
r so timizati s

Gdrard Verfaillie and Michel Lemaitre
CERT/ONERA

2 av. Edouard Belin, BP 4025
3 1055 Toulouse Cedex, France
{ verfaillie, lemaitre}@cert.fr

Abstract

If the Constraint Satisfaction framework has been extended
to deal with Constraint Optimization problems, it appears
that optimization is far more complex than satisfaction. One
of the causes of the inefficiency of complete tree search
methods, like Depth First Branch and Bound, lies in the poor
quality of the lower bound on the global valuation of a partial
assignment, even when using Forward Checking techniques.
In this paper, we introduce the Russian Doll Search algorithm
which replaces one search by n successive searches on nested
subproblems (n being the number of problem variables),
records the results of each search and uses them later, when
solving larger subproblems, in order to improve the lower
bound on the global valuation of any partial assignment.
On small random problems and on large real scheduling
problems, this algorithm yields surprisingly good results,
which greatly improve as the problems get more constrained
and the bandwidth of the used variable ordering diminishes.

The Constraint Satisfaction framework (CSP) is now
widely used to represent and solve numerous Artificial
Intelligence problems (planning, scheduling, diagnosis,
design. . .). But it appears that most problems are combi-
nations of imperative requirements, user preferences and
uncertainties. They are not pure constraint satisfaction
problems, but constraint satisfaction and optimization prob-
lems : some constraints have strictly to be met, the others
have preferably to be met.

In order to take these aspects into account, several exten-
sions of the classical framework have been proposed: possi-
biZistic,fuzzy, additive, probabilistic . . . CSP. In (Bistarelli,
Montanari, & Rossi 1995) and (Schiex, Fargier, & Verfaillie
1995), two general algebraic frameworks, that cover most of
these extensions, have been proposed. We will use the sec-
ond of these, the so-called Valued Constraint Satisfaction
Problems framework (VCSP), as a basis for our work.

Depth First Branch and Bound, which aims at finding a
provenly optimal solution, is the natural extension of the
Backtrack algorithm in this framework. It is well known
that the quality of the bound used by this kind of algorithm
is crucial: the better the bound, the smaller the search tree.
As shown in (Schiex, Fargier, & Verfaillie 1995), if Back-
ward and Forward Checking are easily extended to provide
bounds in the VCSP framework, it is much more difficult
with Arc Consistency. Furthermore, if the bound provided

INRA
Chemin de Borde Rouge, Auzeville, BP 27

3 1326 Castanet Tolosan Cedex, France
tschiex@toulouse.inra.fr

by Forward Checking is better than the one provided by
Backward Checking, it still remains too optimistic, espe-
cially at the beginning of the search, when few variables are
assigned. As a consequence, the Depth First Branch and
Bound algorithm may explore huge subtrees which do not
contain any complete assignment better than the best found
so far.

Experiments on small random VCSPs show that opti-
mization is much more difficult than satisfaction: unlike
in the classical CSP framework, complexity does not de-
crease beyond the frontier between consistent and incon-
sistent problems; worse, this frontier defines the beginning
of a continuous and steep increase in complexity, as graph
connectivity or constraint tightness increases. These results
are confirmed by experiments on large real problems. Even
when satisfaction can easily be decided, optimization on
the same problems is often out of reach within a reasonable
time.

The idea of the Russian Doll Search is to replace one
search by n successive searches on nested subproblems,
where n is the number of variables in the problem: given
an ordering of the problem variables, the first subproblem
involves the last variable only, the ith subproblem involves
all the variables from the n - i + lth variable to the last,
and the nth subproblem is the whole problem. At first sight,
replacing one search by n searches using the same Depth
First Branch and Bound algorithm may seem counterpro-
ductive. But the key to the efficiency of this method lies
in the recording, for each subproblem, of the quality of an
optimal assignment, and the ability, when the same static
variable ordering is used, to use this information to improve
the bound provided by Forward Checking. This improve-
ment, which is particularly noticeable at the beginning of
the search, allows the search tree to be pruned much earlier.
Each search being much shorter, the sum of the costs of the
n searches is often better than the cost of a classical Depth
First Branch and Bound, even if the latter can benefit from
a dynamic variable ordering.

After an introduction to the VCSP framework, to the
Branch and Bound algorithms, and to the various existing
bounds, we describe the Russian Doll algorithm in detail.
Then we consider some related algorithms and theoretical
results. Finally, we present some experimental results ob-

Constraint Satisfaction 181

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

tained on small random problems and on large real schedul-
ing problems.

Valued Constraint Satisfaction Problems
As a classical CSP is defined as a pair P = (V, C),
where V is a set of variables and C a set of constraints,
a VCSP (Schiex, Fargier, & Verfaillie 1995) can be defined
as a quadruple P = (V, C, S, cp), where:

V is a set of variables;

C is a set of constraints;

S is a valuation structure, which itself is a quintuple
(E, +‘, I, T, @), where E is a set, + is a total order on
E, I is the minimum element in E, T is the maximum
element in E and @ is a binary closed operation on E,
which satisfies the following properties: commutativity,
associativity, monotonicity according to +, I as identity
and T as absorbing element;

cp is an application from C to E.

The set E is used to define a gradual notion of constraint
violation and inconsistency. The elements of E, so-called
valuations, can be compared using the total order + and
combined using the operation 8. The minimum element I
is used to express constraint satisfaction and consistency,
the maximum element T is used to express imperative con-
straint violation and complete inconsistency. The applica-
tion cp assigns a valuation to each constraint. This valuation
expresses the importance of the constraint (equal to T in
case of imperative constraint).

Let A be a complete assignment and C&l (A) be the set
of the constraints violated by A. The valuation q(A) of A
is the combination of the valuations of all the constraints in
Giol (A):

The standard objective is then to find a complete assignment
of minimum valuation. The valuation q(P) of a problem
P is the valuation of such an assignment.

Let A be a partial assignment. Its global valuation is
the minimum valuation obtainable by extending it on the
unassigned variables or, in other words, the valuation of
the problem P restricted by the partial assignment A. The
valuation of a problem P is the global valuation of the empty
assignment.

Specific frameworks, such as classical CSP, possibilis-
tic CSP, additive CSP, probabilistic CSP, lexicographic
CSP. . . can be produced by instantiating the valuation struc-
ture S. For example, in additive CSP, E is the set of the
natural integers, enlarged with a special element +oo, + is
the natural order > on integers, I= 0, T = +OCI and @
the usual addition + (> and + being extended in order to
take into account the special element +cm). Partial CSP,
studied in (Freuder & Wallace 1992), is a particular case of
additive CSP, where all the constraints are non imperative
and have the same valuation (equal to 1).

Branch and Bound methods
Backtrack is the usual algorithm to find a complete con-
sistent assignment in the classical CSP framework. Depth
First Branch and Bound, described in algorithm 1, is its nat-
ural extension to find a complete assignment of minimum
valuation in the VCSP framework.

function DFBB(Zb;,it, ubinit, LOWER-BOUND)
return DFBBI(lbi,it, ub;,it, 0, LOWER-BOUND)

function DFBBI(Zb;,;t, ubinit, i, LOWER-BOUND)
The problem to solve includes the variables in Ii. .n]. i =
0 with the usual DFBB algorithm. 0 5 i 5 n - 1 with
the RDS algorithm (see algorithm 2). An assignment A of
the problem variables, of minimum valuation p(A), such that
lbinit 5 p(A) + ubinit, is sought. If such an assignment
exists, it is recorded and its valuation is returned; otherwise,
failure is returned. For clarity’s sake, it is assumed that all
the variables have d values and that static variable and value
orderings are used. LOWER-BOW is a functional parameter
which determines the way of computing a lower bound Zb on
the global valuation of a partial assignment. It is equal to LB1
or LB2 with the usual DFBB algorithm (see Equations 1 and 2)
or to LB3 with the RDS algorithm (see Equation 4).];..w] is the
set of assigned variables. v is the current variable. ub is the
valuation of the best assignment of the problem variables found
so far.

lb, ub, v, success t I, ubinit, i, false

search-depth :
xv = n {a better complete assignment has been found} then

1

success, ub t true, lb {the upper bound ub is updated}
record the current assignment A
if Zbinit 4 ub then go search-width else go end-search

else

1
A[w t 2, + l] f- 0
go search-width

search-width :
if A[v] = d {all the domain values have been tried} then

1
V+-V- 1 {a backtrack occurs}
if v=i then go end-search else go search-width

else

1

A[v] t A[v] + 1
Zb +-LOWER-BoUm(A, i, v)
if Zb + ub then go search-depth else go search-width

end-search :
if success then return ub else return failure

Algorithm 1: Depth First Branch and Bound

Let us assume that any complete assignment, whose val-
uation is higher than or equal to ubinit, is unacceptable
and that it is known, for any reason, that there is no com-
plete assignment, whose valuation is lower than Zbinit. The
problem is to find a complete assignment A, of minimum
valuation q(A), such that Zbinit 5 v(A) 4 ubinit. By
default, Zbinit = I and ubinit = T.

At any moment, the algorithm searches for a complete
assignment whose valuation is lower than a current upper

182 Constraint Satisfaction

bound ub. This upper bound is initialized with the value
ubinit and decreases during the search: each time a complete
assignment, whose valuation is lower than ub, is found, its
valuation is used as a new upper bound.

It maintains a lower bound lb on the global valuation of
the current partial assignment A, and backtracks each time
ub -: lb, since there then exists no complete extension of A
whose valuation is lower than ub.

It ends when a complete assignment, whose valuation is
equal to Zbinit, is found or when no complete assignment
whose valuation is lower than ub could be found. .

There are three main ways of improving this algorithm:
(1) to choose an adequate variable ordering to reduce the tree
size or to rapidly increase the lower bound Zb; (2) to choose
an adequate value ordering to rapidly find good complete
assignments and therefore decrease the upper bound ub; (3)
to compute a high lower bound (function LOWER-BOUND)
on the valuation of any partial assignment, to cut earlier
unproductive branches. Russian Doll Search uses this last
way to improve Depth First Branch and Bound.

Partial Assignment Valuation
Backward Checking is the simplest way of bounding the
global valuation of a partial assignment A, by only taking
into account the constraints which are assigned’ by A. Let
Cass-viOl (A) be the set of constraints assigned and violated
by A. We obtain the bound LB 1 (A), also called the local
valuation of A:

LB@) = LBb,(A) = ($9 cpw (1)
cECa,s-viol(A)

Forward Checking is an attempt to improve this bound, by
taking into account the constraints which are quasi-assigned
by A i.e., such that only one variable is unassigned. Let
V’(A) be the set of the variables which are not assigned by
A. If v is an element of V’(A), let d(v) be its domain. If
val is an element of d(v), let Cqasssviol (A, v, val) be the
set of the constraints which are not completely assigned by
A but assigned and violated by A u {(v, val)}. We obtain
the bound LB~ (A):

Lb(A) = Lb,(A) @Lqc(A) (2)
LBjc(A) = 0 [min ALBb,(A,w,val)]

vEV'(A)valEd(v)

ALBbc(A,v,val) = @ cp(c>
cECQ(LSS--V,O~(A1~.~a~)

where ALBUM (A, v, val) is the increase in local valuation
which would result from the assignment of the value vul to
the variable v.

Since, for each A, LB1 (A) li\ LBZ (A), Forward Check-
ing provides a better bound than Backward Checking and
yields more pruning. Moreover, even when no backtrack
is possible (LB~(A) + ub), values can be safely removed
from the domains of the unassigned variables. Let v be an
unassigned variable and vul be one of its values. This value
can be removed if:

LBbc(A) @ ALBbc(A,val)

k ub

But Forward Checking remains too optimistic, espe-
cially at the beginning of the search, since it does not
take into account constraints between unassigned vari-
ables. In the CSP framework, Arc Consistency embed-
ded in a Backtrack algorithm (Haralick & Elliot 1980;
Sabin & Freuder 1994) does so. But, as it has been shown,
in (Bistarelli, Montanari, & Rossi 1995) and (Schiex,
Fargier, & Verfaillie 1993, extending it to the VCSP frame-
work is difficult, at least with a strictly monotonic operation
(additive, lexicographic orprobabilistic CSP), since the cor-
responding problem becomes NP-complete. Directed Arc
Consistency Counts (Wallace 1994) are a way of taking into
account constraints between unassigned variables. Russian
Doll Search can be seen as another simple, but powerful,
way of doing so.

The Russian Doll Search, described in algorithm 2, assumes
a static variable ordering. It performs n successive searches
on nested subproblems as russian dolls2, where n is the
number of variables in the problem. The first subproblem
only involves the last variable, the ith subproblem involves
all the variables from the n - i + 1 th variable and the nth
subproblem is the whole problem. Each search uses the
Depth First Branch and Bound algorithm described in Al-
gorithm 1, with the same static variable ordering. The global
result is obtained with the last search, but the optimal as-
signments of all the solved subproblems, along with their
valuation, are systematically recorded in order to help future
searches.

function RDS(ubi,it)
The problem to solve includes n variables. An assignment A
of the probiem variables, of minimum valuation p(A), such
that v(A) + ub init, is sought. If such an assignment exists,
its valuation is returned; otherwise, failure is returned. T-CL+]
is the valuation of the subproblem limited to the variables in
]i..n].

rds[n] tl
foreach i from n - 1 downto 0 do

I

Zb’ + rds[i + l]
ub’ t UPPER-BOUND(ubi,;t, lb’, ;)
ub t DFBBr(lb’, ub’, i,LB3)
if ub # failure then ~ds[i] tub else return failure

return ub

Algorithm 2: Russian Doll Search

First, each search can use the valuation of the previous
subproblem to bound the valuation of the current-one: let

‘A constraint is assigned iff all its variables are assigned. 2We could also have called this method Chinese Box Search.

Constraint Satisfaction 183

P’ be the previous subproblem and P” be the current one
(P’ c PI’); let cp (P’) and ‘p(P”) be their valuations and C’
be the set of the constraints that appear in P”, but not in P’,
it is obvious that:

This inequation is used in the function UPPER-BOUND to
give a better value of the initial upper-bound ubinit.

Each search can also use the optimal assignment produced
by the previous search as a value heuristic for the current
search: for each variable, try first the value it had in this
previously optimal assignment.

Finally, and most importantly, since each search uses the
same static order, it can use the valuations of all the previous
subproblems to improve the bound on the global valuation
of any partial assignment A. Let P’(A) be the subproblem
limited to the variables which are not assigned by A and
p(P’(A)) its previously recorded valuation3. We obtain
the new bound I&(A):

LB3 (A) = L&c(A) @L+(A) @Lki,(A) (4)

W-c@) = dP’(4)

To be convinced that LB3 (A) is a lower bound on the valu-
ation of any partial assignment A, it is sufficient to observe
that the subsets of constraints taken into account by each
of its three components (LBbC, LBfc and LB,& are dis-
junct (provided there is no unary constraint) and that each
component is itself a lower bound on the best valuation of
the corresponding subset of constraints, for all the possible
complete extensions of A.

In the particular case of binary CSPs, Figure 1 shows how
constraints contribute to each component of the bound. In
this case, we obtain a partition of the set of the problem
constraints in three subsets. In the general case of n-ary
CSPs, constraints which involve assigned and unassigned
variables, but are not quasi-assigned, are still ignored by the
bound LB3.

Since, for each A, LBl(A) 5 LBz(A) 5 LB3(A), the
bound provided by the Russian Doll Search is better than the
bound provided by Forward Checking or Backward Check-
ing. This improvement should be all the more dramatic as
P’(A) is large i.e., at the beginning of the search, when the
bound provided by Forward Checking or Backward Check-
ing is very poor. Let us also note that, when no backtrack
is possible, the component LB,.&A) can also be added to
LBbc (A) in Equation 3 in order to remove more values from
the domains of the unassigned variables.

elated algorithms and theoretical results
Let us note a similarity between the Russian Doll Search
method and Dynamic Programming. Like Dynamic Pro-
gramming, Russian Doll Search solves subproblems in or-
der to solve the whole problem. But, whereas Dynamic

31n algorithms 1 and 2, A is the assignment of the variables in
]i..w], P’(A) is the subproblem limited to the variables in]w..n]
and (p(P’(A)) = ~ds[v].

2
-A- - P’(A) -

Figure 1: Constraints taken into account by each compo-
nent of the bound: (1) Backward Checking, (2) Forward
Checking, (3) Russian Doll Search (previous search)

Programming directly combines the results obtained on sub-
problems to get the result of the whole problem, Russian
Doll Search only uses them as bounds during its search.
Note that if no constraint is imposed on the constraint graph
structure (such as a tree or hyper-tree structure), Dynamic
Programming would need exponential space to solve VC-
SPS.

Let us also note a similarity between the Russian Doll
Search method and the Depth First Iterative Deepening al-
gorithms (Korf 1985). As with Depth First Iterative Deep-
ening, search is performed at increasing depth. But the main
difference is the use, with the Russian Doll Search, of the re-
sults of the previous iterations in order to improve the lower
bound on the global valuation of any partial assignment.

It is moreover easy to recover a traditional result of the
Zterative Deepening algorithms: since, on a problem in-
volving n variables and d values per variable, a Depth First
Branch and Bound search examines in the worst case dn ter-
minal nodes, the n successive searches of the Russian Doll
Search examine in the worst case N = d + d2 + . . . + d”
terminal nodes; if d > 1,O < $ < 1 and we have:

’ 1 +O” 1 d
N = d” - k(-$ < d” . x(--)’ = d” . & = d” . d _ 1

i=o iso
The ratio between the number of examined terminal nodes,
in the worst cases, by the Russian Doll Search and the usual
Depth First Branch and Bound is then less than -&, a
number which is itself less than or equal to 2 and decreases
as d increases.

In practice and as it can be observed in experiments on
random and real problems (see the two next sections), the
synergy between successive iterations of the Russian Doll
Search, and mainly the improvement of the lower bound
on the global valuation of a partial assignment, can rapidly
offset this unfavourable ratio.

In order to better understand this phenomenon, let us con-
sider two extreme cases: two partial binary CSPs, denoted
by L,, and Ptight, each of them involving n variables, d
values per variable and e = n(n - 1) /2 constraints (com-
plete constraint graph); whereas each constraint of Ploo,,
allows all the possible pairs of values, each constraint of
fright allows none of them; the valuations of Pl,,,, and
Ptight are respectively equal to 0 and e.

With &ose, the usual Depth First Branch and Bound
only examines one terminal node, whereas the Russian Doll
Search examines n. The ratio is equal to n on behalf of the
former.

184 Constraint Satisfaction

with Ptight , the usual Depth First Branch and Bound ex-
amines dn terminal nodes with the lower bound LB1 (Back-
ward Checking) and still d”-l with the lower bound LB2
(Forward Checking). Since, in this case, LB3 provides
the Russian Doll Search with the exact global valuation
e of each assignment of the first variable, the Russian Doll
Search examines nd terminal nodes. The ratio is now equal
to nldny2 on behalf of the latter.

These examples show that, if the Russian DoZZ Search
may be more expensive in some cases, it may bring expo-
nential savings in other cases.

andody Generated
We first present results which have been obtained on
small binary random partial CSPs. These problems have
been randomly generated according to the model described
in (Smith 1994), slightly modified in order to produce prob-
lems of limited bandwidth. Let us recall that the four pa-
rameters of this model are n (the number of variables), d
(the domain size, equal for all the variables), c (the graph
connectivity) and t (the constraint tightness, equal for all
the constraints).

Let us also recall that the bandwidth of a graph (Zabih
1990) is the minimum bandwidth on all its possible ver-
tex orderings and that the bandwidth of an ordering is the
maximum distance, according to this ordering, between two
connected vertices. Computing the bandwidth of a graph is
an N P-complete problem.

The method we chose for generating CsPs of limited
bandwidth b was as follows: given n, d, c, t and b, let 0
be a variable ordering; let S be the set of all the pairs of
variables, which are separated by a distance lower than or
equal to b according to 0; randomly select c.n(n- 1) /2 pairs
of variables in S and randomly generate a binary constraint
of tigthness t for each selected pair.

This method guarantees that the bandwidth of the order-
ing 0, and therefore the graph bandwidth, is lower than
or equal to b. Let us note that not all the combinations of
n, c and b are allowed: a small bandwidth implies a small
connectivity since the following relation holds between n,
a md b: (n-- b)(n - b - 1) < n(n - l)(l - c).
We compare two algorithms:

a Depth First Branch and Bound (bb), using the lower
bound LB2 on the global valuation of a partial assignment
defined in Equation 2 and the following dynamic variable
and value orderings:

- given the generation variable ordering, among the vari-
ables of minimum current domain size, choose the first
variable of maximum degree;

- if A is the partial current assignment and v the variable
to be assigned, choose the first value which minimizes
ALBUM (A, v, val) i.e., the value which yields the small-
est increase in local valuation of the current partial
assignment;

a Russian Doll Search (rds), using the lower bound LB3
on the global valuation of a partial assignment defined

in Equation 4, the static generation variable
the following dynamic value ordering:

ordering

- first choose the value the variable had in the optimal
assignment found on the previous subproblem, then
use the same heuristics as with the Depth First Branch
and Bound algorithm.

These orderings are, in each case, the most efficient
of those we experimented. Algorithms have been writ-
ten in Common Lisp and tests have been performed with
the CMUCL implementation on a Spare 5 workstation with
32Mb of memory.

In order to get a first global view of the relative effi-
ciency of bb and rds, we carried out preliminary exper-
iments with n = 20, d = 5, c = 0.1,0.3,0.5,0.7,0.9,
t = 0.1,0.3,0.5,0.7,0.9, b = 4,10,16, and 20 randomly
generated problems for each combination of c, t and b. In
Figure 2, we point, using a plus sign, at the combinations
of c, t and b for which rds is better than bb, in terms of the
number of problems more rapidly solved.

t + 0.1 0.3 0.5 0.7 0.9
c-l u

0.7 10 - - + + +
16 - - + + +

0.9 16 - - + + +

Figure 2: A global view of the areas where the Russian Doll
Search is more eficient than the usual Depth First Branch
and Bound

It. appears that rds is more efficient than bb on the most
inconsistent problems (great values of c and t), which are
also the hardest to solve. It also appears that graph band-
width is important, since, for a given combination of c and
t, rds may be more efficient than bb with only a small value
of b.

In order to judge the influence of the inconsistency degree
of the problem on the relative efficiency of bb and rds,
we carried out more systematic experiments with n = 20,
d = 5, c = 0.7, b = 10, t varying from 0.1 to 0.9 in steps
of 0.1, 100 randomly generated problems for each value of
t and a time limit of 500 seconds per problem. Note that,
with these problems, the frontier between consistency and
inconsistency is about t = 0.2. Figure 3 shows, for both
algorithms, the mean cpu time and the number of problems
solved within the time limit.

It appears that rds gets more efficient as constraint tight-
ness increases. Moreover, whereas the number of problems
solved by bb suddenly diminishes as constraint tightness

Constraint Satisfaction 185

700 ,
x = tightness, y = mean CPU time (in seconds)

I I I I I I f I I

600

rds +
bb -+-.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ,

x = tightness, y = number of problems solved within 500 seconds
100 T T T T T ‘\ T--T

\ ‘\ rds +
bb -+-.

4%
‘\

-.
0 I I I I I I , --.,
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Influence of constraint tightness

increases, nearly all the problems generated are solved by
rds within 500 seconds.

In order to assess the influence of the graph bandwidth
on the relative efficiency of bb and rds, we performed other
experiments with n = 20, d = 5, c = t = 0.5, b varying
from 6 to 18 in steps of 2 and 100 randomly generated
problems for each value of b. Figure 4 shows the mean cpu
time for both algorithms. It appears that graph bandwidth is
important, since rds becomes less efficient as it increases.

80
x = graph bandwidth, y = mean cpu time (in seconds)

I I I I I
rds -e-

70 - bb -+-. _

6 8 10 12 14 16 18

Figure 4: Influence of graph bandwidth

Earth Observation Satellite Scheduling
Problems

We now present the results which have been obtained on
large real scheduling problems and, more precisely, on daily
management problems for an earth observation satellite, for
which the idea of the Russian Doll Search was originally
conceived (Agn&e et al. 1995). These problems can be
roughly described as follows:

given a set S of photographs which can be taken the next
day from at least one of the three instruments, w.r.t. the
satellite trajectory; given, for each photograph, a weight
expressing its importance;

given a set of imperative constraints: non overlapping
and minimal transition time between two successive pho-
tographs on the same instrument, limitation on the instan-
taneous data flow through the satellite telemetry;

find an admissible subset S’ of S (imperative constraints
met) which maximizes the sum of the weights of the
photographs in S’.

They can be casted as additive CSPs by:

associating a variable v with each photograph p; asso-
ciating with v a domain d to express the different ways
of achieving p and adding to d a special value, called
rejection value, to express the possibility of not selecting
p; then associating with v an unary constraint forbidding
the rejection value, with a valuation equa1 to the weight
of P;

translating as imperative constraints (binary and ternary)
the constraints of non overlapping and minimal transition
time between two photographs on the same instrument,
and of limitation on the instantaneous data flow;

On these problems, we compare:

bb using the lower bound LB2 on the global valuation of
a partial assignment and the following variable and value
orderings:

- among the variables of maximum weight, choose the
first according to the chronological photograph order-
ing; when only one value remains in a variable domain,
immediately assign this variable this value (dynamic
ordering);

- last choose the rejection value in each domain (static
ordering);

rds using the lower bound LB3 on the global valuation of a
partial assignment, slightly modified in order to take into
account unary constraints, and the following variable and
value orderings:

- choose the first variable according to the chronological
photograph ordering, since the bandwidth of this order-
ing is naturally small in scheduling problems (static
ordering);

- first choose the value the variable had in the optimal
assignment found on the previous subproblem; when
this value is not the rejection value, last choose the
rejection value (static ordering);

186 Constraint Satisfaction

These orderings are, in each case, the most efficient we
experimented. Figure 5 shows the results we obtained
on eight typical problems (data can be downloaded from
ftp://ftp.cert.fr/pub/lemaitre/LVCSP/Pbs/SPOT5/). A row
is associated with each problem. The three following
columns give the number n of variables, the number e of
constraints and the bandwidth b of the chronological order-
ing for the largest independent subproblem4. The four last
columns give the results of bb and rds, using a time limit
of 1800 seconds per independent subproblem. For each
algorithm, the first column shows the valuation of the best
assignment found within the time limit and the second one
the cpu time used to get this result. A * sign points out
provenly optimal valuations.

< rds
n e b val time val time
100 610 33 48 1800 49* 0.5
199 2032 62 3076 1800 3082” 14
300 4048 77 15078 1800 16102” 29
364 9744 150 21096 1800 22120” 86
105 403 30 8095 1800 9096” 2.5
240 2002 59 12088 1800 13100” 15

;:; / ii:: / :;i // :;:;: / :i::)/ :;:;:: 1 ::6 I/

Figure 5: Results on earth observation satellite scheduling
problems

It appears that, whereas bb solves none of the eight prob-
lems within the time limit, rds solves all of them. It also
appears that it solves them all the more easily as the band-
width of the chronological ordering it uses is small.

Conclusion
Although Depth First Branch and Bound tree search al-
gorithms allow Constraint Optimization problems to be
dealt with, extensions of Backward and Forward Checking,
which do not take into account constraints between unas-
signed variables, provide the search with bounds, which
are too optimistic, so long as it does not reach the depths
of the tree. The practical result is an enormous waste of
time and an inability to solve even small problems within a
reasonable time.

The Russian Doll Search algorithm we have described in
this paper is an extremely simple and yet powerful method
of taking into account constraints between unassigned vari-
ables and then of providing the search with realistic bounds
from the beginning. Although it must perform n searches,
each of them using a static variable ordering, the Russian
Doll Search may outperform the usual Depth First Branch
and Bound algorithm, even if the latter uses the best dy-
namic variable orderings. It has been observed that this
improvement is all the more dramatic as problems are more
inconsistent and the bandwidth of the used variable ordering

4Some problems can be decomposed
lems, which can be solved sequentially.

in independent subprob-

is small. This allows large, previously unsolvable, schedul-
ing problems to be easily solved.

This algorithm certainly deserves further improvements,
including the minimization of the bandwidth of the used
variable ordering, the use of a Constraint Satisfaction algo-
rithm as long as subproblems are consistent and of a mixed
static and dynamic variable ordering (static at the begin-
ning of the search, dynamic as soon as the subproblems
defined by the unassigned variables are consistent and their
valuations cannot improve the bound).

Acknowlegments
This work was done at CERT-ONERA and supported by the
French Space Agency (CNES). We are indebted to Denis
Blumstein and Jean Claude Agn&se, from CNES, who first
conceived, implemented and experimented the Russian Doll
Search method for earth observation satellite scheduling
problems, and to Eric Bensana, from CERT-ONERA, who
helped us to generalize it to the Constraint Optimization
framework.

References
Agnese, J.; Bataille, N.; Bensana, E.; Blumstein, D.; and
Verfaillie, G. 1995. Exact and Approximate Methods for
the Daily Management of an Earth Observation Satellite.
In Proc. of the 5th ESA Workshop on ArtijciaZ Intelligence
and Knowledge Based Systems for Space.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1995. Con-
straint Solving over Semirings. In Proc. of IJCAZ-95,
624-630.
Freuder, E., and Wallace, R. 1992. Partial Constraint
Satisfaction. Artificial Intelligence 58:21-70.

Haralick, R., and Elliot, G. 1980. Increasing Tree Search
Efficiency for Constraint Satisfaction Problems. ArtiJiciaZ
Intelligence l4(3): 263-3 13.
Korf, R. 1985. Depth-First Iterative Deepening: An Opti-
mal Admissible Tree Search. ArtiJciaZ Intelligence 27:97-
109.
Sabin, D., and Freuder, E. 1994. Contradicting Con-
ventional Wisdom in Constraint Satisfaction. In Proc. of
ECAZ-94,125-129.
Schiex, T.; Fargier, H.; and Verfaillie, 6. 1995. Valued
Constraint Satisfaction Problems : Hard and Easy Prob-
lems. In Proc. of IJCAI-95,63 l-637.
Smith, B. 1994. Phase Transition and the Mushy Region
in Constraint Satisfaction Problems. In Proc. of ECAZ-94,
100-104.
Wallace, R. 1994. Directed Arc Consistency Preprocess-
ing. In Constraint Processing (Lecture Notes in Computer
Science 923). Springer. 121-l 37.
Zabih, R. 1990. Some Applications of Graph Bandwidth
to Constraint Satisfaction Problems. In Proc. of AAAZ-90,
46-51.

Constraint Satisfaction 187

