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Abstract 

We present a new method for estimating the number 
of solutions of constraint satisfaction problems’. We 
use a stochastic forward checking algorithm for draw- 
ing a sample of paths from a search tree. With this 
sample, we compute two values related to the number 
of solutions of a CSP instance. First, an unbiased es- 
timate, second, a lower bound with an arbitrary low 
error probability. We will describe applications to the 
Boolean Satisfiability problem and the Queens prob- 
lem. We shall give some experimental results for these 
problems. 

Introduction 
The class NP is the set of decision problems whose 
instances are assertions that can be proved in polyno- 
mial time. The NP-Complete problems are the hardest 
problems in NP. These can not be solved in polynomial 
time under the assumption P # NP. All these prob- 
lems have the same expression power in the sense that 
every NP-Complete problem can be polynomialy re- 
duced to each another (Garey & Johnson 1979). Some 
of them, such as CSP2, allow us to specify many prac- 
tical problems in a very simple way. 

SAT is the problem of deciding if there is an as- 
signment for the variables in a boolean expression that 
makes this expression true. It is a restriction of CSP 
with binary domains. Since the 1960’s, a lot of re- 
search and publications have been done on practical 
resolution of SAT instances (Andre & Dubois 1992; 
Billonnet & Sutter 1992; Selman, Levesque, & Mitchell 
1992; Selman & Kautz 1993). There are two kind of 
complete solving algorithms for SAT : resolution meth- 
ods (Robinson 1963), b ased on theorem proving, and 
semantical methods (Davis & Putman 1960), based 
on the search for solutions. Moreover, some classes 
of SAT instances have been the subject of theoret- 
ical and experimental studies. Without exhausting 
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all publications, we could mention the study of ran- 
dom variables associated with the number of solutions 
(Dubois & Carlier 1991)) with the satisfiability (Si- 
mon et ad. 1986) f o randomly generated instances, the 
generation of hard instances for the evaluation of solv- 
ing algorithms (Mitchell, Selman, & Levesque 1992; 
Gent & Walsh 1994), the characterisation of classes 
of polynomial complexity instances (Parshina 1992; 
Dalal & Etherington 1992). 

The problem of counting the solutions of SAT in- 
stances, called #SAT, is #P-complete (Valliant 1979). 
Every numbering problem whose solutions can be gen- 
erated in polynomial time by a non-deterministic pro- 
gram can be polynomialy reduced to #SAT. It is in- 
teresting to see that some numbering problems re- 
lated to polynomial search problems such as 2-SAT are 
#P-complete. Several counting algorithms for #SAT 
(Dubois 1991; Lozinskii 1992) have been published. 
Unfortunately, many instances of #SAT, even with 
small sizes (100 variables, 200 clauses), are intractable 
using these algorithms. 

In this paper, we propose a method for estimating 
the number of solutions of CSP instances. Our method 
is based on the estimate of the expectancy of a ran- 
dom variable defined on the set of paths that link the 
root of a search tree to it’s leaves. In the first section, 
we present the principle and the limits of the method. 
In the second section, we illustrate applications of the 
method to SAT and the Queens problem. We also 
study the interest of the proposed approach in compar- 
ison with a method based on random drawings from 
the initial search space. The third section presents 
some experimental results. Concluding remarks and 
research perspectives are contained in the last section. 

Statistics on trees 

A leaf-labeled tree is a tree where each leaf is associated 
with an integer. 

We write < oi, . . . , (u, > as a sequence of n items, 
and si Is%, the sequence obtained by appending a se- 
quence si to a sequence s2. 
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Let I? be the set of leaf-labeled trees. 

x E N + leaf(x) E IT 
kE N*,x~,..., xk E I? $ node(< xl, . . . , xk >) E r 

Where N is the set of positive integers and N* = 
NW 

For each leaf-labeled tree t e I’, we define a set Q(t) 
of paths that link the root to the leaves. Each path is 
coded by a sequence of integers. 

1 

st(Zeuf(x)) = {< 0 >} 
R(node(< x1,. . .,xk >) = 

Ufzl{< i > Ir, r E fi(xi)) 

Let f be a function which assign to each path in R 
the label of the associated leaf. 

C 

f(Zeaf(x), < 0 >) = x 
f(node(< xl,. . . , xk >), < al,. . . , a, >) = 

f(xal,< a2, - * .,&a >> 

Let P be a probability on R. 

1 

P(Zeuf(x), < 0 >) = 1 
P(node(<xl,..., xk: >),<a~ ,..., a, >) = 

gqxa,s a2,* * .,%-A >) 

P(t, c) is the probability of drawing a path c from 
a tree t using the following method. We start with 
the root. Each new node is-drawn uniformly from the 
current node’s children. 

Let X be a random variable on (a(t), P) which as- 
sociates to each path c E Q(t) the value f(t, c)/P(t, c). 
By definition, 

Let I be a search problem instance and S be the set 
of solutions of I. Let t be the search tree of a counting 
algorithm with input I. We suppose that a leaf of t 
can find multiple solutions. If the label of each leaf is 
the size of the associated packet of solutions, we can 
use a sample of paths for making an unbiased estimate 
of ISI. 

Let < cl,..., CN > be a sample of paths generated 
by N independent drawings with respect of probability 
P, we have : 

(2) 

Labeling all the leaves with value 1, it is possible 
to obtain an estimate of the number of leaves in the 
search tree. Let q(t) be the number of leaves of a tree 
t. We have : 

(3) 

If t is a k-ary tree (each internal node having exactly 
k children), there is a relation betwen the number of 
leaves q(t) and the number of nodes ItI : 

If t is a neuronal tree (each internal node having at 
least 2 children), we only have : 

rl(f) < ItI < %@> (5) 
With the relations 4, 5 and 3 we can obtain a piece 

of information about the size of a tree without exhaus- 
t ively exploring it. 

From a practical point of view, the quality of the esti- 
mates depends on both the distribution of the random 
variable X and the sample size. Broadly speaking, we 
do not know the distribution of X. However, we can 
obtain, with a given error probability, a lower bound of 
Jf-ml * 
Proposition 
Let pi,..., pn be a sequence of independent unbiased 
estimates of E[X] andarealX>O. Wehave: 

P(~Min{p~, . . -,Pnl >ECXl) I Y$ (6) 
The inequality 6 is given as a direct consequence of 

the following well known lemme : if Y is a positive 
random variable, X > 0 a real and y a sample value of 
Y then P(y > XE[Y]) 5 i. 

Method implementation 
General framework 
The two problems that we consider in the following can 
be specified as constraint satisfaction problems (CSP). 
A CSP instance is a 3-tuple < V, D, R >, where V = 
{w,..*, vn} is a set of variables, D = {dl, . . . , dn} the 
associated set of domains and R a set of contraints 
defining relations betwen the values assigned to the 
variables (Tsang 1993). A label is a couple (vi, Z) , 
Q E V, x E di, that stand for the assignment of the 
valuextovi. Asetoflabels{(vi,zi),...,(v,,z,)}isa 
solution of < V, D, R > iff it satisfies all the constaints 
of R. 

The figure 1 describes the ‘forward checking’ algo- 
rithm that can be used for counting the solutions of a 
CSP instance. This algorithm explores a search tree 
where each internal node is associated with a search 
context < F, A, D, R >. F is a set of free variables, A 
is a set of labels, D is the set of domains of the free 
variables and R is a set of unsolved constraints. The 
function Propage simplifies the current context, no- 
tably by removing from the domains of D some values 
that are incompatible with the labels of A, according 
to the constraints. 

The figure 2 describes a stochastic algorithm which 
draws a path 9 from the search tree of the ‘forward 
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Algorithm Count(< V, D, R >: context) 
Begin 

Algorithm Draw(< V, D, R >: context) 
Begin 

Return Erplore(< V, {}, D, R >); Return ExpZore(< V, (}, D, R >); 
End End 

Function Ex$ore(< F,A, D, R >: context) : integer 
Begin 

If {} E D 01 one of the constraints is violated 
Return (0); 

Else If a,ll the contraints are satisfied 
Return (n,,, IdI>; 

& 
Choose z)i E F: 
Return Cz~dX’Ex$ore(Propage(c(x, vi))) 
where c(x, v;) =< F\(G), A U {(vi, x)}, D\(A), R > 

End If 
End 

Figure 1: Forward checking 

checking’ algorithm of figure 1 and returns a couple 
(p, k) where 
e p is the probability of V!, 
e L is the number of solutions associated with q. 

Application to SAT 
A SAT instance is a special case of CSP instance < 
V, D, R > where V is a set of boolean variables, D a 
set of boolean domains and R a set of clauses. Each 
clause is a disjonction of literals. 

We will use a variant of the Davis and Putman 
(D&P) algorithm (D avis & Putman 1960; Franc0 & 
Paul1 1983)) which is the general algorithm described 
in figure 1 with a specific propagation procedure : For 
each clause with only one literal zli (resp. lwi), 
e the label (vi, 1) (resp. (u;, 0)) is added to the set A, 

o the clauses that contain vi 
from the set of clauses R, 

(resp. -% .) are removed 

o the literal VJ~ (resp. vi) is 
of R where it occurs. 

removed from each clause 

With a good heuristic for the choice of variables, the 
generation of a solution by drawing from the search 
tree can be much more probable than the generation 
of a solution by directly drawing assignment to the 
variables. As an example, let us consider a T-SAT in- 
stance, that is a SAT instance whose clauses have r 
literals (T-SAT is NP-Complete for T > 2). What- 
ever the heuristic, all the solutions are accessible in 
the search tree. They are formed in packets associated 
with leaves of the tree. Each packet is characterized 
by the assignation of some variables. 

For each real X, we write [xl the smaller integer 
upper or equal to 2. 

Let 2L1,... ,2”- be the sizes of packets of solutions, 
ranked in an abitrary order. 

Function ExpEore(< F, A, D, R >: context) : 
(probability, integer) 

Begin 
If {} E D z one of the constraints is violated 

Return (1,O); 
Else If all the contraints are satisfied 

Return (LfldE, PI); 
& 

Choose vz E F; 
Draw x uniformly from d, 
Let (p, k) = Explore(Propage(c(x, ve))) 
where c(x, 21,) =< F\(Q), A U {(Q, x)}, D\(A), R > 
Return C&P, k); 

If End 
End 

Figure 2: Stochastic forward checking 

Let PI be the probability of generating a solution by 
directly drawing assignments to the variables. Let Pz 
be the probability of generating a solution by drawing 
a path with the stochastic forward checking algotithm. 
Let N be the number of solutions. 

Proposition 
If the heuristic always chooses one of the variables 

that are in the smaller clauses, we have 

Proof 

p2 p 2 f--(“r92(N) -1 

1 
(7) 

2”’ + . . . + 2”- 
1 2kl-n . . . 2km-n 

2” 
+ + 

The stochastic forward checking algorithm makes 
two kinds of variable assignments : propagation as- 
signments (made by the propagation procedure) and 
random assignments. Each path 9 ending to a packet, 
of 2” solutions is associated with n - k assignments. If 
the heuristic always chooses a variable that occur in a 
clause of minimal size, there is at least a propagation 
assignment for T- 1 random assignments. Hence Q has 
at most 1 +(n - Ic)l internal nodes. 

So, for each path XI! ending to a packet of 2” solu- 
tions, we have 

PPI) 2 &-k), 2 
2r 

z iz+(n-k) 
21+F(n-k) = 2 

where P(q) is the probability for drawing 9. 
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hence 

p2 2 ~(2~(~1-n)+...+2~(~--")) 

yet 
2 +(ki-n) = pi-“2~(“-k*) 

hence 

P2 2 i(2”l-n + . . . + 2km-*)2 r AMin{n-k*,iEl..m} 

moreover 

Maz{ki, i E l..m) 5 loga 

$Min{n-k;,iEl 

hence 

.ml > 

Application to the Queens problem 
A configuration for the n Queens problem is a n-uple 
< XO,...,Xn- 1 >, xi E O..n - 1, i E O..n - 1. The 
component zi is the position of a queen on the row 
of rank i on a n by n chessboard. This representation 
implies that there is one queen on each row. A solution 
is a configuration such that there is at most one queen 
on each line and each diagonal. 

< x0,. . .,xn- 1 > is a solution if and only if 

{ 

Qi,j E O..n - 1, xi # xj 
Vi, j E O..n - l,Ii - jl # Ixi - xjl 

The propagation function removes from the domains 
of free variables the values that are inconsistent with 
the current assignment. The heuristic we used consists 
to choose, for each new assignment, a variable among 
the ones whose domain size is minimal. 

As with the previous algorithm, because of domains 
reduction, generating a solution by drawing a path 
from the search tree is more probable than generating 
a solution by drawing assignments to the variables. 

Experimental results 
Random 3-SAT instances 
The results presented in this section have been ob- 
tained with S-SAT instances generated by independent 
drawings of clauses performed under uniform condi- 
tions. The clauses with duplicates literals were not 
allowed. 

The figure 3 shows the average number of the search 
tree nodes, according to the number of clauses, for 3- 
SAT instances of 50 variables. The used algorithm is a 
Davis & Putnam with an heuristic decribed in (Andre 
& Dubois 1992). We note that instances of roughly 
60 clauses are the hardest for this algorithm. These 
instances are not interesting because we can estimate 
their number of solutions by randomly drawing assign- 
ments to the variables. In contrast, instances of 100 

lE+O7 f 

$ lE+O4 
E! 
g lE+O3 

% 
g lEti 

-% lE+Ol 
Number of clauses 

: : : : : : : : : : : : : 1 
20 60 loo 140 180 220 260 300 

Figure 3: Random 3-SAT instances, 50 variables : av- 
erage number of nodes in the search tree according to 
the number of clauses. 

lE+lO T 

lE+O8 lE+O9 lE+lO 

Figure 4: Random 3-SAT instances, 50 variables, 100 
clauses : correlation between estimates and exact num- 
bers of solutions. 

clauses are hard for both exhaustive exploration of the 

The figure 4 gives the results of estimations on ran- 
search tree and drawing in configurations space. 

dom 3-SAT instances of 50 variables and 100 clauses. 
Each estimation was computed from a sample of 1000 
paths, that is on average 1.5% of internal nodes of the 
search tree. Each point is associated with an instance. 
The x-coordinate of a point is the exact number of 
solutions of the associated instance. Its y-coordinate 
is the estimated number of solutions. The concentra- 
tion of the points around the first diagonal (doted line) 
shows the quality of the estimations. 

Structured SAT instances 

In this section, we present some results about SAT in- 
stances associated with graph colouring problems. The 
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Number of Average of Rel. std. 
Instance solutions estimates deviation 
BtYee(4) 4.92 . lo4 4.82 - lo4 5.8% 
B-tree(S) 3.22 * log 3.03 * log 21% 
Btree(6) 1.38 * 1ol9 8.83 * 10IS 40% 
Btree(7) 2.55 - 10s8 9.37. 1O37 80% 
Ranzsey(6) 1.10 . lo6 1.13 * lo6 19% 
Ramsey(7) 1.10 * lo8 1.03 * lo8 42% 

Table 1: Estimates of number of solutions for struc- 
tured SAT insta.nces. 

aim of the first problem is to colour each node of a com- 
plete binary tree with 3 colours, such as nodes that are 
connected by an edge do not have the same colour. To 
specify the constaints related to a tree of deep n, we 
built a SAT instance called Btree(n) as follow : With 
each node are associated a set of three variables, one 
for each possible colour, and a set of clauses specify- 
ing that exactly one of these variables has the value 1. 
With each edge is associated a set of clauses specifiying 
that the two connected nodes have different colours. 

We chose these instances on the one hand because we 
can easily compute their number of solutions, and on 
the other hand because it would be relatively difficult 
to count their solutions by a D&P approach without 
refinement. Because of constraints related to the unic- 
ity of the colour of each node, the D&P program must 
assign all the variables (directly or by propagation), 
to generate each solution. It can generate only one 
solution at the same time. 

The second problem we experimented with is called 
Ramsey(3,3,3,2). Th e aim is to colour the edges of 
a complete graph in such a way that there is not any 
monochromatic triangles. For a graph of n vertices, we 
built a SAT instance called Ramsey(n) with the same 
approach than the previous problem. 

The table 1 gives, for each instance, the exact num- 
ber of solutions, the average and the relative standard 
deviation of 30 estimates on samples of 1000 paths. 

Queens problem 

The method can be used for estimating the size of 
a search tree without exploring it exhaustively, with 
the same limitation as the estimation of the number of 
solutions. This can be useful, for instance, to evaluate 
the time we need to comput#e the exact number of so- 
lutions of a problem instance with a given algorithm 
and a given heuristic. 

The table 2 presents the results of a series of 30 mea- 
sures on some instances of the Queens problem. The 
estimates were obtained from samples of 1000 paths. 
For each instance, we give the exact number of solu- 
tions, the average and the relative standard deviations 
of estimates and the ratio of the number of explorated 
nodes to the total number of nodes in the search tree. 
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