
arti Nu ering

Olivier Bailleux and Jean- acques Chabrier

CRID Universite de Bourgogne
Faculte des Sciences Mirande

BP138 21004 Dijon Cedex France
ob@crid.u-bourgogne.fr chabrier@crid.u-bourgogne.fr

Abstract

We present a new method for estimating the number
of solutions of constraint satisfaction problems’. We
use a stochastic forward checking algorithm for draw-
ing a sample of paths from a search tree. With this
sample, we compute two values related to the number
of solutions of a CSP instance. First, an unbiased es-
timate, second, a lower bound with an arbitrary low
error probability. We will describe applications to the
Boolean Satisfiability problem and the Queens prob-
lem. We shall give some experimental results for these
problems.

Introduction
The class NP is the set of decision problems whose
instances are assertions that can be proved in polyno-
mial time. The NP-Complete problems are the hardest
problems in NP. These can not be solved in polynomial
time under the assumption P # NP. All these prob-
lems have the same expression power in the sense that
every NP-Complete problem can be polynomialy re-
duced to each another (Garey & Johnson 1979). Some
of them, such as CSP2, allow us to specify many prac-
tical problems in a very simple way.

SAT is the problem of deciding if there is an as-
signment for the variables in a boolean expression that
makes this expression true. It is a restriction of CSP
with binary domains. Since the 1960’s, a lot of re-
search and publications have been done on practical
resolution of SAT instances (Andre & Dubois 1992;
Billonnet & Sutter 1992; Selman, Levesque, & Mitchell
1992; Selman & Kautz 1993). There are two kind of
complete solving algorithms for SAT : resolution meth-
ods (Robinson 1963), b ased on theorem proving, and
semantical methods (Davis & Putman 1960), based
on the search for solutions. Moreover, some classes
of SAT instances have been the subject of theoret-
ical and experimental studies. Without exhausting

‘This work is partially supported by the PRC-IA ‘As-
pects algorithmiques de la resolution des problemes ex-
primes b l’aide de contraintes’.

2Constraint Satisfaction Problem

all publications, we could mention the study of ran-
dom variables associated with the number of solutions
(Dubois & Carlier 1991)) with the satisfiability (Si-
mon et ad. 1986) f o randomly generated instances, the
generation of hard instances for the evaluation of solv-
ing algorithms (Mitchell, Selman, & Levesque 1992;
Gent & Walsh 1994), the characterisation of classes
of polynomial complexity instances (Parshina 1992;
Dalal & Etherington 1992).

The problem of counting the solutions of SAT in-
stances, called #SAT, is #P-complete (Valliant 1979).
Every numbering problem whose solutions can be gen-
erated in polynomial time by a non-deterministic pro-
gram can be polynomialy reduced to #SAT. It is in-
teresting to see that some numbering problems re-
lated to polynomial search problems such as 2-SAT are
#P-complete. Several counting algorithms for #SAT
(Dubois 1991; Lozinskii 1992) have been published.
Unfortunately, many instances of #SAT, even with
small sizes (100 variables, 200 clauses), are intractable
using these algorithms.

In this paper, we propose a method for estimating
the number of solutions of CSP instances. Our method
is based on the estimate of the expectancy of a ran-
dom variable defined on the set of paths that link the
root of a search tree to it’s leaves. In the first section,
we present the principle and the limits of the method.
In the second section, we illustrate applications of the
method to SAT and the Queens problem. We also
study the interest of the proposed approach in compar-
ison with a method based on random drawings from
the initial search space. The third section presents
some experimental results. Concluding remarks and
research perspectives are contained in the last section.

Statistics on trees

A leaf-labeled tree is a tree where each leaf is associated
with an integer.

We write < oi, . . . , (u, > as a sequence of n items,
and si Is%, the sequence obtained by appending a se-
quence si to a sequence s2.

Constraint Satisfaction 169

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Let I? be the set of leaf-labeled trees.

x E N + leaf(x) E IT
kE N*,x~,..., xk E I? $ node(< xl, . . . , xk >) E r

Where N is the set of positive integers and N* =
NW

For each leaf-labeled tree t e I’, we define a set Q(t)
of paths that link the root to the leaves. Each path is
coded by a sequence of integers.

1

st(Zeuf(x)) = {< 0 >}
R(node(< x1,. . .,xk >) =

Ufzl{< i > Ir, r E fi(xi))

Let f be a function which assign to each path in R
the label of the associated leaf.

C

f(Zeaf(x), < 0 >) = x
f(node(< xl,. . . , xk >), < al,. . . , a, >) =

f(xal,< a2, - * .,&a >>

Let P be a probability on R.

1

P(Zeuf(x), < 0 >) = 1
P(node(<xl,..., xk: >),<a~ ,..., a, >) =

gqxa,s a2,* * .,%-A >)

P(t, c) is the probability of drawing a path c from
a tree t using the following method. We start with
the root. Each new node is-drawn uniformly from the
current node’s children.

Let X be a random variable on (a(t), P) which as-
sociates to each path c E Q(t) the value f(t, c)/P(t, c).
By definition,

Let I be a search problem instance and S be the set
of solutions of I. Let t be the search tree of a counting
algorithm with input I. We suppose that a leaf of t
can find multiple solutions. If the label of each leaf is
the size of the associated packet of solutions, we can
use a sample of paths for making an unbiased estimate
of ISI.

Let < cl,..., CN > be a sample of paths generated
by N independent drawings with respect of probability
P, we have :

(2)

Labeling all the leaves with value 1, it is possible
to obtain an estimate of the number of leaves in the
search tree. Let q(t) be the number of leaves of a tree
t. We have :

(3)

If t is a k-ary tree (each internal node having exactly
k children), there is a relation betwen the number of
leaves q(t) and the number of nodes ItI :

If t is a neuronal tree (each internal node having at
least 2 children), we only have :

rl(f) < ItI < %@> (5)
With the relations 4, 5 and 3 we can obtain a piece

of information about the size of a tree without exhaus-
t ively exploring it.

From a practical point of view, the quality of the esti-
mates depends on both the distribution of the random
variable X and the sample size. Broadly speaking, we
do not know the distribution of X. However, we can
obtain, with a given error probability, a lower bound of
Jf-ml *
Proposition
Let pi,..., pn be a sequence of independent unbiased
estimates of E[X] andarealX>O. Wehave:

P(~Min{p~, . . -,Pnl >ECXl) I Y$ (6)
The inequality 6 is given as a direct consequence of

the following well known lemme : if Y is a positive
random variable, X > 0 a real and y a sample value of
Y then P(y > XE[Y]) 5 i.

Method implementation
General framework
The two problems that we consider in the following can
be specified as constraint satisfaction problems (CSP).
A CSP instance is a 3-tuple < V, D, R >, where V =
{w,..*, vn} is a set of variables, D = {dl, . . . , dn} the
associated set of domains and R a set of contraints
defining relations betwen the values assigned to the
variables (Tsang 1993). A label is a couple (vi, Z) ,
Q E V, x E di, that stand for the assignment of the
valuextovi. Asetoflabels{(vi,zi),...,(v,,z,)}isa
solution of < V, D, R > iff it satisfies all the constaints
of R.

The figure 1 describes the ‘forward checking’ algo-
rithm that can be used for counting the solutions of a
CSP instance. This algorithm explores a search tree
where each internal node is associated with a search
context < F, A, D, R >. F is a set of free variables, A
is a set of labels, D is the set of domains of the free
variables and R is a set of unsolved constraints. The
function Propage simplifies the current context, no-
tably by removing from the domains of D some values
that are incompatible with the labels of A, according
to the constraints.

The figure 2 describes a stochastic algorithm which
draws a path 9 from the search tree of the ‘forward

170 Constraint Satisfaction

Algorithm Count(< V, D, R >: context)
Begin

Algorithm Draw(< V, D, R >: context)
Begin

Return Erplore(< V, {}, D, R >); Return ExpZore(< V, (}, D, R >);
End End

Function Ex$ore(< F,A, D, R >: context) : integer
Begin

If {} E D 01 one of the constraints is violated
Return (0);

Else If a,ll the contraints are satisfied
Return (n,,, IdI>;

&
Choose z)i E F:
Return Cz~dX’Ex$ore(Propage(c(x, vi)))
where c(x, v;) =< F\(G), A U {(vi, x)}, D\(A), R >

End If
End

Figure 1: Forward checking

checking’ algorithm of figure 1 and returns a couple
(p, k) where
e p is the probability of V!,
e L is the number of solutions associated with q.

Application to SAT
A SAT instance is a special case of CSP instance <
V, D, R > where V is a set of boolean variables, D a
set of boolean domains and R a set of clauses. Each
clause is a disjonction of literals.

We will use a variant of the Davis and Putman
(D&P) algorithm (D avis & Putman 1960; Franc0 &
Paul1 1983)) which is the general algorithm described
in figure 1 with a specific propagation procedure : For
each clause with only one literal zli (resp. lwi),
e the label (vi, 1) (resp. (u;, 0)) is added to the set A,

o the clauses that contain vi
from the set of clauses R,

(resp. -% .) are removed

o the literal VJ~ (resp. vi) is
of R where it occurs.

removed from each clause

With a good heuristic for the choice of variables, the
generation of a solution by drawing from the search
tree can be much more probable than the generation
of a solution by directly drawing assignment to the
variables. As an example, let us consider a T-SAT in-
stance, that is a SAT instance whose clauses have r
literals (T-SAT is NP-Complete for T > 2). What-
ever the heuristic, all the solutions are accessible in
the search tree. They are formed in packets associated
with leaves of the tree. Each packet is characterized
by the assignation of some variables.

For each real X, we write [xl the smaller integer
upper or equal to 2.

Let 2L1,... ,2”- be the sizes of packets of solutions,
ranked in an abitrary order.

Function ExpEore(< F, A, D, R >: context) :
(probability, integer)

Begin
If {} E D z one of the constraints is violated

Return (1,O);
Else If all the contraints are satisfied

Return (LfldE, PI);
&

Choose vz E F;
Draw x uniformly from d,
Let (p, k) = Explore(Propage(c(x, ve)))
where c(x, 21,) =< F\(Q), A U {(Q, x)}, D\(A), R >
Return C&P, k);

If End
End

Figure 2: Stochastic forward checking

Let PI be the probability of generating a solution by
directly drawing assignments to the variables. Let Pz
be the probability of generating a solution by drawing
a path with the stochastic forward checking algotithm.
Let N be the number of solutions.

Proposition
If the heuristic always chooses one of the variables

that are in the smaller clauses, we have

Proof

p2 p 2 f--(“r92(N) -1

1
(7)

2”’ + . . . + 2”-
1 2kl-n . . . 2km-n

2”
+ +

The stochastic forward checking algorithm makes
two kinds of variable assignments : propagation as-
signments (made by the propagation procedure) and
random assignments. Each path 9 ending to a packet,
of 2” solutions is associated with n - k assignments. If
the heuristic always chooses a variable that occur in a
clause of minimal size, there is at least a propagation
assignment for T- 1 random assignments. Hence Q has
at most 1 +(n - Ic)l internal nodes.

So, for each path XI! ending to a packet of 2” solu-
tions, we have

PPI) 2 &-k), 2
2r

z iz+(n-k)
21+F(n-k) = 2

where P(q) is the probability for drawing 9.

Constraint Satisfaction 171

hence

p2 2 ~(2~(~1-n)+...+2~(~--"))

yet
2 +(ki-n) = pi-“2~(“-k*)

hence

P2 2 i(2”l-n + . . . + 2km-*)2 r AMin{n-k*,iEl..m}

moreover

Maz{ki, i E l..m) 5 loga

$Min{n-k;,iEl

hence

.ml >

Application to the Queens problem
A configuration for the n Queens problem is a n-uple
< XO,...,Xn- 1 >, xi E O..n - 1, i E O..n - 1. The
component zi is the position of a queen on the row
of rank i on a n by n chessboard. This representation
implies that there is one queen on each row. A solution
is a configuration such that there is at most one queen
on each line and each diagonal.

< x0,. . .,xn- 1 > is a solution if and only if

{

Qi,j E O..n - 1, xi # xj
Vi, j E O..n - l,Ii - jl # Ixi - xjl

The propagation function removes from the domains
of free variables the values that are inconsistent with
the current assignment. The heuristic we used consists
to choose, for each new assignment, a variable among
the ones whose domain size is minimal.

As with the previous algorithm, because of domains
reduction, generating a solution by drawing a path
from the search tree is more probable than generating
a solution by drawing assignments to the variables.

Experimental results
Random 3-SAT instances
The results presented in this section have been ob-
tained with S-SAT instances generated by independent
drawings of clauses performed under uniform condi-
tions. The clauses with duplicates literals were not
allowed.

The figure 3 shows the average number of the search
tree nodes, according to the number of clauses, for 3-
SAT instances of 50 variables. The used algorithm is a
Davis & Putnam with an heuristic decribed in (Andre
& Dubois 1992). We note that instances of roughly
60 clauses are the hardest for this algorithm. These
instances are not interesting because we can estimate
their number of solutions by randomly drawing assign-
ments to the variables. In contrast, instances of 100

lE+O7 f

$ lE+O4
E!
g lE+O3

%
g lEti

-% lE+Ol
Number of clauses

: : : : : : : : : : : : : 1
20 60 loo 140 180 220 260 300

Figure 3: Random 3-SAT instances, 50 variables : av-
erage number of nodes in the search tree according to
the number of clauses.

lE+lO T

lE+O8 lE+O9 lE+lO

Figure 4: Random 3-SAT instances, 50 variables, 100
clauses : correlation between estimates and exact num-
bers of solutions.

clauses are hard for both exhaustive exploration of the

The figure 4 gives the results of estimations on ran-
search tree and drawing in configurations space.

dom 3-SAT instances of 50 variables and 100 clauses.
Each estimation was computed from a sample of 1000
paths, that is on average 1.5% of internal nodes of the
search tree. Each point is associated with an instance.
The x-coordinate of a point is the exact number of
solutions of the associated instance. Its y-coordinate
is the estimated number of solutions. The concentra-
tion of the points around the first diagonal (doted line)
shows the quality of the estimations.

Structured SAT instances

In this section, we present some results about SAT in-
stances associated with graph colouring problems. The

172 Constraint Satisfaction

Number of Average of Rel. std.
Instance solutions estimates deviation
BtYee(4) 4.92 . lo4 4.82 - lo4 5.8%
B-tree(S) 3.22 * log 3.03 * log 21%
Btree(6) 1.38 * 1ol9 8.83 * 10IS 40%
Btree(7) 2.55 - 10s8 9.37. 1O37 80%
Ranzsey(6) 1.10 . lo6 1.13 * lo6 19%
Ramsey(7) 1.10 * lo8 1.03 * lo8 42%

Table 1: Estimates of number of solutions for struc-
tured SAT insta.nces.

aim of the first problem is to colour each node of a com-
plete binary tree with 3 colours, such as nodes that are
connected by an edge do not have the same colour. To
specify the constaints related to a tree of deep n, we
built a SAT instance called Btree(n) as follow : With
each node are associated a set of three variables, one
for each possible colour, and a set of clauses specify-
ing that exactly one of these variables has the value 1.
With each edge is associated a set of clauses specifiying
that the two connected nodes have different colours.

We chose these instances on the one hand because we
can easily compute their number of solutions, and on
the other hand because it would be relatively difficult
to count their solutions by a D&P approach without
refinement. Because of constraints related to the unic-
ity of the colour of each node, the D&P program must
assign all the variables (directly or by propagation),
to generate each solution. It can generate only one
solution at the same time.

The second problem we experimented with is called
Ramsey(3,3,3,2). Th e aim is to colour the edges of
a complete graph in such a way that there is not any
monochromatic triangles. For a graph of n vertices, we
built a SAT instance called Ramsey(n) with the same
approach than the previous problem.

The table 1 gives, for each instance, the exact num-
ber of solutions, the average and the relative standard
deviation of 30 estimates on samples of 1000 paths.

Queens problem

The method can be used for estimating the size of
a search tree without exploring it exhaustively, with
the same limitation as the estimation of the number of
solutions. This can be useful, for instance, to evaluate
the time we need to comput#e the exact number of so-
lutions of a problem instance with a given algorithm
and a given heuristic.

The table 2 presents the results of a series of 30 mea-
sures on some instances of the Queens problem. The
estimates were obtained from samples of 1000 paths.
For each instance, we give the exact number of solu-
tions, the average and the relative standard deviations
of estimates and the ratio of the number of explorated
nodes to the total number of nodes in the search tree.

References

Andre, P., and Dubois, 0. 1992. Utilisat,ion de
l’esp&ance du nombre de solutions afin d’optimiser la
&solution d’un syst&ne sat,. C. R. Acad. SC;. Paris
217-220.

The table 3 gives the lower bounds, with an error Bailleux, O., and Chabrier, J.-J. 1995. Measures
probability lower than lo- , 3o for the number of solu- on sat landscapes by statistical exploration of search
tions of Queens problem instances for which we do not trees. Workshop on Studying and solving really hard
know any reference of usable counting method. problems at CP95.

Size of Nb. of Av. of Rel. std. expl.
inst.
12

sol. est. dev. nodes
1.42 . lo4 1.42 . lo4 3.5% 3.2. 10-l

13 7.37 * lo4 7.32 . lo4 4.3% 6.8. 1o-2
14 3.66 . lo5 3.65 . lo5 4.7% 1.3. 1o-2
15 2.28 . lo6 2.28 . lo6 4.4% 2.4. 1O-3
16 1.48 . lo7 1.48 . 10’ 4.7% 3.9. lo-”
17 9.58 . lo7 9.41 * lo7 5.3% 6.7. lo-”
18 6.66 * lo8 6.63 . 10’ 3.8% 1.0. 1o-5

Table 2: Estimates of number of solutions for Queens
problem instances.

Size of Probable
instance lower bound
20 2 . log
40 4 * 1030
60 2 * 1o56
80 1 . 10””
100 5 * loll5

Table 3: Lower bounds of number of solutions for
Queens problem instances, with error probability lower
than 10p3’.

Conclusion

We proposed a stochast#ic approach for making un-
biased estimates of the number of solutions CSP in-
stances. Our method uses the set of paths t,hat, link
the root of a search tree to its leaves as sample space.
This allows us to take advantage of the efficiency of
the ‘forward checking’ algorithm.

We can always compute a lower bound for the num-
ber of solutions with a given error probability. Actu-
ally, we do not know how to comput,e a reliable upper
bound. Despite this limitation, the experimental re-
sults seem very promising.

Constraint Satisfaction

Billonnet, A., and Sutter, A. 1992. An efficient al-
gorithm for the 3-satisfiability problem. Operation
Research Letters 29-36.
Dalal, M., and Etherington, D. W. 1992. A hierar-
chy of tractable satisfiability problems. Information
Processing Letters 44:173-180.
Davis, and Putman. 1960. A computing procedure
for quantification theory. J. ACM 7:201-215.
Dubois, O., and Carlier, J. 1991. Probabilistic ap-
proach to the satisfiability problem. Theoretical Com-
puter Science 65-75.
Dubois, 0. 1991. Counting the number of solutions
for instances of satisfiability. Theoreticad Computer
Science 81:49-64.
France, J., and Paull, M. 1983. Probabilistic anal-
ysis of the davis Putnam procedure for solving the
satisfiability problem. Discrete Applied Muthematics
5177-87.
Garey, M. R., and Johnson, D. S. 1979. Computers
and Intractability. W. H. Freeman and Compagny.
Gent, P. I., and Walsh, T. 1994. The sat phase tran-
sition. In Proceedings of ECA1 94. John Wiley and
Sons, Ltd.
Lozinskii, E. L. 1992. Counting propositional models.
Information Processing Letters 41~327-332.
Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and easy distributions of sat problems. In Pro-
ceedings of AAAI 92, 459-465.

Parshina, N. A. 1992. Satifiability problem :
some polynomial classes of conjunctive normal forms.
Kibernetica i Sistemnyi Anadiz 1:165-170.
Robinson. 1963. Theorem proving on computer. J.
ACM 101163-174.
Selman, B., and Kautz, H. 1993. An empirical study
of greedy local search algorithms for satisfiability test-
ing. In Proceedings of the 11th National Conference
on Artificial Intelligence.
Selman, B.; Levesque, H.; and Mitchell, G. 1992. A
new method for solving hard satisfiability problems.
In Proceedings of AAAI 92, San Jose, CA, 440-446.
Simon, J.-C.; Carlier, J.; Dubois, 0.; and Mouline, 0.
1986. Statistical distribution of sat problem solutions,
application to expert-systems. C. R. Acad. Sci. Paris
217-220.
Tsang, E. 1993. Fundations of Constraint Satisfac-
tion. Academic Press.
Valliant, L. 1979. The complexity of enumeration and
reliability problems. SIAM J. Comput. 8(3):410-421.

174 Constraint Satisfaction

