this research is to develop a theoreti- 
cal framework that allows exploitation of an opponent 
model. We start by defining an opponent model to 
be a recursive structure consisting of a utility func- 
tion of the opponent and the player model (held by 
the opponent). We then describe two algorithms, M* 
and M&xzsJ~ g eneralizations of minimax that can use 
an opponent model. Pruning in M* is not possible 
in the general case. However, we have developed the 
a@+ algorithm that allows pruning given certain con- 
straints over the relationship between the player’s and 
the model’s strategies. 

The Af* algorithm 
Let S be the set of possible game states. Let 

; 
:s4 2’ be the successor function. Let cp : 
- S be an opponent model that specifies the 

opponent’s selected move for each state. The A4 
algorithm takes a position s E S, a depth limit 
d, a static evaluation function f : S - %, an 
arbitrary opponent model cp, and returns a value. 

i 

fG9 dg 

M(s, 4 f 9 4 = s,y$,(f (4) d=l 

max (M(v(s’), d-2, f, v)) d > 1 s’ea( s) 

The algorithm selects a move in the following way. 
It generates the successors of the current position. It 
then applies cp on each of the successors to obtain the 
opponent’s response and evaluates each of the resulting 
states by applying the algorithm recursively (with re- 
duced depth limit). It then selects the successor with 
the highest value. The algorithm returns the static 
evaluation of the input position when the depth limit 
is zero. 

Note that A4 returns a value. M can also be defined 
to return the state with the maximal value instead of 
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the value itself. To simplify the discussion, from now 
on we will assume that M returns either the state or 
the value according to the context. 

Let M&J, Id) be the regular minimax algorithm that 
searches to depth d using an evaluation function fs. 
Minimax uses itself with d - 1 and -fs as an opponent 
model, therefore it can be defined as a special case of 
M: 

M&o) 4-f) (4 = WY dYfO7 M&fo),d-1)) 
Assume that the player uses an evaluation function 

fi. A natural candidate to serve as the model ‘p in the 
M algorithm is M* with another evaluation function 
fe. We call this special case of M the M1 algorithm: 

MiPl ,fo),d) (4 = ws’dYflYM&J),d-l))- 
The M1 algorithm works by simulating the oppo- 

nent’s minimax search (to depth d - 1) to find its se- 
lected move and evaluates the selected move by calling 
itself recursively (to depth d - 2). 

9 

(a) (b) 

Figure 1: The search trees spanned by calling Ml. Part 
(a) shows the two calls to minimax for determining the 
opponent’s choice. Part (b) shows the recursive calls to 
M1 for evaluating the nodes selected by the opponent. 

Figure 1 shows an example of a search to depth 3 
performed by the M1 algorithm. Part (a) shows the 
two calls to minimax to simulate the opponent’s search. 
Note that the opponent is a maximizer. Part (b) of 
the figure shows the two recursive calls to Ml applied 
to the boards selected by the opponent. Note that 
while the opponent’s minimax procedure believes that 
in node e the player selects the move leading to node 
Ic, the player actually prefers node j. 

We can define the M” algorithm, for any n, to be 
the M algorithm with cp = Mn-l. Mn can be formally 
defined as follows: 

Mia(&z,...,fo),d)(s~ = M(s’ fn’ 4 Mig+,fo),61)) 
Thus, a player using the M1 algorithm assumes that its 
opponent uses MO (minimax), a player using the M2 
algorithm assumes that its opponent uses Ml, etc. We 
will define the M* algorithm that includes every Mn 
algorithm as a special case. M* receives as a param- 
eter a player which includes information about both 
the player’s evaluation function and its model of the 
opponent. 

Definition 1 A player is a pair defined us follows: 
1. Given an evaluation function f, P = (f, NIL) is a 

player (with a modeling-level 0). 
2. Given an evaluation function f and a player 0 (with 

modeling level n - l), P = (f, 0) is a player (with a 
modeling level n). 

The first element of a player is culled the player’s 
strategy and the second element is culled the opponent 
model. 

Thus, a zero-level modeling player, (fo , NIL), is one 
that does not model its opponent. A one-level model- 
ing player, (fly (fo, NIL)), is one that has a model of 
its opponent, but assumes that its opponent is a zero- 
level modeling player. A two-level modeling player, 
(f27 (fl, (fo, NW), is one that uses a strategy f2, and 
has a model of its opponent, (f 1, (fo, NIL)). The op- 
ponent’s model uses a strategy j-1 and has a model, 
(fo, NIL), of the player. The recursive definition of 
a player is in the spirit of the Recursive Modeling 
Method by Gmytrasiewicz, Durfee and Wehe (1991). 

M* receives a position, a depth limit, and a player, 
and outputs a move selected by the player and its value. 
The algorithm generates the successor boards and sim- 
ulates the opponent’s search from each of them in order 
to anticipate its choice. This simulation is achieved by 
applying the algorithm recursively with the opponent 
model as the player. The player then evaluates each 
of its optional moves by evaluating the outcome of its 
opponent’s reaction by applying the algorithm recur- 
sively using its own strategy. 

f2=8 I2=4 f2=4 f-2=7 f2=-6 fk 1 c?=lO f2=2 
fl=-6 fl=6 fl=-8 fl z-7 fl=7 fl=-2 fl=-4 fl=O 
Kk4 RI=-8 NklO ffk 3 N)=-4 iI)= 4 II,= 4 In= 6 

Figure 2: The set of recursive cJls generated by calling 
M*(a, 3, (fz(fl, fo))). Each call is written next to the node 
it is called from. The dashed lines show which move is 
selected by each call. 

Figure 2 shows an example of a search tree spanned 
by M*(a, 3, fs(fl, fe)). The numbers at the bottom 
are the static values of the leaves. The recursive calls 
applied to each node are listed next to the node. The 
dashed lines indicate which move is selected by each 
recursive call. 

The player simulates its opponent’s search from 
nodes b and c. The opponent simulates the player by 
using its own model of the player from nodes d and e. 
At node d the model of the player used by the oppo- 
nent (fo) selects node h. The opponent then applies its 
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fi function to node h and concludes that node h, and 
therefore node d, are worth -6. The opponent then 
applies the player’s model (fs ) to node e , concludes 
that the player select node j, applies its own function 
(fi ) to node j, and decides that node j, and therefore 
node e, are worth -8. Therefore, the opponent model, 
when applied to node b, selects the move that leads to 
node d. The player then evaluates node d using its own 
criterion (fz). It applies M* to node d and concludes 
that node d, and therefore node b, are worth 8. Simu- 
lation of the opponent from node c yields the selection 
of node g. The player then evaluates g according to its 
own strategy and finds that it is worth 10 (the value of 
node n). Note that when the opponent simulates the 
player from node g, it wrongly assumes that the player 
selects node o. Therefore, the player selects the move 
that leads to c with a value of 10. Note that using a 
regular minimax search with f2 would have resulted in 
selecting the move that leads to node b with a value of 
7. The formal listing of the M* algorithm is shown in 
figure 3. 

Procedure M’ (pas, d, (fpt, 0)) 
z,",= 0 then return (NIL,f,l(pos)) 

max:-value + -co 
s + o(pos) 
for each s E S 

ifd = 1 then pl-v + fpl(s) 
else 

(op-b, op-v) + M’ (s, d - 1,O) 
(pl-b,pl-v) + M’ (OP-b, d - 2, (fpz, 

if pl-v > max-value 
max-value +- pl-v 
max-board - s 

return (max-board, max-value) 

Figure 3: The M* algorithm 

The Mn algorithm calls M” when n reaches 0. How- 
ever, note that M* does not contain such a call. This 
will work correctly when the modeling level is larger 
than the search depth. If the modeling level of the 
original player n is smaller than the depth of the search 
tree d, we replace the O-level modeling player fo by 

d-n 

ifo, (-fo, (fo, . . a>‘. 

A one-pass version of M* 
It is obvious that the M* algorithm performs multiple 
expansions of parts of the search tree. We have de- 
veloped another version of the M* algorithm, called 
M* l-pass) that expands the tree one time only, just 
as minimax does. The algorithm expands the search 
tree in the same manner as minimax. However, node 
values are propagated differently. Whereas minimax 
propagates only one value, M* propagates n + 1 val- 
ues, (V,, . . . , VO). The value V;: represents the merit 
of the current node according to the i-level model, fa. 
M* I-pass passes values associated with the player and 

values associated with the opponent in a different man- 
ner. In a player’s node (a node where it is the player’s 
turn to play) ‘, for values associated with the player 
(KY K-2,. * -)Y V;: receives the maximal Vi value among 
its children. For values associated with the opponent 
(K-1, G-3, * * .> , K receives the Vi value of the child 
that gave the maximal value to K-1 . For example, the 
opponent believes (according to the model) that the 
player evaluates nodes by I/n-z. At a player’s node, 
the opponent assumes that the player will select the 
child with maximal Vn-2 value. Therefore, the value 
of the current node for the opponent is the V, - 1 value 
of the selected child with the maximal Vn-2 value. At 
an opponent’s node, we do the same but the roles of 
the opponent and the player are switched. 

V[2]= 8 
V[l]=-6 d 
V[O]= 4 

x 
f2=8 k-4 
fl=-6 fl= 6 
m=4 f&-8 

f2=4 f2= I 
fl=-8 fl=-7 
ffkI0 fo=3 

Figure 4: The value vectors propagated by M;--pass. This 
is the same tree as the one shown in Figure 2. 

Figure 4 shows an example for a tree spanned by 
M*- . This is the same tree as the one shown in 
Fi&Fgsi. Let us look at node e to understand the way 
in which the algorithm works. Three players evaluate 
node e: the player, the opponent model, and the op- 
ponent’s model of the player. The opponent’s model 
of the player evaluates all the successors using evalu- 
ation function f0 and selects board j with a value of 
10. The opponent model knows that it has no effect 
on the decision taken at node e, since it is the player’s 
turn to move. It therefore assigns node e the value of 
j, selected by the player model, using its own evalu- 
ation function f 1, (f l(j) = -8). The player actually 
prefers node k with the higher f2 value (f2( k) = 7). 
Thus, the vector propagated from node e is (7, -8,10). 
Note that the values in the vectors correspond to the 
results of the recursive calls in figure 2. Figure 5 lists 
the MT-pass algorithm. 

Properties of n/r* 
The following theorem shows that M* and MTepass 
return the same value. 
Theorem 1 Assume that P is a n-level modeling 
player. Let (v, b) = M*(pos, d, P), and let (V[n]) = 
MTepass (pos, d, P). Then v = V[n]. 

‘Traditionally such a node is called a MAX node. How- 
ever, we assume that both players are maximizers. 
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Procedure MTGPass (~08, d, Un, (fn-I, (. . , fo) . .>>I 
if d = 0 then return (fn(pos), . . . , fo(pos)) 
else S +- o(pos) 

v + (- cKl,...,---00) 
for each s E S 

WCC-V + M1+--pass(s,d- l,(fn,(fn-l,...,fo)...)) 
for each i associated with current player 

if succ-V[i] > V[i] then 
V[i] + succ-V[i] 
if i < n then V[i + l] + succ-V[i + l] 

return (V[n], . , V[d]) 

Figure 5: MT--pass: A version of the M” algorithm that 
performs only one pass over the search tree 

The proof for all the theorems in this paper can be 
found in (Carmel & Markovitch 1996). 

It seems as though MTspass is always prefered over 
M* because it expands less nodes. MTspass expands 
each node in the tree only once, while M* re-expands 
many nodes. However, while MTspass performs less 
expansions than M*, it may perform more evaluations. 
An upper limit on the number of node expansions and 
evaluations in M* and MTBpass is given in the following 
theorem. 
Theorem 2 Assume that M* and Mrepass search a 
tree with a uniform branching factor b and depth d. 

1. The number of calls to the expansion function by M* 
is bounded by (b + l)d-l. The number of calls by 
h/i* l-pass is s. 

2. The number of calls to evaluation functions by M” is 
bounded by (b + l)d. the number of calls by MTepass 
is dbd. 

The theorem implies that M* and MTWpass each has 
an advantage. If it is more important to reduce the 
number of node expansions than the number of evalu- 
ation function calls then one should use MT- 

P 
ass. Oth- 

erwise, M* should be used. For example, or d = 10 
and b = 30 and a one-level modeling player, M* ex- 
pands 1.3 times more nodes than Mrspass but M;-pass 
performs 1.5 times more calls to evaluation functions. 
Note that when the set of evaluation functions consist 
of the same features (perhaps with different weights), 
the overhead of multiple evaluation is reduced signifi- 
cantly. 

We have already shown that M* is a generalization 
of minimax. An interesting property of M* is that it al- 
ways selects a move with a value greater or equal to the 
value of the move selected by minimax that searches 
the same tree with the same strategy. 
Theorem 3 Assume that M* and Minimax use the 
same evaduation function f. Then 
Minimaz(pos, d, f) 5 iW*(pos, d, (f, 0)) for any op- 
ponent model 0. 

The theorem states that if you have a good reason to 
believe that your opponent’s model is different than 
yours, you could only benefit by using M* instead of 

minimax. The reader should note that the above theo- 
rem does not mean that M* selects a move that is bet- 
ter according to some objective criterion, but rather 
a subjectively better move (from the player’s point of 
view, according to its strategy). If the player does 
not have a reliable model of its opponent, then playing 
minimax is a good cautious strategy. 

Adding pruning to 
One of the most significant extensions of the minimax 
algorithm is the o/3 pruning technique. Is it possible 
to add such an extension to M* as well? Unfortu- 
nately, if we assume a total independence between fi 
and fo, it is easy to show that such a procedure cannot 
exist. Knowing a lower bound for the opponent’s eval- 
uation of a node does not have any implications on the 
value of the node for the player. A similar situation 
arises in MAXN, a multi-player game tree search algo- 
rithm. Luckhardt and Irani (1986) conclude that prun- 
ing is impossible in MAXN without further restrictions 
about the players’ evaluation functions. Korf (1991) 
showed that a shallow pruning for MAXN is possible if 
we assume an upper bound on the sum of the players’ 
functions, and a lower bound on every player’s func- 
tion. 

The basic assumption used for the original CYP al- 
gorithm is that fi + fo = 0 (the zero-sum assump- 
tion). This assumption is used to infer a bound on a 
value of a node for a player based directly on the oppo- 
nent’s value. A natural relaxation to this assumption 
is Ifi + fol 5 23. This assumption means that while fi 
and -fo may evaluate a board differently, this differ- 
ence is bounded. For example, the player may prefer 
a rook over a knight while the opponent prefers the 
opposite. In such a case, although the player’s value 
is not a direct opposite of the opponent’s value, we 
can infer a bound on the player’s value based on the 
opponent’s value and B. 

The above assumption can be used in the context of 
the M?-pass algorithm to determine a bound on Vi + 
V;:- 1 at the leaves level. But in order to be able to 
prune using this assumption, we first need to determine 
how these bounds are propagated up the search tree. 

Lemma 1 Assume that A is a node in the tree 
spanned by MTopass. Assume that ,!?I,. . . , Sk are 
its successors. If there exist non-negative bounds 
Bo, . , . , B,, such that for each successor Sj, and for 
each model i, II+, [i] + Vs, [i - l] 1 2 Bi . Then, for 
each model 1 5 i 5 n, ]V~[i]+v~[i- 111 5 Bi +2. 
B&l. 

Based on lemma 1, we have developed an algorithm, 
a/?* 1 that can perform a shallow and deep pruning 
assuming bounds on the absolute sum of functions of 
the player and its opponent model. crp* takes as in- 
put a position, a depth limit, and for each model i, a 
strategy fi, an upper bound Ba on lfi + fi-1 I, and a 
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cutoff value oi . It returns the M* value of the root by 
searching only those nodes that might affect this value. 

The algorithm works similarly to the original cyp al- 
gorithm, but is much more restricted as to which sub- 
trees can be pruned. The ap* algorithm only prunes 
branches that all models agree to prune. In regular 
cup, the player can use the opponent’s value of a node 
to determine whether it has a chance to attain a value 
that is better than the current cutoff value. This is 
based on the opponent’s value being exactly the same 
as the player’s value (except for the sign). In CY~* , the 
player’s function and the opponent’s function are not 
identical, but their difference is bounded. The bound 
on Vi + Vi-1 depends on the distance from the leaves 
level. At the leaves level, it can be directly computed 
using the input Bi . At distance d, the bound can be 
computed from the bounds for level d - 1 as stated by 
lemma 12. 

A cutoff value CQ for a node v is the highest current 
value of all the ancestors of 2, from the point of view 
of player i. ok is modified at nodes where it is player 
i’s turn to play, and is used for pruning where it is 
player i - l’s turn to play. At each node, for each i 
associated with the player whose turn it is to play, o; 
is maximized any time Vi is modified. For each i such 
that i - 1 is associated with the current player, the 
algorithm checks whether the i player wants its model 
(the i - 1 player) to continue its search. 

fl=8 fl= 9 fl=4 
m=-6 m=-9 fo=-5 

Ifl+mi52 

Figure 6: An example of pruning performed by cup*. 

Figure 6 shows a search tree where every leaf I sat- 
isfies the bound constraint Ifi + f*(a)1 5 2. This 
bound allows the player to perform a cutoff of branch 
g, knowing that the value of node c for the opponent 
will be at least -5. Therefore, its value will be at most 
7 for the player. 

The ap* algorithm is listed in figure 7. The following 
theorem proves that ap* always returns the M* value 
of the root. 

Theorem 4 Let V = cup* (pos, d, P, (-00, . . . , -00)). 
Let V’ = ll!f* l-pasJ(p~~, d, P’) where P’ is P without 
the bounds. Assume that for any leaf d of the game tree 

2~j3* computes the bound B for each node. However, a 
table of the B values can be computed once at the begin- 
ning of the search, since they depend only on the B, and 
the depth. 

Procedure a/3*(pos, d, 
((fn, bn)(. . . , (fo, bo)) . . .>>(@n, ” , ao)) 

iJ,“,= 0 then return (fn(po8), , fo(pos)) 

B + ComputeBounds(d, (bn, . . , bo)) 
v + (-00,. . . , -00) 
s + a(pos) 
for each s E S 

succ-V + @*(s,d - 1, 
((fn, bn)(. . , (fo, a,>>. .>)(a,, . . , (Yo)) 

loop for each i associated with current player 
if succ-V[i] > V[i] then 

V[i] + succ-V[i] 
if i < n then V[i + l] + succ-V[i + l] 

0, + max(Qr, V[i]) 
if for every i not associated with current player 

[a, 2 B[i] - V[i - l]] then return (V[n], , V[dl) 
return (V[n], . , . , V[d]) 

Procedure ComputeBounds( 4 (bn, . . 
ifd= 0 then return (bn, . . , bo) 

,bd) 
else 
succ_B + ComputeBounds( d - 1, (b, , . . , bo) ) 
loop for each i associated with current player 

B[i] t succ-B[i] + 2 succ-B[i - l] 
if i < n then B[i + l] + succ-B[i + l] 

return B 

Figure 7: The cup* algorithm 

spanned from position pos to depth d, 1 fi (a)+ fiel (/)I 5 
bi. Then, V = V’. 

As the player function becomes more similar to 
its opponent model (but with an opposite sign), the 
amount of pruning increases up to the point where 
they use the same function where cup* prunes as much 
as cup. 

Experimental study: The potential 
benefit of M* 

We have performed a set of experiments to test the 
potential merit of the M* algorithm. The experiments 
involve three players: MSTAR, MM and OP. MSTAR is 
a one-level modeling player. MM and 0P are regular 
minimax players (using a/? pruning). The experiments 
were conducted using the domain of checkers. Each 
tournament consisted of 800 games. A limit of 100 
moves per game was set during the tournament. 

In the first experiment all players searched to depth 
4. MM and M* used one function while 0P used an- 
other with equivalent power. MSTAR knows its op- 
ponent’s function while MM implicitly assumes that 
its opponent uses the opposite of its own function. 
Both MSTAR and MM, limited by their own search 
depth, wrongly assume that OP searches to depth 
3. The following table shows the results obtained. 

Wins Draws Losses Points 
MM vs. OP 94 616 90 804 
MSTAR vs. OP 126 618 56 870 

The first row of the table shows that indeed the two 
evaluation functions are of equivalent power. The sec- 
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ond row shows that MSTAR indeed benefited using the 
extra knowledge about the opponent. 

In the second experiment all players searched to 
depth 4. The three players used the same evalua- 
tion function f(b,pl) = Mat(b,pd) - & . Tot(b) where 
Mat(b, pa) returns the material advantage of player pl 
and Tot(b) is the total number of pieces. However, 
while M* knows its opponent’s function, MM implic- 
itly assumes that its opponent, o, uses the function 
f(b, 0) = -f(b,pZ) = -Mut(b,pl) + & * Tot(b) = 
Mat (b, o) + & . Tot(b) . Therefore, while OP prefers ex- 
change positions, MM assumes that it prefers to avoid 
them. The following table shows the results obtained. 

Wins Draws Losses Points 
MM vs. OP 171 461 168 803 
MSTAR vs. OP 290 351 159 931 

This result is rather surprising. Despite the fact that 
all players used the same evaluation function, and 
searched to the same depth, the modeling program 
achieved a significantly higher score. 

We repeated the last experiment replacing the 
AI* rwpass algorithm with a@*and measured the amount 
of pruning. The bound used for pruning is jfr + fa 1 = 
pczt(b,pZ) - & * Tot(b) + Aht(b,o) - & * Tot(b)1 5 
2 . Tot(b). While the average number of leaves-per- 
gave for a search to depth 4 by MT- ass was 723, ap* 
managed to achieve an average of lgf leaves-per-move. 
(w/? achieved an average of 66 leaves-per-move. 

The last results raise an interesting question. As- 
sume that we allocate a modeling player and an un- 
modeling opponent the same search resources. Is 
the benefit achieved by modeling enough to over- 
come the extra depth that the non-modeling player 
can search due to the better pruning? We have 
tested the question in the context of the above ex- 
periment. We wrote an iterative deepening versions 
of both a@ and ap* and let the two play against each 
other with the same limit on the number of leaves. 

Wins Draws Losses Points 
al3* vs. OP 226 328 246 780 

This result is rather disappointing. The benefit of 
modeling was outweighed by the cost of the reduced 
pruning. In general this is an example of the known 
tradeoff between knowledge and search. The question 
of when is it worthwhile to use the modeling approach 
remains open and depends mostly on the particular 
nature of the search tree and evaluation functions. 

Conclusions 
This paper describes a generalized version of the mini- 
max algorithm that can utilize different opponent mod- 
els. The iU* algorithm simulates the opponent’s search 
to determine its expected decision for the next move, 
and evaluates the resulted state by searching its asso- 
ciated subtree using its own strategy. 

Experiments performed in the domain of checkers 
demonstrated the advantage of A&* over minimax. Can 
the benefit of modeling outweigh the cost of reduced 
pruning? We don’t have a conclusive answer for that 
question. We expect the answer to be dependent on the 
particular domain and particular evaluation functions 
used. 

There are still many remaining open questions. How 
does an error in the model effect performance? How 
can a player use an uncertain model? How can a player 
acquire a model of its opponent? We tackled these 
questions but could not include the results here due 
to lack of space (a full version of the paper that in- 
cludes these parts is available as (Carmel & Markovitch 
1996) .) 

In the introduction we raised the question of utilizing 
knowledge about the opponent’s decision procedure in 
adversary search. We believe that this work presents a 
significant progress in our understanding of opponent 
modeling, and can serve as a basis for further theoret- 
ical and experimental work in this area. 
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