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Abstract 
Animations generated by interactive 3D computer 
graphics applications are typically portrayed either 
from a particular character’s point of view or from a 
small set of strategically-placed viewpoints. By ignor- 
ing camera placement, such applications fail to realize 
important storytelling capabilities that have been ex- 
plored by cinematographers for many years. 
In this paper, we describe several of the principles of 
cinematography and show how they can be formal- 
ized into a declarative language, called the Declaru- 
tive Camera Control Language (DCCL). We describe 
the application of DCCL within the context of a simple 
interactive video game and argue that DCCL represents 
cinematic knowledge at the same level of abstraction 
as expert directors by encoding 16 idioms from a film 
textbook. These idioms produce compelling anima- 
tions, as demonstrated on the accompanying video- 
tape. 

Introduction 
The language of film is a complex one, which has 
evolved gradually through the efforts of talented film- 
makers since the beginning of the century. As a re- 
sult the rules of film are now so common that they 
are nearly always taken for granted by audiences; 
nonetheless, they are every bit as essential as they 
are invisible. Most interactive 3D computer graph- 
ics applications (e.g., virtual chat managers, interac- 
tive fiction environments, and videogames) do not ex- 
ploit established cinematographic techniques. In par- 
ticular, most computer animations are portrayed ei- 
ther from a particular character’s point of view or 
from a small set of strategically-placed viewpoints. 
By restricting camera placement, such applications 
fail to realize the expository capabilities developed 
by cinematographers over many decades. Unfortu- 
nately, while there are several textbooks that con- 
tain informal descriptions of numerous rules for film- 
ing various types of scenes (Arijon 1976; Lukas 1985; 
Mascelli 1965), it is difficult to encode this textbook 
knowledge in a manner that is precise enough for a 
computer program to manipulate. 
In this paper, we describe several of the principles of 
filmmaking, show how they can be formalized into a 
declarative language, and then apply this language to 
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the problem of camera control in an interactive video 
game. Specifically, we describe the Declarative Cam- 
era Control Language (DCCL) and demonstrate that it 
is sufficient for encoding many of the heuristics found 
in a film textbook. We also present a Camera Planning 
System (CPS), which accepts animation traces as input 
and returns complete camera specifications. The CPS 
contains a domain-independent compiler that solves 
DCCL constraints and calculates the dynamical con- 
trol of the camera, as well as a domain-independent 
heuristic evaluator that ranks the quality of the can- 
didate shot specifications that the compiler produces. 
We demonstrate a simple interactive video game that 
creates simulated animations in response to user input 
and then feeds these animations to CPS in order to pro- 
duce complete camera specifications as shown on the 
accompanying videotape. 
Our prototype video game serves as a testbed for appli- 
cations of DCCL and CPS. However, there are number of 
alternative applications to which both DCCL and CPS 
might be applied. Within the realm of video games, 
Multi-user Dungeons (MUDS), and interactive fiction, 
automated cinematography would allow an applica- 
tion to convey the subjective impression of a particu- 
lar character without resorting to point-of-view shots.’ 
Because many MUDS operate over long periods of time, 
an automated cinematography system could provide 
users with customized summaries of events they had 
missed while they were away. Alternatively, automated 
cinematography could be used to create natural inter- 
actions with the “intelligent agents” that are likely to 
take part in the next generation of user interfaces. Au- 
tomated cinematography could also be used to assist 
naive users in the creation of desktop videos, or for 
building animated presentations. In the latter case, 
Karp and Feiner have shown (Karp & Feiner 1990; 
1993) that animated presentations can be effectively 
designed on a computer, reducing costly human in- 
volvement and allowing presentations to be customized 
for a particular viewer or situation. 

‘Most current games, of which Doom is the classic ex- 
ample, still provide each participant with a single point-of- 
view shot; however, a number of games such as Alone in 
the Dark, Fade 2 Black and Virtua Fighter have begun to 
employ a wider variety of perspectives. 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Principles of Cinematography 
Although a film can be considered to be nothing but a 
linear sequence of frames, it is often helpful to think of 
a film as having structure. At the highest level, a film 
is a sequence of scenes, each of which captures some 
specific situation or action. Each scene in the film is 
composed of one or more shots. A single shot covers 
the small portion of a movie between when a camera is 
turned on and when it is turned off. Typically, a film is 
comprised of a large number of individual shots, with 
each shot’s duration lasting from a second or two in 
length to perhaps tens of seconds.2 

Camera Placement 
Directors specify camera placements relative to the line 
of interest, an imaginary vector connecting two inter- 
acting actors, directed along the line of an actor’s mo- 
tion, or oriented in the direction the actor is facing. 
Figure 1 shows the line formed by two actors facing 
each other. 

d 

v 
Apex 

Figure 1: Camera placement is specified relative to the 
“line of interest.” (Adapted from figure 4.11 of (Arijon 
1976)) 

Shooting actor X from camera position b is called a 
paruEEeZ camera placement. Filming X from position 
c yields an internal reverse placement. Shooting from 
position d results in an apex shot that shows both ac- 
tors. Finally, filming from g is called an external re- 
verse placement. 
Cinematographers have identified that certain “cutting 
heights” make for pleasing compositions while others 
yield ugly results (e.g., an image of a man cut off at the 
ankles). There is a set of (roughly) five useful camera 
distances (Arijon 1976, p. 18). An extreme closeup 
cuts at the neck; a closeup cuts under the chest or at 
the waist; a medium view cuts at the crotch or under 
the knees; a fuZZ view shows the entire person; and a 
long view provides a distant perspective. 

Heuristics and Constraints 
Filmmakers have articulated numerous heuristics for 
selecting good shots and have informally specified con- 

2A notable exception is Alfred Hitchcock’s Rope, which 
was filmed in a single shot, albeit with disguised breaks. 

straints to be placed on successive shots to lead to 
good scenes. Several of the more important rules in- 
clude (Arijon 1976): 

Parallel editing: Story lines (visualized as scenes) 
should alternate between different characters, loca- 
tions, or times. 

Only show peak moments of the story: Repetitive 
moments from a narrative should be deleted. 

Don’t cross the line: Once an initial shot is taken 
from the left or right side of the line, subsequent 
shots should maintain that side, unless a neutral, 
establishing shot is used to show the transition from 
one side to the other. This rule ensures that suc- 
cessive shots of a moving actor will maintain the 
direction of apparent motion. 

Let the actor lead: The actor should initiate all 
movement, with the camera following; conversely, 
the camera should come to rest a little before the 
actor. 

Break movement: A scene illustrating motion should 
be broken into at least two shots. Typically, each 
shot is cut so that the actor appears to move across 
half the screen area. A change of the camera-to- 
subject distance should also be made in the switch. 

Idioms 
Perhaps the most significant invention of cinematogra- 
hers is the notion of an idiom - a stereotypical way 
to capture some specific action as a series of shots. 
For example, in a dialogue between two people, a film- 
maker might begin with an apex view of both actors, 
and then alternate views of each, at times using in- 
ternal reverse placements and at times using external 
reverse. While there is an infinite variety of idioms, 
film directors have learned to rely on a small subset of 
these. Indeed, film books (e.g., (Arijon 1976)) are pri- 
marily a compilation of idioms along with a discussion 
of the situations when a filmmaker should prefer one 
idiom over another. Figure 2 presents a three-shot id- 
iom that serves as an extended example throughout the 
remainder of this paper. The idiom, adapted from Fig- 
ure 13.2 of Arijon’s text (1976), provides a method for 
depicting short-range motion of one actor approaching 
another. The first shot is a closeup; actor X begins in 
the center of the screen and exits left. The second shot 
begins with a long view of actor Y; actor X enters from 
off-screen right, and the shot ends when X reaches the 
center. The final shot begins with a medium view of Y, 
with actor X entering from off-screen right and stop- 
ping at center. 

DCCL 
This section provides an informal description of the 
Declarative Camera Control Language DCCL. The 
specification of DCCL is important because it allows 
CPS to formalize, encode, and implement common film 
idioms, such as the one presented in Figure 2. 
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(AcFilmIdiom name Arijon-13-2 
:parameter (AcParamApproach :actori :actor2 :start :stop) 
:line (AcLineIdiom :primary ?actori :other ?actor2 :side left) 
(AcFilmShot name shot1 
(AcFragGoBy name fragl 

:time ?start :primary-moment beginning :entry-pos center :exit-pos out-left 
:placement (AcPlaceInternal :primary ?actorl :other ?actor2 :range closeup :primary-side center)>) 

(AcFilmShot name shot2 
(AcFragGoBy name frag2 

:time ?frag3.first-tick :primary-moment end :entry-pos on-right :exit-pos center 
:placement (AcPlaceExternal :near ?actorl :far ?actor2 

:primary-subject near :range longshot :primary-side center>>> 
(AcFilmShot name shot3 
(AcFragGoBy name frag3 

:time ?stop :primary-moment end :entry-pos out-right :exit-pos right12 
:placement (AcPlaceApex :primary ?actorl :other ?actor2 :range mediumshot :primary-side rightl2)))) 

Figure 3: DCCL code corresponding to the idiom depicted in Figure 2. 

Figure 2: (Adapted from figure 13.2 of (Arijon 1976)). A 
common idiom for depicting short range movement of one 
actor approaching another. Camera positions are shown 
on the left side of the figure; the resulting image is shown 
on the right. Arrows indicate motion of actors into and 
out of the screen. 

There are four basic primitive concepts in DCCL: frag- 
ments, views, placements, and movement endpoints; 
these primitives are combined to specify higher-level 
constructs such as shots and idioms. 

Fragments 
In the previous section, we discussed how cinematog- 
raphers treat a shot as the primitive building block in 
a film. For our automated system, we have found it 
useful to further decompose each shot into a collec- 
tion of one or more fragments. A fragment specifies 
an interval of time during which the camera is in a 
static position and orientation or is performing a sin- 
gle simple motion. DCCL defines five fragment types 
(illustrated schematically in Figure 4). 
A fully-specified fragment requires additional informa- 
tion. Some of these arguments are obvious - for exam- 
ple, to track the motion of an actor, one must specify 
which actor to track and over what time interval to roll 
the film. In addition, one must also specify the desired 
camera range - extreme, closeup, medium, full, or long, 
as well as the placement of the camera relative to the 
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actor (or actors) - internal, external, parallel, and apex. 
Three of the fragments, go-by, panning, and tracking, 
require an additional argument, called the primary mo- 
ment, which specifies the moment at which the place- 
ment command is to take effect during a shot in which 
there is motion. 
Finally, two of these fragments, go-by and panning, re- 
quire another argument called a movement endpoint, 
which is used to indicate the range of motion to be cov- 
ered by the actor relative to the screen.3 As Figure 5 
illustrates, DCCL recognizes seven movement-endpoint 
keywords. 
Note that although the movement-endpoint keywords 
refer to locations on the screen, they are used to 
calculate the temporal duration of go-by and panning 
fragments.4 For example, the first shot of the idiom of 
Figure 2 can be defined as a go-by moving from center 
to out-left. 

Shots and Idioms 
In many cases, a shot is composed of a single frag- 
ment, but sometimes it is effective to merge several 
fragments together to form a more complex shot. For 
example, one can start with a panning fragment in 

3To understand why this argument is necessary, recall 
that a go-by fragment results in a static camera position 
directed at an actor who moves across the field of view. An 
example of a go-by fragment is the first shot of Figure 2. 
Note that Arijon (1976) expresses the shot not by specify- 
ing the temporal duration, but rather by indicating (with 
arrows) the range of motion that the actor should cover 
while the film is rolling. DCCL uses movement endpoints to 
allow the same type of declarative specification and relies 
upon the compiler to calculate the temporal bounds that 
will yield the proper range of motion. 

*This explains the definition of out-right and out-left. 
Arijon (1976) specifies that shots in which an actor moves 
off-screen (or onto the screen) should be cut three frames 
after (of before) the actor disappears (or appears). As are- 
sult we define out-right and out-left in terms of the distance 
traveled while three frames transpire. 
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Figure 4: DCCL fragments specify the type of camera 
motion. 

which a running actor moves from out-left into the 
center of the screen, then shift to a tracking shot by 
terminating camera rotation and increasing its lateral 
motion to match that of the actor (Figure 6). Multi- 
fragment shots typically combine panning, tracking and 
go-by fragments in different orders. 
In multifragment shots, it is often important to be 
able to synchronize (in “simulation time”) the end of 
one fragment with the beginning of the next. For this 
reason, DCCL supports the ability to export computed 
variables, such as the starting or ending time of a frag- 
ment , for use by other fragments in the same idiom. 
The duration of a scene can decrease if fragments do 
not cover the entire scene, producing “time contrac- 
tion.” 
To define an idiom, one must specify the activities for 
which the idiom is deemed appropriate, a name, ar- 
guments (e.g., actors and times), and a list of shot 
descriptions. For example, Figure 3 shows the actual 
DCCL encoding of the idiom illustrated in Figure 2; this 
idiom is a good choice for showing one actor approach- 
ing anot her. 

principles of camera placement for the case of simple 
movement sequences on the part of one or two actors. 
As input, CPS requires an animation trace: informa- 
tion about the positions and activities of each charac- 
ter, as well as directives stating which actors are to be 
filmed over what intervals of time. In our interactive 
game, this information is produced by a simple com- 
puter simulation generated in response to a user com- 
mand. Given this trace information, the CPS chooses 
which subintervals of time to capture with the camera 
and from which vantage points and with which lenses 
(i.e., what field of view). The animation can then be 
played back to the user using the intervals and camera 
placements selected by the CPS. 
The primary data structure used by CPS is the film tree 
(Figure 7), which represents the film being generated. 
Of primary consequence are the scene and candidate 
idiom levels of the tree: each scene in the film is associ- 
ated with one or more possible idioms, with each idiom 
representing a particular method of filming the parent 
scene. The CPS operates by expanding the film tree 
until it has compiled detailed solutions for each idiom, 
and then selecting appropriate candidate idioms and 
frames for each scene. 
Internally, the CPS is implemented as a three-stage 
pipeline involving a sequence planner, DCCL compiler, 
and a heuristic evaluator, as shown in Figure 8. An id- 
iom database (not shown) provides idiom specifications 
relevant to each scene in the animation being filmed. 

The Camera Planning System The Sequence Planner 
The Camera Planning System (CPS) codifies and im- The current implementation of the CPS sequence plan- 
plements the previously described cinematographic ner is quite simple. Unlike the other portions of the CPS 

Figure 5: DCCL allows the user to delimit the temporal 
duration of go-by and panning fragments by specifying 
the desired initial and terminal locations of the actor on 
the screen. 

Panning Tracking 

Figure 6: Schematic illustration of a shot composed of 
two fragments: a panning fragment that melds impercep- 
tibly into a tracking fragment. 
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Figure 8: The CPS is implemented as a three-stage pipeline. 

Film 

Sequences 

Scenes 

Candidate 
Idioms 

Candidate 
Frames 

Figure 7: Successive modules in the CPS pipeline incre- 
mentally expand the film tree data structure. 

the code implementing the sequence planner is specific 
to the domain (plot) of the application (e.g.chase and 
capture interactions). As input the planner receives an 
animation trace describing the time-varying behavior 
of a group of actors. As output, the sequence planner 
produces a film tree (Figure 7) that is specified down 
to the scene level. 
The animation trace specifies position, velocity, and 
joint positions for each actor for each frame of the an- 
imation. The trace also labels the activity being per- 
formed by each actor in each frame, as well as higher- 
level information encoded as a set of film sequences, 
with each film sequence including an interval of time, 
an actor to use as the protagonist, and (optionally) a 
second actor. In the current application, multiple film 
sequences are used to create parallel editing effects by 
having the CPS intermix scenes featuring one set of ac- 
tors with scenes featuring a different set of actors (see 
accompanying videotape). 
Given the information in the animation trace, the se- 
quence planner generates scenes by first partitioning 
each film sequence according to the activities per- 
formed by the protagonist during the given sequence. 
For the current application we have identified ten ac- 
tivity types (Table 1). After partitioning a sequence, 
the sequence planner generates scenes parameterized 
by the activity, actors, and time interval of each parti- 
tion. 
Once the sequence planner has created the scene nodes, 
the CPS must instantiate the idiom schemata relevant 
for each scene. Relevance is determined by matching 
the scene activity against a list of applicable activities 
defined for each idiom. The current implementation of 
the database contains 16 idioms (Table 1). The plan- 
ner instantiates idioms by substituting actual param- 
eters (actor names, and scene start and ending times) 

Activity Solitary Idioms 

Stopping/Starting Y 1 
X-Approaches-Y N 2 
X-Retreats-From-Y N 2 
X-Follows-Y N 2 
Moving Y 2 
Turning Y 1 
HeadTurning Y 1 
Stationary Y 1 
Looking Y 1 
Noticing N 1 
Picking Up N 1 
Holding N 1 

Table 1: Activity classifications for prototype game. 

for the placeholders specified in the idiom definitions. 
References to actor placements on the right or left sides 
will be automatically mirrored later, during the idiom 
solving process. 

The DCCL Compiler 
The DCCL compiler uses information about the move- 
ment of the actors to expand the fragments in each 
candidate idiom into an array of frame specifications, 
which can be played directly. Since a frame is fully 
constrained by the combination of its camera’s 3D po- 
sition, orientation, and field of view, the compiler need 
only generate an array of these values for each fragment 
in each shot in each candidate idiom. 
In its simplest form, an idiom consists of a single shot 
that is composed of a single fragment, so we cover that 
case first. If the fragment has type pov, then compi- 
lation is trivial, so we assume that the fragment has 
type static, tracking, go-by, or panning. We decompose 
the compiler’s job into four tasks: 
1. Determine the appropriate primary moment(s). 

2. Determine the set of possible frame specifications 
for each primary moment. 

3. Calculate the temporal duration (length of the 
frame array) of the fragment given an initial frame 
specification. 

4. Generate the interpolated specification of frame n 
from that of frame n - 1. 

Once these tasks have been completed, the compiler 
simply has to generate a frame array for each primary 
moment and frame specification. In the current ver- 
sion of CPS there are typically only two frame arrays 
corresponding to placing the camera on one side of the 
line of interest or the other. The task of choosing the 
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appropriate side is left up to the heuristic evaluator.5 
The primary moment of a fragment defines the point 
in time at which the camera placement should conform 
to the placement specified for the fragment, and varies 
with the type of fragment. The go-by, tracking, and 
panning fragments specify the primary moment as ei- 
ther the first or last tick of the fragment. The static 
fragments, on the other hand, do not specify a primary 
moment, so in the current version of CPS we solve the 
placement for the first, last, and midpoint ticks of the 
fragment’s time interval; the heuristic evaluator will 
later determine which solution looks best and prune 
the rest. 
The fragment’s placement (e.g., internal, external, 
parallel, or apex), as specified in the idiom, combined 
with the location of the actors (from the animation 
trace) constrains the camera’s initial position to lie on 
one of two vectors, according to the side of the line 
being used (Figure 1). The actual location on this 
vector is determined by the desired distance between 
the camera and the primary subject. This distance, 
in turn, is specified by the fragment’s range (extreme, 
closeup, medium, full, or long) and the lens focal length. 
The compiler attempts to generate a set of appropriate 
placements using a normal lens (e.g., a 60-degree field 
of view). The vector algebra behind these calculations 
is explained in (Blinn 1988). 
The temporal duration of static, tracking, and pov frag- 
ments is specified explicitly as part of the DCCL spec- 
ification. However, the duration of go-by and panning 
fragments must be computed from the movement- 
endpoint specification in conjunction with the actor’s 
velocity. 
The function used to update the camera position and 
orientation from one frame to the next depends on 
the type of fragment involved and the change in the 
actors’ positions. Static and go-by fragments do not 
change camera position or orientation. The camera 
in tracking fragments maintains its orientation, but 
changes its position based on the actor’s velocity vec- 
tor. The camera in panning fragments maintains its 
position, but changes its orientation with angular ve- 
locity constrained by actor velocity and the distance 
at the closest approach to the camera (as determined 
by the primary moment). 
Note that unlike the sequence planner, the DCCL com- 
piler is completely domain-independent in that the 
compiler depends only on geometry and not on the 
plot or subject of the animation. Furthermore, the 
DCCL specifications in the idiom database are applica- 
ble across various animations; for example, the idioms 
in our database should apply to any animation with 
two-character interactions. 

5Typically, the camera is restricted to one side of the 
line of interest. However, opportunities to “switch sides” 
sometimes present themselves, such as when an actor turns 
to walk in a neutral direction. 

euristic Evaluator 
Since the film tree is an AND/OR graph, it represents 
many possible films. 6 The heuristic evaluator chooses 
the candidate idiom that renders a scene best, assign- 
ing each idiom a real-valued score by first scoring and 
pruning the frame arrays of its fragments. Note that 
it is not possible to estimate the quality of a fragment 
or idiom before it is compiled, because visual quality is 
determined by the complex, geometric interactions be- 
tween the fragment type and the motions of the actors. 
A given idiom might work extremely well when the ac- 
tors stand in one position relative to one another, yet 
work poorly given a different configuration. 
The scoring mechanism is primarily focused towards 
evaluating inter-fragment criteria, namely: 
@ maintaining 

placements; 
smooth transitions between camera 

e eliminating fragments 
cross the line. 

which cause the camera to 

In addition, the scoring mechanism deals with certain 
intra-fragment behaviors that sometimes arise from the 
compilation phase of the CPS such as: 

penalizing very short or very long fragments; 

Q eliminating 
backwards. 

fragments in which the camera pans 

After the evaluator has selected the best idiom for each 
scene to be included in the film, the camera planning 
process is complete. CPS concatenates the frame ar- 
rays for all idiom nodes remaining in the film tree and 
outputs the corresponding sequence of frames to the 
player for rendering. 
Note that while the evaluator’s rules are heuristic, they 
are also domain-independent within the domain of film 
and animation: each rule encodes broadly-applicable 
knowledge about which types of shots look good on 
film, and which do not. 

Sample Application 
We are particularly interested in interactive uses of au- 
tomatic cinematograpy. Therefore, we decided to build 
a simple interactive game that would use CPS to film 
actions commanded by a human player. The basic plot 
of the game is very simple. The main character, Bob, 
must walk around a virtual world (in our case, SGI’s 
Performer Town) looking for the Holy Grail. The game 
is made more interesting by the introduction of Fido, 
an evil dog that seeks to steal the Grail. From time 
to time, the game generates animations of Fido’s ac- 
tivities and instructs CPS to edit these animations into 
the action. Eventually, Bob and Fido interact: if Fido 
gets the grail, Bob has to chase Fido in order to get 
it back. The user commands Bob through a pop-up 
menu. These commands fall into four basic categories: 

‘Indeed, if there are n scenes and each scene has k can- 
didate idioms as children, then the film tree represents nk 
possible idiom combinations. 
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telling Bob to look in a particular direction, to move to 
a particular point on the screen, to pick up an object, 
or to chase another actor. 

User Commands Movies 

I 0 7 

Figure 9: Overall context of CPS 

The implementation of the game and its various anima- 
tion/simulation modules was done in C++ using the 
IRIS Performer toolkit running on SGI workstations, 
and based partially on the perfly application provided 
by SGI (a Performer-based walkthrough application). 
The game operates as a finite-state machine that pro- 
duces animation traces as the user issues commands 
to the game engine, with the CPS acting as a separate 
library whose sole inputs are the animation trace and 
the database of idioms (Figure 9). The game itself (not 
counting CPS or the code present in the existing per- 
fly application) required approximately 10,000 lines of 
C++ code. The CPS system is also written in C++ 
(despite the Lisp-like appearance of DCCL) and imple- 
mented with about 19,000 lines of code. 
The sample game interaction presented at the end of 
our video is intended to demonstrate a number of the 
activities possible in the game, as well as the various 
DCCL idioms. For presentation purposes, the planning 
time required by CPS was edited out of the video; Ta- 
ble 2 gives performance data taken from a similar run- 
through of the game on an SGI Onyx. 

Related Work 
The subject of using principles from cinematography 
to control camera positions and scene structure has re- 
ceived relatively little attention in the computer graph- 
ics or AI communities. We survey most of the related 
work here. 
He, Cohen, and Salesin ( 1996) have developed a sys- 
tem for controlling camera placement in real-time us- 
ing some of the ideas behind DCCL. Their work focuses 
on filming dialogues between multiple animated char- 
acters, and uses a finite state machine to select and 

generate camera positions. 
A number of systems have been described for auto- 
matically placing the camera in an advantageous posi- 
tion when performing a given interactive task (Gleicher 
& Witkin 1992; Mackinlay, Card, & Robertson 1990; 
Phillips, Badler, & Granieri 1992). However, these sys- 
tems neither attempt to create sequences of scenes, nor 
do they apply rules of cinematography in developing 
their specifications. 
In work that is closer to our own, Karp and Feiner 
(Karp & Feiner 1990; 1993) describe an animation 
planning system for generating automatic presenta- 
tions. Their emphasis is on the planning engine itself, 
whereas the work described in this paper is more con- 
cerned with the problem of defining a high-level declar- 
ative language for encoding cinematic expertise. Thus, 
the two approaches complement each other. 
Strassman (Strassman 1994) reports on Divaldo, an 
ambitious experiment to create a prototype system for 
“desktop theatre.” Unlike our focus on camera place- 
ment, Strassman attempts to create semi-autonomous 
actors who respond to natural language commands. 
CPS is also complementary to Divaldo. 
Drucker et al. (Drucker, Galyean, & Zeltzer 1992; 
Drucker & Zeltzer 1994; 1995) are concerned with the 
problem of setting up the optimal camera position for 
individual shots, subject to constraints. Specific cam- 
era parameters are automatically tuned for a given shot 
based on a general-purpose continuous optimization 
paradigm. In our work, a set of possible cameras is 
fully specified by the shot descriptions in DCCL and the 
geometry of the scene. The final selection from among 
this set of different shots is made according to how well 
each shot covers the scene. Our approach avoids the 
need for generic optimization searches, and it is guar- 
anteed to result in a common shot form. The cost is a 
greatly reduced set of possible camera specifications. 
Several useful texts derive low-level camera parame- 
ters, given the geometry of the scene (Foley et al. 1990; 
Hearn & Baker 1994; Blinn 1988). 

Conclusion 
We close by summarizing the contributions of this pa- 
per and describing the directions we intend to pursue 
in future work. The main contributions of this paper 
include: 

o Surveying established principles from filmmaking 
that can be used in a variety of computer graphics 
applications. 

e Describing a high-level language, DCCL, for specify- 
ing camera shots in terms of the desired positions 
and movements of actors across the screen. We have 
argued that DCCL represents cinematic knowledge 
at the same abstraction level as expert directors and 
producers by encoding sixteen idioms from a film 
textbook (Arijon 1976) (e.g., Figure 2). 
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Command 

Pick Up Grail 733 9 47.63 
Pick Up Net 451 4 44.74 
Catch Dog 603 4 32.74 
Walk (long range) 701 4 11.52 
Walk (med range) 208 4 6.74 
Look Right 87 3 5.6 
Walk (short range) 158 4 5.12 

Num. Frames Scenes Generated CPU Time (s) 

Table 2: Typical CPS Performance 

Presenting a domain-independent compiler that 
solves DCCL constraints and dynamically controls 
the camera. 

Describing a domain-independent heuristic evalua- 
tor that ranks the quality of a shot specification us- 
ing detailed geometric information and knowledge of 
desirable focal lengths, shot durations, etc. 

Describing a fully-implemented film camera plan- 
ning system (CPS) that uses the DCCL compiler 
and heuristic evaluator to synthesize short animated 
scenes from 3D data produced by an independent, 
interactive application. 

Incorporating CPS into a prototype game, and 
demonstrating sample interactions in the game (see 
videotape). 
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