
A Kernel-Oriented Model for Coalition-Formation in General 
Environments: Implementation and Results* 

Onn Shehory Sarit Kraus 
Department of Mathematics and Computer Science 

Bar Ran University Ramat Gan, 52900 Israel 
{shechory, sarit}@bimacs.cs.biu.ac.il 

Tel: +972-3-5318863 
Fax: -l-972-3-5353325 

Abstract 

In this paper we present a model for coalition forma- 
tion and payoff distribution in general environments. 
We focus on a reduced complexity kernel-oriented 
coalition formation model, and provide a detailed algo- 
rithm for the activity of the single rational agent. The 
model is partitioned into a social level and a strategic 
level, to distinguish between regulations that must be 
agreed upon and are forced by agent-designers, and 
strategies by which each agent acts at will. In addi- 
tion, we present an implementation of the model and 
simulation results. From these we conclude that im- 
plementing the model for coalition formation among 
agents increases the benefits of the agents with rea- 
sonable time consumption. It also shows that more 
coalition formations yield more benefits to the agents. 

Introduction 
An important method for cooperation in multi-agent 
environments is coalition formation. Membership in a 
coalition may increase the agent’s ability to satisfy its 
goals and maximize its own personal payoff. Game the- 
ory literature such as (Rapoport 1970) describes which 
coalitions will form in N-person games under different 
settings and how the players will distribute the bene- 
fits of the cooperation among themselves. These re- 
sults do not take into consideration the constraints 
of a multi-agent environment, such as communica- 
tion costs and limited computation time, and do not 
present algorithms for coalition formation. Our re- 
search presents a multi-agent approach to the coalition 
formation problem, and provides a coalition-formation 
procedure. The paper deals with autonomous agents, 
each of which has tasks it must fulfill and access to re- 
sources that it can use to fulfill these tasks. Agents can 
satisfy goals by themselves, but may also join together 
to satisfy their goals. In such a case we say that the 
agents form a coalition. 

*Kraus is also affiliated with the Institute for Advanced 
Computer Studies, University of Maryland. This material 
is based upon work supported in part by the NSF under 
grant No. IRI-9423967 and the Israeli Ministry of Science, 
grant No. 6288. We thank S. Aloni and M. Goren for their 
major contribution to the implementation of the model. 
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In this paper we present a modification of the Kernel 
concept from game theory (Davis & Maschler 1965). 
The modified Kernel serves as a basis for a polynomial- 
complexity mechanism for coalition formation. The 
mechanism is partitioned into two levels - the so- 
cial level and the strategic level. The coordination- 
regulation protocols constitute the social leveli. Dif- 
ferent designers of agents must agree upon the regu- 
lation protocols of the social level in advance. The 
strategic level consists of strategies for the individual 
agent to act in the environment for maximization of its 
own expected payoff, given the social level, and can be 
decided upon by individual agents during the coalition 
formation process. 

Related work in DA1 

Research in DA1 is divided into two basic classes: Dis- 
tributed Problem Solving (DPS) and Multi-Agent Sys- 
tems (MA) (Bond & G asser 1988; Durfee & Rosen- 
schein 1994). Our research is closer to MA since 
it deals with interactions among self-motivnted, ratio- 
nal and autonomous agents. However, any interaction 
among agents requires some regulations and structure. 
The minimal requirement for interactions in multi- 
agent systems is a common language or a common 
background (Gasser 1993). In coalition-formation, the 
need for regulations increases further(Shapley & Shu- 
bik 1973). 

Shoham, Tennenholtz and Moses (Moses & Tennen- 
holtz 1993; Shoham & Tennenholtz 1992) show that 
pre-compiled highly-structured “social laws” are able 
to coordinate agent activity. Agents are assumed to 
follow the social laws since they were designed to do so 
and not because they benefit individually from follow- 
ing these laws. In our research, we do not explicitly 
use social laws in order to coordinate agent activity. 
We provide the agents with a social level of coopera- 
tion. The designers of agents should agree in advance 
which regulations the agents in a given environment 
will use. These regulations are incorporated into all of 
the agents, but each agent chooses its strategy for the 

1 We use the concep t of the social level and the notion s 
of regulations interchangeably. 
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interaction individually and joins a coalition only if it 
increases its personal payoff. 

Our mechanisms are different from these that are 
applied in DPS environments. However, as in the Con- 
tract Net framework (Davis & Smith 1983; Malone et 
al. 1988) or the Functionally Accurate, Cooperative, 
(FA/C) paradigm (Durfee 1988; Decker & Lesser 1993) 
that considers DPS environments, we also enables co- 
operation of groups of agents, though not necessarily 
of all of them. 

Zlotkin and Rosenschein (Zlotkin & Rosenschein 
1994) and Ketchpel (Ketchpel 1994) consider coalition 
formation in supper-additive environments. Our work 
discusses general multi-agent environments, and pro- 
vides the designers of agents with explicit coalition- 
formation mechanisms for these environments. 

Sandholm and Lesser (Sandholm & Lesser 1995) 
presented a coalition formation model for bounded- 
rational agents and present a general classification of 
coalition games. In their model, the value of a coalition 
depends on the computation time, however, all config- 
urations and possible coalitions are considered when 
computing a stable solution. We consider problems 
where the computational time of coalition values is 
polynomial. Therefore, we concentrate on the polyno- 
mial coalition-configuration formation and utility dis- 
tribution and provide polynomial concepts of stability. 

Environment Description 

We assume the following: (i) The d _ esigners of the 
agents agree upon the regulations in advance and in- 
corporate them into their agents, and these regulations 
are enforceable by deviation revealability and penal- 
ties. (ii) Various communication methods exist, so that 
the agents can negotiate and make agreements (Werner 
1988). However, communications require time and ef- 
fort. (iii) Resources can be transferred among agents. 
(iv) There is a monetary system that can be used for 
side-payments. The agents use this monetary system 
in order to evaluate resources and productions that re- 
sult from the use of the resources. The money is trans- 
ferable among the agents and can be redistributed in 
a case of coalition formation. The monetary system is 
part of the regulation of the environment. We present 
it as a possible regulation since it increases the agents’ 
benefits from cooperation, although agents may reach 
agreements and form coalitions even if this assumption 
is not vLalid, e.g. (Kraus & Wilkenfeld 1991). 

I 

of n autonomous agents, We consider a‘group N 
N = (cz~,u~ ,..., a,). The 
or have access to, resources. 
resource vector pi = (q’, q”, 
quantities of resources that 
resources they have to exec 
come from task-execution is 

agents are provided with, 
Each agent ai has its own 

.“, 4:)) which denotes the 
it has. The agents use the 
:ute their tasks. ai’s out- 
expressed by a payoff func- 

tion from the resources domain Q to the reals. Such a 
function U” : Q - R exchanges resources into mone- 
tary units. Each agent tries to maximize its payoff. 

Individual self-motivated agents can cooperate bY 
forming coalitions. A coalition is defined as a group of 
agents-that have decided to cooperate and h&e also 
decided how the total benefit should be distributed 
among them. Formally: 

Definition 1 Coalition Given a group of agents N 
and a resource domain Q, a coalition is a quadrate 

C = (&,q&Uc), where NC C N; qc = 

(41,427.-d) is the coalition’s resource vector, where 

qj = CazENc q{ is the quantity of resource j that the 

coalition has. & is the set of resource vectors after the 
redistribution of qc among the members of NC (& sat- 

isfies qj = xa,ENc Q:). UC = (ul, u2, . . . , ulcl), is the 

coalitional payofl vector, where ui E R is the payofl of 
agent ai after the redistribution of the payofis. V is the 
value of C if the members of NC can jointly reach a 
payofl V. That is, V = CaSENc iY’(Qi) , where Ui is 

the payofl function of agent ui and Oi is its resource- 
vector after redistribution in C. 

The specific distribution of the resources among the 
members of the coalition strongly affects the results 
of the payoff functions of the agents and thus affects 
the coalitional value. It is in -equilibrium to reach 
a resource distribution that will maximize the coali- 
tional value. Therefore, the resources are redistributed 
within & in a way that maximizes the value of the coali- 
tion. Thus, the coalition value V of a specific group 
of agents NC is unique. The complexity of computing 
the redistribution of the resources and calculating the 
coalitional value depends on the type of payoff fun&ion 
of the coalition-members. For example, if the payoff 
functions are linear functions of resources, then poly- 
nomial calculation methods can be applied. 

Coalition-formation usually requires disbursement of 
payoffs among the agents. We define a payoff vector 
U = (u’ , u2, . . . , un) in which its elements are the pay- 
offs to the agents 2. In each stage of the coalition for- 
mation process, the agents are in a coalitional con- 
figuration. That is, the agents are arranged in a set 
of coalitions C= {Ci), that satisfies the conditions 
UiCi = N, VCi, Cj, Ci # Cj, Ci II Cj = 4. A pair 
of a payoff vector and a coalitional configuration are 
denoted by PC( U,C), or just PC (Payment Configura- 
tion). Since we assume individual rationality, we con- 
sider only individually rational payment configurations 
( IRPC’s in game theory, e.g.,(Rapoport 1970)). 

A (rational) coalitional configuration space (CCS) is 
the set of all possible coalitional configurations such 
that the value-of each coalition within a configuration 
is greater or equal to the sum of the payoffs of the 
coalition-members3. The size of the CCS is O(nn). A 

2Note that U is a payoff vector of all of the agents while 
UC is a payoff vector of the members of a specific coalition. 

31t is very common to normalize the agents’ payoffs to 
zero. In such a case, the requirement on the sum becomes 
simpler - the coalitional values must be non-negative. 
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payment configuration space (PCS) is a set of possible 
individually-rational PCs. That is, a PCS consists of 
pairs (U, C) h w ere U is an individually-rational pay- 
off vector and C is a coalitional configuration in CCS. 
Since for each coalitional configuration t,here can usu- 
ally be an infinite number of payoff vectors, the number 
of PCs is infinite, and the PCS of all rational PC’s is 
an infinite space. 

We would like the resulting payoff vector of our 
coalition-formation model to be stable and Pareto- 
optimal. A payoff vector is Pareto-optimal if there is 
no other payoff vector that dominates it, i.e., there is 
no other payoff vector that is better for some of the 
agents and not worse for the others (Lute & Raiffa 
1957). It seems in the best interest of individually 
rational agents to seek Pareto-optimal payoff vectors. 
However, a specific Pareto-optimal payoff vector is not 
necessarily the best for all of the agents. There can 
be a group of Pareto-optimal payoff vectors where dif- 
ferent agents prefer different payoff vectors. This may 
lead to difficulty when agents negotiate cooperation 
and coalition formation. Pareto-optimality is not suf- 
ficient for evaluating a possible coalition for a specific 
agent, hence we present the concept of stability. 

The issue of stability was studied in the game theory 
literature in the context of n-person games (Rapoport 
1970; Lute & Raiffa 1957). These notions are useful 
for our purposes, when coalitions are formed during 
the coalition formation procedure. The members of 
such coalitions can apply these techniques to the dis- 
tribution of the coalitional value. Game theorists have 
given several solutions for n-person games, with several 
related stability notions. In this paper we concentrate 
solely on the Kernel solution concept. However, we 
shall discuss the other solution concepts in an extended 
version of this paper. 

The Kernel K 

The kernel (Davis & Maschler 1965) is a PCS in which 
the coalitional configurations are stable in the sense 
that there is equilibrium between pairs of individual 
agents which are in the same coalition. Two agents 
al, 132 in a coalition C, in a given PC, are in equilib- 
rium if they cannot outweigh one another from C, their 
common coalition. al can outweigh u2 if al is stronger 
than ~2, where strength refers to the potential of agent 
al to successfully claim a part of the payoff of u2 in PC. 

During the coalition formation, agents can use the 
kernel concept to object to the payoff distribution that 
is attached to their coalitional configuration. This ob- 
jection will be done by agents threatening to outweigh 
one another from their common coalition. Given a 
PC( U, C), agents can make objections based on the 
excess concept. We recall the relevant definitions. 

Definition 2 Excess The excess (Davis & Maschler 
1965) of a coalition C with respect to the coali- 
tionat configuration PC is defined by e(C) = V(C) - 

c a,EC u 7 
i where ui is the payofl of agent ui in PC. C 

is not necessarily a coalition in PC. 

Given a specific PC, the number of the excesses with 
respect to the specific coalitional configuration is 2n. 
Any change in the payoff vector U, either when the 
coalitional configuration changes or when it remains 
unchanged, may cause a change in the set of excesses. 
Such a change will require recalculation of all of the 
excesses. Agents use the excesses as a measure of their 
relative strengths. Since a higher excess correlates with 
more strength, rational agents must search for their 
highest excess, i.e., the surplus. 

Definition 3 Surplus and Outweigh The mazi- 
mum surplus Sub of agent a over agent b with respect to 
a PC is defined by Sab = MA&la~c,bgce(C), where 
e(C) are the excesses of all the coalitions that include a 
and exclude b, and the coalitions C are not in PC, the 
current coalitional configuration. Agent a outweighs 
agent b if Sub > Sba and ub > V(b), where V(b) is the 
value of b as a single agent. 

If two agents cannot outweigh one another, we say 
that they are in equilibrium. We say that a, b are in 
equilibrium if one of the following conditions is satis- 
fied: (i) Sab = Sba; (ii) Sab > Sba and ub = V(b); 
(iii) Sab < Sba and Ua = V(u). Using the concept of 
equilibrium, the kernel and its stability are: 

Definition 4 Kernel and K-Stability 
A PC is K-stable if ‘da, b agents in the same coalition 
C E PC, the agents a, b are in equilibrium. A PC is 
in the kernel ifl it is K-stable. 

The kernel stability concept provides a stable payoff 
distribution for any coalitional configuration in the ra- 
tional CCS (Davis & Maschler 1965; Aumann, Peleg, & 
Rabinowitz 1965)4. Using this distribution, the agents 
can compare different coalitional configurations. How- 
ever, checking the stability does not direct the agents 
to a specific coalitional configuration. The coalition 
formation model that we develop will perform this di- 
rection. The kernel leads symmetric agents to receive 
equal payoffs. Such symmetry is not always guar- 
anteed in other solution concepts (e.g., the bargaining 
set) (Rapoport 1970). Another property of the ker- 
nel - it is a comparatively small subset of the PCS 
of all rational PC’s. In addition, the mathematical 
formalism of the kernel allows one to divide its calcu- 
lation into small processes, thus simplifying it. Some 
exponentially-complex computing schemes for the ker- 
nel solution were provided, e.g., by (Aumann, Peleg, & 
Rabinowitz 1965). Stearns (Stearns 1968) presented a 
transfer scheme that, given a coalitional configuration 
and a payoff vector, converges to an element of the ker- 
nel. Due to its advantages, the kernel was chosen as 

4The kernel does not provide coalitional configurations, 

it only determines how the payoffs will be distributed given 
a coalitional configuration. Therefore, it cannot be used as 

a coalition formation algorithm. 
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the theoretical background for our coalition formation 
model. 

Coalition Negotiation Algorithm CNA 

The CNA is a coalition formation algorithm based on 
negotiation. It consists of steps in which coalitions 
transmit, accept and reject proposals for creating new 
coalitions. Initially, all agents are in single-membered 
coalitions. The CNA proceeds through a sequence of 
steps as described below. In each step, at least one 
coalition will make an attempt to improve the payoffs 
of its members by making a coalition formation pro- 
posal to another coalition. The CNA may continue 
either until all of the proposals of all of the agents 
are rejected or until a K-stable and Pareto-optimal 
PC has been reached, thus reaching a steady state. 
The CNA may also terminate when the allocated time- 
period ends. 

When the agents use the CNA, the coalitional con- 
figurations that are formed when the agents reach the 
steady state are stable according to a new stability con- 
cept that we define below, the polynomial-K-stability. 
However, since the CNA is an anytime algorithm (Dean 
& Boddy 1988) even if it is terminated after a limited 
number of steps before reaching a steady state, it will 
still provide the agents with a polynomial-K-stable PC. 

The Polynomial Approach 

We modify some concepts to adjust them to the 
polynomial-K-stability algorithm. Polynomial excesses 
are excesses that are calculated with respect to a poly- 
nomial subset of all 2n possible coalitions. The de- 
signers of agents must agree upon regulations that 
will direct their agents to a well defined polynomial 
set of coalitions. We suggest that the designers agree 
upon two integral constants iii , li2. These constants 
Ii1 5 1<z should not depend on n. Nevertheless, 
Iir, 1<z small w.r.t. n/2 should be preferred. In the 
regulation of the coalition formation model, the agents 
shall be allowed to consider excess calculations only for 
coalitions of sizes in the ranges [Ii’1 , K2]_ Choosing ii’s 
contradictory to the agreed upon Ii’r, 1<z by a specific 
agent shall be avoided, mainly because according to 
the regulations objections based on different li”s are 
not acceptable. 

Definition 5 A polynomial maximum surplus SP is a 
maximum surplus that is computed from a set of poly- 
nomial excesses. A coalition C in a coalitional con- 
figuration is polynomially-K-stable if for each pair of 
agents a, b E C, either one of the agents has a null 
normalized payoff in C, or /SP,b - SPbal 5 &, i.e., the 
agents are in equilibrium with respect to E, where SP 
are the polynomial surpluses, and E is a small prede- 
fined constant. 

Given a specific coalitional configuration with an 
arbitrary payoff distribution vector, it is possible to 
compute a polynomial-K-stable PC by using a trun- 
cated modification of the convergent transfer scheme 

in (Stearns 1968). We implement the Stearns-scheme 
by using the n-correction of Wu (Wu 1977)5 to initialize 
the process. The iterative part of the scheme is modi- 
fied so that it will terminate whenever a payoff vector 
that is close, according to the predefined small E, to an 
element of the polynomial kernel has been reached. 

A CNA Scheme 

The CNA scheme is aimed at advancing the agents 
from one coalitional configuration to the other, to 
achieve more cooperation and increase the agents’ pay- 
offs. Given a specific configuration, the agents attempt 
to find a correspondent stable payoff vector. The social 
level of the CNA will be constructed as follows: 

Regulation 1 Negotiation scheme 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Initially, all entities are single agents. 

First stage: members of a coalition may receive 
proposals only as part of the coalition (thus, coali- 
tions can only expand in this stage). 

Each coalition will coordinate its actions either via 
a representative or by voting (or both) e.g., (Peleg 
1984). 

Each coalition Cr, iteratively performs the following: 

e Decide which other coalitions it is interested in 
forming a joint coalition with. 

e Design proposals to be oflered to others: 

- A proposal of Cp to C,. is the details of the 
joint coalition Cneu, and coalitional configuration 

PCnetu: must be polynomially-K-stable, calcu- 
lated with respect to Ii’l,li’z. 

- Cp will design Cnew, Nneul = N,uN,., with payo# 
vectors Uneu, that increase Cneu, ‘s payofls. 

- In addition to C,,,, Cr, will design the coalitional 
configuration in which C,,, is included. Other 
coalitions stay unchanged in PC,,,. 

transmit one proposal to one target coalition at a 
time; wait for response. 

o When an ogler is accepted, the oflering coalition 
and the accepting coalition form a new coalition 
according to the details of the proposal6. The new 
PC determines the payofls of the agents. 

o Other active proposals will be canceled. 

If Cr, has no more proposals to make, it shall an- 
nounce it. 

If a steady state is reached, where all coalitions an- 
nounce that they have no proposals, proceed to second 
stage of the CNA. Otherwise, start a new iteration. 

If the agents run out of computation time before a 
steady state has been reached, the algorithm termi- 
nates and the last PC holds. 

5While Wu uses this correction as a means for iterating 
in a transfer scheme for the core, we use it as a single 
correction in the beginning of our iterative algorithm. This 
n-correction is not necessary in the Stearns scheme. 

‘The payoff vector U of the new PC is valid from now 
on and is used as the basis for future negotiation. 
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8. 

9. 

10. 

Second stage: the coalitions will follow the same 
sequence of steps as in the first stage of the CNA. 
However, proposals that involve destruction are al- 
lowed. 

When a new PC changes the payofls, dissatisfied 
agents may leave their coalitions. These coalitions 
will destruct. 

The second stage will end either when a steady state? 
is reached or when the computation time ends. 

The regulation above is enforceable since deviation 
from it is revealable. For example, proposals addressed 
to coalition-members will be detected immediately 
when accepted due to the coalition formation. The lim- 
itation that destruction of coalitions be avoided in the 
first stage will radically shorten the coalition formation 
process by avoiding most of the intra-coalitional com- 
putation and communication in this stage. The num- 
ber of iterations for reaching a steady state in the first 
stage of the CNA is O(n). If the agents have enough 
time and computational resources they will continue 
through stage 2. The number of steps until a steady 
state is reached in the second stage may be O(nn) due 
to the size of the PCS. 

An acceptance of a proposal implies an acceptance 
of the corresponding payoff vector by all agents. This 
may change the payoffs of agents who are not involved 
in the negotiation, because a proposal consists of a 
payoff vector to all of the agents. The aim of the change 
in the payoffs is to preserve the polynomial-K-stability. 
Since some of the agents may be dissatisfied with their 
new payoff, they can make new proposals according to 
which they receive a greater payoff. 

CNA Strategies 

According to part 4 of regulation 1, proposals for the 
generation of new coalitions should be designed by the 
current coalitions. We denote a coalition that designs 
and transmits a proposal by Cp and a coalition that 
receives a proposal by C,. Other coalitions will be 
denoted by C,. We suggest that Cp, that designs a 
proposal for C,, use the following strategy: 

Strategy 1 Proposal design Coalition Cp shall cal- 
culate the coalitional value of the joint coalition Vp+r. 

If VP + K L Vp+7. then Cp shall stop designing a pro- 
posal for Cr. Otherwise, Cp shall calculate the coali- 
tional values of all other coalitions of all sizes in the 
range [I<, , K2]. Cp shall calculate the payofl vector 
u new of the new PC wherein coalitions Cp and C, join 

to form Cnew, and all the other coalitions do not vary. 
These calculations will be done by using the truncated 
transfer scheme, starting from the initial payofl vector 
U. Coalition Cp will compare Uneu, to U. If the payofls 
to all of the members of C, and Cp in PC,,, are not 
smaller than their payoss in the current PC and are 

7Note that the steady state in the second stage is differ- 
ent from the steady state in the first stage since there are 
different restrictions on the proposals in these two stages. 
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also better than in all of the proposals that Cp has in the 
received-proposals queue then coalition Cp will send the 
resultant PCn.0, as a proposal to coalition C,. Other- 
wise, Cp shall stop the process of designing a proposal 
for C,. 

This strategy for proposal design shall be used by 
agents that are interested in reaching beneficial coali- 
tion formation and act under the regulations, which 
forces polynomial-K-stability of proposals. This is be- 
cause the calculation of the new coalitional value Vp+r 
and the comparison to the sum of original coalitional 
values VP and V, is done to avoid worthless propos- 
als in advance. In cases where Vp+r enables beneficial 
coalition joining, coalition Cp shall seek all coalitional 
values (of coalitions of sizes in the range [ICI, Iirz]) in 
order to use these values for PC calculations. 

Strategies are not enforced and agents can act with- 
out using our strategies. We propose them in order 
to increase the payoff to the individual agent and be- 
cause they satisfy the weak equilibrium requirement. 
A set of strategies is in weak equilibrium if none of 
the entities that act according to these strategies can 
guarantee, by deviating from its strategy, an increase 
in its benefits. An entity may be able to calculate all 
possible proposals and all of their consequences. How- 
ever, due to time and communication uncertainties, it 
cannot predict the exact results of the negotiation, and 
therefore it cannot guarantee an increase in its payoff. 

Complexity of the CNA 

The complexity of calculation of the polynomial set 
of coalitions, the coalitional values and the coalitional 
configurations is of the same order of the number of 
the coalitions which is given by 

ncoalitions = E ( Y ) = ?I i!cnnA i)! 
i= K1 

which is a sum of polynoms of order O(ni). 
Computation of values and configurations 
The CNA requires the computation of n,.oalitions coali- 
tional values. It also requires the design of coalitional 
configurations, and the number of these depends on 
the time constraints. In a case where only the first 
stage of the CNA is performed, the number of coali- 
tional configurations which are treated is O(n). If the 
CNA proceeds through the second stage, the number 
of coalitional configurations increases. In each itera- 
tion of the CNA, when one coalitional configuration is 
treated, a polynomial-K-stable PC shall be calculated. 
Computation of polynomial-M-stable PC’s 
The CNA will employ the transfer scheme for calculat- 
ing polynomial-K-stable PC’s. The total complexity of 
one iteration of the transfer scheme is 0( n x n,,,litions). 
The number of iterations that should be performed to 
reach convergence depends on the predefined allowed 
error E. The resulting payoff vector of the transfer 



scheme will converge to an element of the polynomial- the number of coalition formations. This means that 
kernel (with a relative error not greater than E) within not only it is beneficial to form coalitions, formations 

n log,(e,,/E) iterations (Stearns 1968), where erO is the of more coalitions increase the average benefits of the 
relative error of the initial PC. agents. 

The transfer scheme will be performed for O(n) 
coalitional configurations in the first stage of the CNA 
and up to O(nn) in the second stage. Therefore, the 
complexity of the CNA is of at least 0(n2ncoalitiolas) 
and up to O(nnncoalitions) computations. If the com- 
putations are distributed among the agents, this order 
of complexity of computations is divided by n. There 
is an additional communicational complexity, which is 
of order 0( n2ncoalitions). 
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The performance of the CNA was tested with re- 
spect to different constants (K’s,E) and different envi- 
ronmental settings. Running the simulation has pro- 
vided several results as presented below. Initially, we 
have shown that the simulated CNA reaches a stable 
PC within a reasonable time (for the first stage of the 
CNA). In addition, it has been found (for the settings 
that we have examined) that the CNA continuously 
improves the agents’ payoffs, whether it is normally 
terminated or halted artificially. The main results of 
the simulation for 5 through 13 agents, without limita- 
tion on Ii’1 and Ii2 and with E = 1 (i.e., less than 1% 
of the average coalitional value) are as follows: 

1. The number of agents that participate in coalitions 
is an increasing monotonic function of the average 
of potential coalitional values. The most appropri- 
ate analytical curve-fit to the results is a logarith- 
mic function, as in figure 1. We can also conclude 
that the increment in the coalitional values is not 
a sufficient condition for increasing the number of 
coalitions’ members. This may arise from unresolv- 
able conflicts that are present in non-super-additive 
environments. 

2. In cases where cooperation is beneficial, we observe 
(figure 2) that the utility is growing as a function of 
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figure 2 
3. As expected, the time necessary for coalition for- 

mation without bounding the K’s is an exponential 
function of the number of agents that comprise the 
agent-system (see figure 3). However, as can be ob- 
served from the graph, this exponent is not too steep. 
For example, in a system of 13 agents, where each 

agent is implemented on an Intel@486 processor, the 
computation time per agent is only a few minutes. 

4. We also observed that the use of the algorithm by 
agents does not violate, in average, their individual 
rationality. 

According to these intermediate results, it shows 
that the CNA is a good coalition formation model for 
MA systems in general environments. We shall report 
more results in future work. 

Run-time Nagotiation time as function of 
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Conclusion 

The CNA is useful for instances where the number of 
agents may be large (e.g., tens of agents), computa- 
tions are costly and time is limited. This is because 
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the model leads to coalition formation within a poly- 
nomial time and a polynomial amount of calculations. 
We introduce the polynomial K-stability. The original 
K-stability refers to a PC where agents cannot make 
justified objections, using (exponential) surplus calcu- 
lations. The new polynomial K-stability entails poly- 
nomial objection calculations. 

The CNA leads to distribution of both calculations 
and communications. In addition, it is an anytime al- 
gorithm: if halted after any negotiation step, it pro- 
vides the agents with a set of formed polynomial-K- 
stable coalitions. A deficiency of the CNA is that in 
polynomial time it cannot guarantee that a Pareto- 
optimal PC will be reached. However, for calculating 
a Pareto-optimal PC all of the coalitional configura- 
tions in the CCS shall be approached, and therefore 
there cannot be any polynomial method to find Pareto- 
optimality. An important advantage of our algorithm 
is that the average expected payoff of the agents is an 
increasing function of the time and effort spent by the 
agents performing the CNA steps. Therefore, if coop- 
eration is beneficial for the agents, using the CNA will 
always improve their payoffs. The last property, the 
anytime and distribution properties and other advan- 
tages of the CNA, have been proved via simulations. 

The model we present is not restricted to the super- 
additive environment, for which there are already 
several coalition formation algorithms in DAI (She- 
hory & Kraus 1993; Zlotkin & Rosenschein 1994; 
Klusch & Shehory 1996). However, the generality of 
the model does not make it inapplicable. As opposed 
to the majority of solution concepts presented in game 
theory, we present a detailed method for how the in- 
dividual agent should act in order to form coalitions 
that increase its personal payoff. 
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