
Declarative Camera Contra tomatic Cinematograp
David B. Christianson

Sean E. Anderson Li-wei He
David H. Salesin Daniel S. Weld Michael F. Cohen*

Department of Computer Science and Engineering *Microsoft Research
University of Washington One Microsoft Way

Seattle, Washington 98195 Redmond, WA 98052
(dbcl, lhe,salesin, weld) @es. Washington. edu, seander@cs.stanford. edu, mcohen@microsoft. corn

Abstract
Animations generated by interactive 3D computer
graphics applications are typically portrayed either
from a particular character’s point of view or from a
small set of strategically-placed viewpoints. By ignor-
ing camera placement, such applications fail to realize
important storytelling capabilities that have been ex-
plored by cinematographers for many years.
In this paper, we describe several of the principles of
cinematography and show how they can be formal-
ized into a declarative language, called the Declaru-
tive Camera Control Language (DCCL). We describe
the application of DCCL within the context of a simple
interactive video game and argue that DCCL represents
cinematic knowledge at the same level of abstraction
as expert directors by encoding 16 idioms from a film
textbook. These idioms produce compelling anima-
tions, as demonstrated on the accompanying video-
tape.

Introduction
The language of film is a complex one, which has
evolved gradually through the efforts of talented film-
makers since the beginning of the century. As a re-
sult the rules of film are now so common that they
are nearly always taken for granted by audiences;
nonetheless, they are every bit as essential as they
are invisible. Most interactive 3D computer graph-
ics applications (e.g., virtual chat managers, interac-
tive fiction environments, and videogames) do not ex-
ploit established cinematographic techniques. In par-
ticular, most computer animations are portrayed ei-
ther from a particular character’s point of view or
from a small set of strategically-placed viewpoints.
By restricting camera placement, such applications
fail to realize the expository capabilities developed
by cinematographers over many decades. Unfortu-
nately, while there are several textbooks that con-
tain informal descriptions of numerous rules for film-
ing various types of scenes (Arijon 1976; Lukas 1985;
Mascelli 1965), it is difficult to encode this textbook
knowledge in a manner that is precise enough for a
computer program to manipulate.
In this paper, we describe several of the principles of
filmmaking, show how they can be formalized into a
declarative language, and then apply this language to

148 Art & Entertainment

the problem of camera control in an interactive video
game. Specifically, we describe the Declarative Cam-
era Control Language (DCCL) and demonstrate that it
is sufficient for encoding many of the heuristics found
in a film textbook. We also present a Camera Planning
System (CPS), which accepts animation traces as input
and returns complete camera specifications. The CPS
contains a domain-independent compiler that solves
DCCL constraints and calculates the dynamical con-
trol of the camera, as well as a domain-independent
heuristic evaluator that ranks the quality of the can-
didate shot specifications that the compiler produces.
We demonstrate a simple interactive video game that
creates simulated animations in response to user input
and then feeds these animations to CPS in order to pro-
duce complete camera specifications as shown on the
accompanying videotape.
Our prototype video game serves as a testbed for appli-
cations of DCCL and CPS. However, there are number of
alternative applications to which both DCCL and CPS
might be applied. Within the realm of video games,
Multi-user Dungeons (MUDS), and interactive fiction,
automated cinematography would allow an applica-
tion to convey the subjective impression of a particu-
lar character without resorting to point-of-view shots.’
Because many MUDS operate over long periods of time,
an automated cinematography system could provide
users with customized summaries of events they had
missed while they were away. Alternatively, automated
cinematography could be used to create natural inter-
actions with the “intelligent agents” that are likely to
take part in the next generation of user interfaces. Au-
tomated cinematography could also be used to assist
naive users in the creation of desktop videos, or for
building animated presentations. In the latter case,
Karp and Feiner have shown (Karp & Feiner 1990;
1993) that animated presentations can be effectively
designed on a computer, reducing costly human in-
volvement and allowing presentations to be customized
for a particular viewer or situation.

‘Most current games, of which Doom is the classic ex-
ample, still provide each participant with a single point-of-
view shot; however, a number of games such as Alone in
the Dark, Fade 2 Black and Virtua Fighter have begun to
employ a wider variety of perspectives.

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Principles of Cinematography
Although a film can be considered to be nothing but a
linear sequence of frames, it is often helpful to think of
a film as having structure. At the highest level, a film
is a sequence of scenes, each of which captures some
specific situation or action. Each scene in the film is
composed of one or more shots. A single shot covers
the small portion of a movie between when a camera is
turned on and when it is turned off. Typically, a film is
comprised of a large number of individual shots, with
each shot’s duration lasting from a second or two in
length to perhaps tens of seconds.2

Camera Placement
Directors specify camera placements relative to the line
of interest, an imaginary vector connecting two inter-
acting actors, directed along the line of an actor’s mo-
tion, or oriented in the direction the actor is facing.
Figure 1 shows the line formed by two actors facing
each other.

d

v
Apex

Figure 1: Camera placement is specified relative to the
“line of interest.” (Adapted from figure 4.11 of (Arijon
1976))

Shooting actor X from camera position b is called a
paruEEeZ camera placement. Filming X from position
c yields an internal reverse placement. Shooting from
position d results in an apex shot that shows both ac-
tors. Finally, filming from g is called an external re-
verse placement.
Cinematographers have identified that certain “cutting
heights” make for pleasing compositions while others
yield ugly results (e.g., an image of a man cut off at the
ankles). There is a set of (roughly) five useful camera
distances (Arijon 1976, p. 18). An extreme closeup
cuts at the neck; a closeup cuts under the chest or at
the waist; a medium view cuts at the crotch or under
the knees; a fuZZ view shows the entire person; and a
long view provides a distant perspective.

Heuristics and Constraints
Filmmakers have articulated numerous heuristics for
selecting good shots and have informally specified con-

2A notable exception is Alfred Hitchcock’s Rope, which
was filmed in a single shot, albeit with disguised breaks.

straints to be placed on successive shots to lead to
good scenes. Several of the more important rules in-
clude (Arijon 1976):

Parallel editing: Story lines (visualized as scenes)
should alternate between different characters, loca-
tions, or times.

Only show peak moments of the story: Repetitive
moments from a narrative should be deleted.

Don’t cross the line: Once an initial shot is taken
from the left or right side of the line, subsequent
shots should maintain that side, unless a neutral,
establishing shot is used to show the transition from
one side to the other. This rule ensures that suc-
cessive shots of a moving actor will maintain the
direction of apparent motion.

Let the actor lead: The actor should initiate all
movement, with the camera following; conversely,
the camera should come to rest a little before the
actor.

Break movement: A scene illustrating motion should
be broken into at least two shots. Typically, each
shot is cut so that the actor appears to move across
half the screen area. A change of the camera-to-
subject distance should also be made in the switch.

Idioms
Perhaps the most significant invention of cinematogra-
hers is the notion of an idiom - a stereotypical way
to capture some specific action as a series of shots.
For example, in a dialogue between two people, a film-
maker might begin with an apex view of both actors,
and then alternate views of each, at times using in-
ternal reverse placements and at times using external
reverse. While there is an infinite variety of idioms,
film directors have learned to rely on a small subset of
these. Indeed, film books (e.g., (Arijon 1976)) are pri-
marily a compilation of idioms along with a discussion
of the situations when a filmmaker should prefer one
idiom over another. Figure 2 presents a three-shot id-
iom that serves as an extended example throughout the
remainder of this paper. The idiom, adapted from Fig-
ure 13.2 of Arijon’s text (1976), provides a method for
depicting short-range motion of one actor approaching
another. The first shot is a closeup; actor X begins in
the center of the screen and exits left. The second shot
begins with a long view of actor Y; actor X enters from
off-screen right, and the shot ends when X reaches the
center. The final shot begins with a medium view of Y,
with actor X entering from off-screen right and stop-
ping at center.

DCCL
This section provides an informal description of the
Declarative Camera Control Language DCCL. The
specification of DCCL is important because it allows
CPS to formalize, encode, and implement common film
idioms, such as the one presented in Figure 2.

Entertainment 149

(AcFilmIdiom name Arijon-13-2
:parameter (AcParamApproach :actori :actor2 :start :stop)
:line (AcLineIdiom :primary ?actori :other ?actor2 :side left)
(AcFilmShot name shot1
(AcFragGoBy name fragl

:time ?start :primary-moment beginning :entry-pos center :exit-pos out-left
:placement (AcPlaceInternal :primary ?actorl :other ?actor2 :range closeup :primary-side center)>)

(AcFilmShot name shot2
(AcFragGoBy name frag2

:time ?frag3.first-tick :primary-moment end :entry-pos on-right :exit-pos center
:placement (AcPlaceExternal :near ?actorl :far ?actor2

:primary-subject near :range longshot :primary-side center>>>
(AcFilmShot name shot3
(AcFragGoBy name frag3

:time ?stop :primary-moment end :entry-pos out-right :exit-pos right12
:placement (AcPlaceApex :primary ?actorl :other ?actor2 :range mediumshot :primary-side rightl2))))

Figure 3: DCCL code corresponding to the idiom depicted in Figure 2.

Figure 2: (Adapted from figure 13.2 of (Arijon 1976)). A
common idiom for depicting short range movement of one
actor approaching another. Camera positions are shown
on the left side of the figure; the resulting image is shown
on the right. Arrows indicate motion of actors into and
out of the screen.

There are four basic primitive concepts in DCCL: frag-
ments, views, placements, and movement endpoints;
these primitives are combined to specify higher-level
constructs such as shots and idioms.

Fragments
In the previous section, we discussed how cinematog-
raphers treat a shot as the primitive building block in
a film. For our automated system, we have found it
useful to further decompose each shot into a collec-
tion of one or more fragments. A fragment specifies
an interval of time during which the camera is in a
static position and orientation or is performing a sin-
gle simple motion. DCCL defines five fragment types
(illustrated schematically in Figure 4).
A fully-specified fragment requires additional informa-
tion. Some of these arguments are obvious - for exam-
ple, to track the motion of an actor, one must specify
which actor to track and over what time interval to roll
the film. In addition, one must also specify the desired
camera range - extreme, closeup, medium, full, or long,
as well as the placement of the camera relative to the

150 Art & Entertainment

actor (or actors) - internal, external, parallel, and apex.
Three of the fragments, go-by, panning, and tracking,
require an additional argument, called the primary mo-
ment, which specifies the moment at which the place-
ment command is to take effect during a shot in which
there is motion.
Finally, two of these fragments, go-by and panning, re-
quire another argument called a movement endpoint,
which is used to indicate the range of motion to be cov-
ered by the actor relative to the screen.3 As Figure 5
illustrates, DCCL recognizes seven movement-endpoint
keywords.
Note that although the movement-endpoint keywords
refer to locations on the screen, they are used to
calculate the temporal duration of go-by and panning
fragments.4 For example, the first shot of the idiom of
Figure 2 can be defined as a go-by moving from center
to out-left.

Shots and Idioms
In many cases, a shot is composed of a single frag-
ment, but sometimes it is effective to merge several
fragments together to form a more complex shot. For
example, one can start with a panning fragment in

3To understand why this argument is necessary, recall
that a go-by fragment results in a static camera position
directed at an actor who moves across the field of view. An
example of a go-by fragment is the first shot of Figure 2.
Note that Arijon (1976) expresses the shot not by specify-
ing the temporal duration, but rather by indicating (with
arrows) the range of motion that the actor should cover
while the film is rolling. DCCL uses movement endpoints to
allow the same type of declarative specification and relies
upon the compiler to calculate the temporal bounds that
will yield the proper range of motion.

*This explains the definition of out-right and out-left.
Arijon (1976) specifies that shots in which an actor moves
off-screen (or onto the screen) should be cut three frames
after (of before) the actor disappears (or appears). As are-
sult we define out-right and out-left in terms of the distance
traveled while three frames transpire.

*\ \ #’
v Static Fragment

. , Actor moves across screen ,
..-.J..-. +!

\
w -...-...-.-..*.. ;<. line (,f achon

\ I
\ \ t’

\ \ ,’
\ I’ ‘\ \ I’

‘0’ Go-hy Fragment

Actor stays near center of sceen as camera turns . . .
“‘--“-‘7

~~~~~~~**-~~~ line of action 

Panning Fragment 

Actor stays near center of screen as camera moves parallel to line 

\ 
....---~.-;“‘.--.“.‘.“‘. line “faction 

\ 
\ I’ 

\ \ I’ .\ , \ \ I’ \ \ 4‘ 

‘0’ Tracking Fragment 

-----. line of action 

‘. 
camera move together 

‘\ 
‘\ \ ‘. \ 

Point of View (POV) Fragment 

Figure 4: DCCL fragments specify the type of camera 
motion. 

which a running actor moves from out-left into the 
center of the screen, then shift to a tracking shot by 
terminating camera rotation and increasing its lateral 
motion to match that of the actor (Figure 6). Multi- 
fragment shots typically combine panning, tracking and 
go-by fragments in different orders. 
In multifragment shots, it is often important to be 
able to synchronize (in “simulation time”) the end of 
one fragment with the beginning of the next. For this 
reason, DCCL supports the ability to export computed 
variables, such as the starting or ending time of a frag- 
ment , for use by other fragments in the same idiom. 
The duration of a scene can decrease if fragments do 
not cover the entire scene, producing “time contrac- 
tion.” 
To define an idiom, one must specify the activities for 
which the idiom is deemed appropriate, a name, ar- 
guments (e.g., actors and times), and a list of shot 
descriptions. For example, Figure 3 shows the actual 
DCCL encoding of the idiom illustrated in Figure 2; this 
idiom is a good choice for showing one actor approach- 
ing anot her. 

principles of camera placement for the case of simple 
movement sequences on the part of one or two actors. 
As input, CPS requires an animation trace: informa- 
tion about the positions and activities of each charac- 
ter, as well as directives stating which actors are to be 
filmed over what intervals of time. In our interactive 
game, this information is produced by a simple com- 
puter simulation generated in response to a user com- 
mand. Given this trace information, the CPS chooses 
which subintervals of time to capture with the camera 
and from which vantage points and with which lenses 
(i.e., what field of view). The animation can then be 
played back to the user using the intervals and camera 
placements selected by the CPS. 
The primary data structure used by CPS is the film tree 
(Figure 7), which represents the film being generated. 
Of primary consequence are the scene and candidate 
idiom levels of the tree: each scene in the film is associ- 
ated with one or more possible idioms, with each idiom 
representing a particular method of filming the parent 
scene. The CPS operates by expanding the film tree 
until it has compiled detailed solutions for each idiom, 
and then selecting appropriate candidate idioms and 
frames for each scene. 
Internally, the CPS is implemented as a three-stage 
pipeline involving a sequence planner, DCCL compiler, 
and a heuristic evaluator, as shown in Figure 8. An id- 
iom database (not shown) provides idiom specifications 
relevant to each scene in the animation being filmed. 

The Camera Planning System The Sequence Planner 
The Camera Planning System (CPS) codifies and im- The current implementation of the CPS sequence plan- 
plements the previously described cinematographic ner is quite simple. Unlike the other portions of the CPS 

Figure 5: DCCL allows the user to delimit the temporal 
duration of go-by and panning fragments by specifying 
the desired initial and terminal locations of the actor on 
the screen. 

Panning Tracking 

Figure 6: Schematic illustration of a shot composed of 
two fragments: a panning fragment that melds impercep- 
tibly into a tracking fragment. 

Entertainment 151 



Figure 8: The CPS is implemented as a three-stage pipeline. 

Film 

Sequences 

Scenes 

Candidate 
Idioms 

Candidate 
Frames 

Figure 7: Successive modules in the CPS pipeline incre- 
mentally expand the film tree data structure. 

the code implementing the sequence planner is specific 
to the domain (plot) of the application (e.g.chase and 
capture interactions). As input the planner receives an 
animation trace describing the time-varying behavior 
of a group of actors. As output, the sequence planner 
produces a film tree (Figure 7) that is specified down 
to the scene level. 
The animation trace specifies position, velocity, and 
joint positions for each actor for each frame of the an- 
imation. The trace also labels the activity being per- 
formed by each actor in each frame, as well as higher- 
level information encoded as a set of film sequences, 
with each film sequence including an interval of time, 
an actor to use as the protagonist, and (optionally) a 
second actor. In the current application, multiple film 
sequences are used to create parallel editing effects by 
having the CPS intermix scenes featuring one set of ac- 
tors with scenes featuring a different set of actors (see 
accompanying videotape). 
Given the information in the animation trace, the se- 
quence planner generates scenes by first partitioning 
each film sequence according to the activities per- 
formed by the protagonist during the given sequence. 
For the current application we have identified ten ac- 
tivity types (Table 1). After partitioning a sequence, 
the sequence planner generates scenes parameterized 
by the activity, actors, and time interval of each parti- 
tion. 
Once the sequence planner has created the scene nodes, 
the CPS must instantiate the idiom schemata relevant 
for each scene. Relevance is determined by matching 
the scene activity against a list of applicable activities 
defined for each idiom. The current implementation of 
the database contains 16 idioms (Table 1). The plan- 
ner instantiates idioms by substituting actual param- 
eters (actor names, and scene start and ending times) 

Activity Solitary Idioms 

Stopping/Starting Y 1 
X-Approaches-Y N 2 
X-Retreats-From-Y N 2 
X-Follows-Y N 2 
Moving Y 2 
Turning Y 1 
HeadTurning Y 1 
Stationary Y 1 
Looking Y 1 
Noticing N 1 
Picking Up N 1 
Holding N 1 

Table 1: Activity classifications for prototype game. 

for the placeholders specified in the idiom definitions. 
References to actor placements on the right or left sides 
will be automatically mirrored later, during the idiom 
solving process. 

The DCCL Compiler 
The DCCL compiler uses information about the move- 
ment of the actors to expand the fragments in each 
candidate idiom into an array of frame specifications, 
which can be played directly. Since a frame is fully 
constrained by the combination of its camera’s 3D po- 
sition, orientation, and field of view, the compiler need 
only generate an array of these values for each fragment 
in each shot in each candidate idiom. 
In its simplest form, an idiom consists of a single shot 
that is composed of a single fragment, so we cover that 
case first. If the fragment has type pov, then compi- 
lation is trivial, so we assume that the fragment has 
type static, tracking, go-by, or panning. We decompose 
the compiler’s job into four tasks: 
1. Determine the appropriate primary moment(s). 

2. Determine the set of possible frame specifications 
for each primary moment. 

3. Calculate the temporal duration (length of the 
frame array) of the fragment given an initial frame 
specification. 

4. Generate the interpolated specification of frame n 
from that of frame n - 1. 

Once these tasks have been completed, the compiler 
simply has to generate a frame array for each primary 
moment and frame specification. In the current ver- 
sion of CPS there are typically only two frame arrays 
corresponding to placing the camera on one side of the 
line of interest or the other. The task of choosing the 

152 Art 8c Entertainment 



appropriate side is left up to the heuristic evaluator.5 
The primary moment of a fragment defines the point 
in time at which the camera placement should conform 
to the placement specified for the fragment, and varies 
with the type of fragment. The go-by, tracking, and 
panning fragments specify the primary moment as ei- 
ther the first or last tick of the fragment. The static 
fragments, on the other hand, do not specify a primary 
moment, so in the current version of CPS we solve the 
placement for the first, last, and midpoint ticks of the 
fragment’s time interval; the heuristic evaluator will 
later determine which solution looks best and prune 
the rest. 
The fragment’s placement (e.g., internal, external, 
parallel, or apex), as specified in the idiom, combined 
with the location of the actors (from the animation 
trace) constrains the camera’s initial position to lie on 
one of two vectors, according to the side of the line 
being used (Figure 1). The actual location on this 
vector is determined by the desired distance between 
the camera and the primary subject. This distance, 
in turn, is specified by the fragment’s range (extreme, 
closeup, medium, full, or long) and the lens focal length. 
The compiler attempts to generate a set of appropriate 
placements using a normal lens (e.g., a 60-degree field 
of view). The vector algebra behind these calculations 
is explained in (Blinn 1988). 
The temporal duration of static, tracking, and pov frag- 
ments is specified explicitly as part of the DCCL spec- 
ification. However, the duration of go-by and panning 
fragments must be computed from the movement- 
endpoint specification in conjunction with the actor’s 
velocity. 
The function used to update the camera position and 
orientation from one frame to the next depends on 
the type of fragment involved and the change in the 
actors’ positions. Static and go-by fragments do not 
change camera position or orientation. The camera 
in tracking fragments maintains its orientation, but 
changes its position based on the actor’s velocity vec- 
tor. The camera in panning fragments maintains its 
position, but changes its orientation with angular ve- 
locity constrained by actor velocity and the distance 
at the closest approach to the camera (as determined 
by the primary moment). 
Note that unlike the sequence planner, the DCCL com- 
piler is completely domain-independent in that the 
compiler depends only on geometry and not on the 
plot or subject of the animation. Furthermore, the 
DCCL specifications in the idiom database are applica- 
ble across various animations; for example, the idioms 
in our database should apply to any animation with 
two-character interactions. 

5Typically, the camera is restricted to one side of the 
line of interest. However, opportunities to “switch sides” 
sometimes present themselves, such as when an actor turns 
to walk in a neutral direction. 

euristic Evaluator 
Since the film tree is an AND/OR graph, it represents 
many possible films. 6 The heuristic evaluator chooses 
the candidate idiom that renders a scene best, assign- 
ing each idiom a real-valued score by first scoring and 
pruning the frame arrays of its fragments. Note that 
it is not possible to estimate the quality of a fragment 
or idiom before it is compiled, because visual quality is 
determined by the complex, geometric interactions be- 
tween the fragment type and the motions of the actors. 
A given idiom might work extremely well when the ac- 
tors stand in one position relative to one another, yet 
work poorly given a different configuration. 
The scoring mechanism is primarily focused towards 
evaluating inter-fragment criteria, namely: 
@ maintaining 

placements; 
smooth transitions between camera 

e eliminating fragments 
cross the line. 

which cause the camera to 

In addition, the scoring mechanism deals with certain 
intra-fragment behaviors that sometimes arise from the 
compilation phase of the CPS such as: 

penalizing very short or very long fragments; 

Q eliminating 
backwards. 

fragments in which the camera pans 

After the evaluator has selected the best idiom for each 
scene to be included in the film, the camera planning 
process is complete. CPS concatenates the frame ar- 
rays for all idiom nodes remaining in the film tree and 
outputs the corresponding sequence of frames to the 
player for rendering. 
Note that while the evaluator’s rules are heuristic, they 
are also domain-independent within the domain of film 
and animation: each rule encodes broadly-applicable 
knowledge about which types of shots look good on 
film, and which do not. 

Sample Application 
We are particularly interested in interactive uses of au- 
tomatic cinematograpy. Therefore, we decided to build 
a simple interactive game that would use CPS to film 
actions commanded by a human player. The basic plot 
of the game is very simple. The main character, Bob, 
must walk around a virtual world (in our case, SGI’s 
Performer Town) looking for the Holy Grail. The game 
is made more interesting by the introduction of Fido, 
an evil dog that seeks to steal the Grail. From time 
to time, the game generates animations of Fido’s ac- 
tivities and instructs CPS to edit these animations into 
the action. Eventually, Bob and Fido interact: if Fido 
gets the grail, Bob has to chase Fido in order to get 
it back. The user commands Bob through a pop-up 
menu. These commands fall into four basic categories: 

‘Indeed, if there are n scenes and each scene has k can- 
didate idioms as children, then the film tree represents nk 
possible idiom combinations. 

Entertainment 153 



telling Bob to look in a particular direction, to move to 
a particular point on the screen, to pick up an object, 
or to chase another actor. 

User Commands Movies 

I 0 7 

Figure 9: Overall context of CPS 

The implementation of the game and its various anima- 
tion/simulation modules was done in C++ using the 
IRIS Performer toolkit running on SGI workstations, 
and based partially on the perfly application provided 
by SGI (a Performer-based walkthrough application). 
The game operates as a finite-state machine that pro- 
duces animation traces as the user issues commands 
to the game engine, with the CPS acting as a separate 
library whose sole inputs are the animation trace and 
the database of idioms (Figure 9). The game itself (not 
counting CPS or the code present in the existing per- 
fly application) required approximately 10,000 lines of 
C++ code. The CPS system is also written in C++ 
(despite the Lisp-like appearance of DCCL) and imple- 
mented with about 19,000 lines of code. 
The sample game interaction presented at the end of 
our video is intended to demonstrate a number of the 
activities possible in the game, as well as the various 
DCCL idioms. For presentation purposes, the planning 
time required by CPS was edited out of the video; Ta- 
ble 2 gives performance data taken from a similar run- 
through of the game on an SGI Onyx. 

Related Work 
The subject of using principles from cinematography 
to control camera positions and scene structure has re- 
ceived relatively little attention in the computer graph- 
ics or AI communities. We survey most of the related 
work here. 
He, Cohen, and Salesin ( 1996) have developed a sys- 
tem for controlling camera placement in real-time us- 
ing some of the ideas behind DCCL. Their work focuses 
on filming dialogues between multiple animated char- 
acters, and uses a finite state machine to select and 

generate camera positions. 
A number of systems have been described for auto- 
matically placing the camera in an advantageous posi- 
tion when performing a given interactive task (Gleicher 
& Witkin 1992; Mackinlay, Card, & Robertson 1990; 
Phillips, Badler, & Granieri 1992). However, these sys- 
tems neither attempt to create sequences of scenes, nor 
do they apply rules of cinematography in developing 
their specifications. 
In work that is closer to our own, Karp and Feiner 
(Karp & Feiner 1990; 1993) describe an animation 
planning system for generating automatic presenta- 
tions. Their emphasis is on the planning engine itself, 
whereas the work described in this paper is more con- 
cerned with the problem of defining a high-level declar- 
ative language for encoding cinematic expertise. Thus, 
the two approaches complement each other. 
Strassman (Strassman 1994) reports on Divaldo, an 
ambitious experiment to create a prototype system for 
“desktop theatre.” Unlike our focus on camera place- 
ment, Strassman attempts to create semi-autonomous 
actors who respond to natural language commands. 
CPS is also complementary to Divaldo. 
Drucker et al. (Drucker, Galyean, & Zeltzer 1992; 
Drucker & Zeltzer 1994; 1995) are concerned with the 
problem of setting up the optimal camera position for 
individual shots, subject to constraints. Specific cam- 
era parameters are automatically tuned for a given shot 
based on a general-purpose continuous optimization 
paradigm. In our work, a set of possible cameras is 
fully specified by the shot descriptions in DCCL and the 
geometry of the scene. The final selection from among 
this set of different shots is made according to how well 
each shot covers the scene. Our approach avoids the 
need for generic optimization searches, and it is guar- 
anteed to result in a common shot form. The cost is a 
greatly reduced set of possible camera specifications. 
Several useful texts derive low-level camera parame- 
ters, given the geometry of the scene (Foley et al. 1990; 
Hearn & Baker 1994; Blinn 1988). 

Conclusion 
We close by summarizing the contributions of this pa- 
per and describing the directions we intend to pursue 
in future work. The main contributions of this paper 
include: 

o Surveying established principles from filmmaking 
that can be used in a variety of computer graphics 
applications. 

e Describing a high-level language, DCCL, for specify- 
ing camera shots in terms of the desired positions 
and movements of actors across the screen. We have 
argued that DCCL represents cinematic knowledge 
at the same abstraction level as expert directors and 
producers by encoding sixteen idioms from a film 
textbook (Arijon 1976) (e.g., Figure 2). 

154 Art & Entertainment 



Command 

Pick Up Grail 733 9 47.63 
Pick Up Net 451 4 44.74 
Catch Dog 603 4 32.74 
Walk (long range) 701 4 11.52 
Walk (med range) 208 4 6.74 
Look Right 87 3 5.6 
Walk (short range) 158 4 5.12 

Num. Frames Scenes Generated CPU Time (s) 

Table 2: Typical CPS Performance 

Presenting a domain-independent compiler that 
solves DCCL constraints and dynamically controls 
the camera. 

Describing a domain-independent heuristic evalua- 
tor that ranks the quality of a shot specification us- 
ing detailed geometric information and knowledge of 
desirable focal lengths, shot durations, etc. 

Describing a fully-implemented film camera plan- 
ning system (CPS) that uses the DCCL compiler 
and heuristic evaluator to synthesize short animated 
scenes from 3D data produced by an independent, 
interactive application. 

Incorporating CPS into a prototype game, and 
demonstrating sample interactions in the game (see 
videotape). 

Acknowledgements 
This research was funded in part by Office of Naval 
Research grants N00014-94-1-0060 and N00014-95-1- 
0728, National Science Foundation grants IRI-9303461 
and CCR-9553199, ARPA/Rome Labs grant F30602- 
95-I-0024, an Alfred P. Sloan Research Fellowship 
(BR-3495), and industrial gifts from Interval, Mi- 
crosoft, Rockwell, and Xerox. 

References 
Arijon, D. 1976. Grammar of the Film Language. New 
York: Communication Arts Books, Hastings House, 
Publishers. 

Blinn, J. 1988. Where am I? What am I looking at? 
IEEE Computer Graphics and Applications 76-81. 

Christianson, D. B., Anderson, S. E., He, L., Weld, 
D. S., Salesin, D. H., and Cohen, M. F. 1996. Declar- 
ative camera control for automatic cinematography. 
TR UW-CSE96-02-01, University of Washington De- 
partment of Computer Science and Engineering. 
Drucker, S. M., and Zeltzer, D. 1994. Intelligent cam- 
era control in a virtual environment. In Proceedings 
of Graphics Interface ‘94, 190-199. Banff, Alberta, 
Canada: Canadian Information Processing Society. 

Drucker, S. M., and Zeltzer, D. 1995. Camdroid: 
A system for intelligent camera control. In Proceed- 
ings of the SIGGRAPH Symposium on Interactive 30 
Graphics ‘95. 

Drucker, S. M., Galyean, T. A., and Zeltzer, D. 1992. 
CINEMA: A system for procedural camera move- 
ments. In Zeltzer, D., ed., Computer Graphics (1992 
Symposium on Interactive 3D Graphics), volume 25, 
67-70. 

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, 
J. F. 1990. Computer Graphics, Principles and Prac- 
tice. Reading, Massachusetts: Addison-Wesley Pub- 
lishing Company, second edition. 
Gleicher, M., and Witkin, A. 1992. Through-the-lens 
camera control. In Catmull, E. E., ed., Computer 
Graphics (SIGGRAPH ‘92 Proceedings), volume 26, 
331-340. 
He, L., Cohen, M. F., and Salesin, D. H. 1996. Vir- 
tual cinematography: A paradigm for automatic real- 
time camera control and directing. To appear at SIG- 
GRAPH ‘96. 
Hearn, D., and Baker, M. P. 1994. Computer Gruph- 
its. Englewood Cliffs, New Jersey: Prentice Hall, sec- 
ond edition. 
Karp, P., and Feiner, S. 1990. Issues in the automated 
generation of animated presentations. In Proceedings 
of Graphics Interface ‘90, 39-48. 
Karp, P., and Feiner, S. 1993. Automated presenta- 
tion planning of animation using task decomposition 
with heuristic reasoning. In Proceedings of Graphics 
Interface '93, 118-127. Toronto, Ontario, Canada: 
Canadian Information Processing Society. 
Lukas, C. 1985. Directing for Film and Television. 
Garden City, N.Y.: Anchor Press/Doubleday. 
Mackinlay, J. D., Card, S. K., and Robertson, 6. G. 
1990. Rapid controlled movement through a virtual 
3D workspace. In Baskett, F., ed., Computer Graph- 
ics (SIGGRAPH ‘90 Proceedings), volume 24, 171- 
176. 
Mascelli, J. V. 1965. The Five C’s of Cinematography. 
Hollywood: Cine/Grafic Publications. 
Phillips, C. B., Badler, N. I., and Granieri, J. 1992. 
Automatic viewing control for 3D direct manipula- 
tion. In Zeltzer, D., ed., Computer Graphics (1992 
Symposium on Interactive 30 Graphics), volume 25, 
71-74. 
Strassman, S. 1994. Semi-autonomous animated ac- 
tors. In Proceedings of the AAAI-94, 128-134. 

Entertainment 155 


