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Abstract 

Two methods are described for enhancing performance 
of branch and bound methods for overconstrained 
CSPS. These methods improve either the upper or 
lower bound, respectively, during search, so the two 
can be combined. Upper bounds are improved by us- 
ing heuristic repair methods before search to find a 
good solution quickly, whose cost is used as the initial 
upper bound. The method for improving lower bounds 
is an extension of directed arc consistency preprocess- 
ing, used in conjunction with forward checking. After 
computing directed arc consistency counts, inferred 
counts are computed for all values based on minimum 
counts for values of adjacent variables that are later in 
the search order. This inference process can be iter- 
ated, so that counts are cascaded from the end to the 
beginning of the search order, to augment the initial 
counts. Improvements in time and effort are demon- 
strated for both techniques using random problems. 

Introduction 
Constraint satisfaction problems (CSPs) involve as- 
signing values to variables which satisfy a set of con- 
straints. In some cases, problems may be overcon- 
strained so there is no assignment that will satisfy all 
of the constraints. In these cases it may still be useful 
to have an assignment that satisfies the most impor- 
tant constraints or, if constraints have equal weight, 
one that satisfies as many constraints as possible. 

Because they return guaranteed optimal solutions, 
complete methods have a special role in the area of 
partial constraint satisfaction that cannot be filled by 
other methods such as heuristic repair. However, par- 
tial constraint satisfaction problems can be very diffi- 
cult to solve by complete methods. As Schiex et al. 
have noted (Schiex et a/. 1995), this is because the 
weights of violated constraints must be added to de- 
termine the quality of an assignment, and addition is 
non-idempotent, in contrast to the Boolean AND oper- 
ator used in ordinary CSPs. In the latter case, a single 
falsified constraint is sufficient to stop search along a 
given path, while in the former a sum based on the 
violated constraints must be greater or equal to some 
critical value. This explains why difficult problems are 
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found for every combination of problems parameters, 
and the difficulty is greater when there are more incon- 
sistencies in an optimal solution (Freuder & Wallace 
1992) (Schiex et al. 1995). 

These considerations underscore the importance 
of efficient complete algorithms for solving overcon- 
strained problems. This paper describes new meth- 
ods for enhancing the performance of such algorithms. 
These methods build on earlier work in which depth- 
first search was used with the branch and bound strat- 
egy (Freuder & Wallace 1992). 

The first procedure to be described is a method for 
improving the upper bound at the beginning of search. 
The strategy is simple. A heuristic repair procedure 
is run prior to complete search, and the cost associ- 
ated with the best solution found by hill-climbing is 
used as the initial upper bound. The major portion 
of the analysis of this method is the assessment of im- 
provements in performance as a function of the quality 
of this initial upper bound. This analysis is intended 
to answer these questions: If the initial upper bound 
is equal to the optimal cost, what is the reduction in 
search effort? (This is the best case possible, in which 
search serves merely to certify optimality.) And over 
what range of costs is there significant improvement 
in performance, i.e., how close to optimality must this 
bound be to get significant reduction? Following this 
analysis, the quality of the upper bound that can be 
obtained by some well-known hill-climbing methods is 
assessed experimentally, and the tradeoff between qual- 
ity of bound and hill-climbing effort is considered. 

The second method is both independent and com- 
plementary to the first since it involves augment- 
ing the lower bound calculation, especially early in 
search when more substantial improvement is possi- 
ble. This method uses information obtained from arc 
consistency tests carried out before search. Its use 
is, therefore, restricted to problems with arc consis- 
tency violations. The information takes the form of 
inconsistency counts, i.e., tallies for each value a of 
variable vi, of the number of domains vj that do not 
have any values consistent with a in the constraint be- 
tween vi and vj. In the past these counts have been 
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used to compute tighter lower bounds and to order be calculated to produce a higher, more effective, lower 
domain values so as to find solutions with fewer incon- bound. The present algorithms use the number of vi- 
sistencies earlier in search (Freuder & Wallace 1992). olated constraints incurred by partial assignments of 
The present method is based on a specialized type values to variables as the cost, called the distance of a 
of inconsistency count, called directed arc consistency partial solution from a complete solution. Since a min- 
counts (DACCs), that refer to variables before or after imum distance is obtained when a maximal number of 
the current value in a specified search order (Wallace constraints is satisfied, these problems are called max- 
1995). imal constraint satisfaction problems or MAX-CSPs. 

The new method uses DACCs for variables later in 
the search order to infer inconsistencies for the values 
of variables that will be instantiated earlier. For exam- 
ple, if value a in the domain of vi is supported by values 
in the domain of vj that have counts of one or more, 
then, if a is assigned to vi, a count can be deduced for 
a. If such infererences are carried out systematically, 
DACCs can be carried forward in the search order, i.e., 
DACCs can be “cascaded”. In this way, it may be pos- 
sible to derive tighter lower bounds at the beginning 
of search. 

The next section, 2, presents some background for 
this work. Section 3 analyses the effect of initial up- 
per bounds at varying distances from the optimal and 
evaluates heuristic methods for finding initial upper 
bounds. Section 4 describes cascaded DAC procedures 
for generating better lower bounds and evaluates these 
methods. Section 5 presents results for these methods 
in combination. Section 6 gives conclusions. 

Branch and bound algorithms have been developed 
for MAX-CSPs that are analogues of CSP algorithms 
(Freuder & Wallace 1992). Retrospective algorithms 
compare successive assignments of values to variables 
with previous assignments to maintain a consistent 
partial solution. The most powerful branch and bound 
algorithm of this type is an analog of backmarking. 
Prospective algorithms compare each assigned value 
against domains of unassigned (or future) variables to 
determine which values in these domains are consistent 
with values already assigned. In this way inconsisten- 
cies can be recorded prospectively, so that degree of 
inconsistency for a given value is known at the time of 
assignment. The best of these is an analog of forward 
checking, in which only the future domains of neigh- 
boring variables are checked for inconsistency with the 
value considered for the current assignment. 

The efficiency of branch and bound algorithms is 
enhanced by variable and value ordering. Two use- 
ful heuristics for variable ordering are, (i) a combi- 
nation of maximum width at a node (i.e., maximal 
connectivity with prior variables in the search order) 
and smallest domain size, which is especially effective 
with retrospective algorithms, and (ii) decreasing de- 
gree of a node, which is very effective with prospective 
algorithms. These heuristics work best when problems 
have relatively sparse constraint graphs (Wallace & 
Freuder 1993) (Wallace 1995). Ordering values by in- 
creasing number of inconsistencies, determined either 
during preprocessing or in the course of search, also 
improves search efficiency. 

ackground: asic Concepts 
A constraint satisfaction problem (CSP) involves as- 
signing values to variables that satisfy a set of con- 
straints among subsets of these variables. The set of 
values that can be assigned to one variable is called the 
domain of that variable. In the present work all con- 
straints are binary. A binary CSP is associated with a 
constraint graph, where nodes represent variables and 
arcs represent constraints. 

CSPs can be characterized by four parameters: num- 
ber of variables, domain size, number of constraints, 
and number of acceptable (or unacceptable) tuples in a 
constraint. The number of constraints can be stated in 
relative terms: as the proportion of possible constraints 
or problem density. (In this paper values for density 
are always in terms of number of possible arcs that 
can be added to a spanning tree.) Similarly, the size 
of a constraint can be described as the number of un- 
acceptable tuples relative to the total possible, where 
the latter is the cardinality of the Cartesian product of 
the domain sizes of variables associated with that con- 
straint. This fraction is the tightness of the constraint. 

Brunch and bound algorithms associate each path 
through a search tree with a cost that is non-decreasing 
in the length of the path. Search down a given path 
can stop when the cost of the partial assignment of val- 
ues to variables is at least as great as the lowest cost 
yet found for a full assignment. The latter, therefore, 
sets an upper bound on the cost. In addition to calcu- 
lating the cost at a particular node, projected cost can 

und Techniques Using 
epair 

Analysis of Initial Upper 
An important question in this context is the degree 
of improvement to be expected from an initial upper 
bound of a given quality. This can be assessed exper- 
imentally by comparing search effort when the initial 
upper bound is set to ‘infinity’ with search when the 
initial upper bound is a specified distance from the op- 
timum. This evaluation is possible if the true optimal 
distance is known; in the present work this informa- 
tion was obtained from an earlier run of a complete 
algorithm. This evaluation gives some indication of, 
(i) the relative effects of different values of the initial 
upper bound, (ii) how close this bound must be to 
the optimal distance to effectively reduce search effort. 
With this information we can assess the usefulness of 
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heuristic techniques in this context and make judge- 
ments about parameterization of the heuristic proce- 
dure, specifically, the length of time that the proce- 
dure should be run in view of the tradeoff between 
hill-climbing effort and subsequent search reduction. 

The first experiments were done with 15-variable 
problems in order to test the effect of the initial upper 
bound value on both weaker and stronger algorithms. 
(Note that, given the marked difficulty of partial CSPs, 
this problem size is within the usual range of those 
tested, cf. (Larrosa & Meseguer 1995) (Schiex et al. 
1995). In addition, 30-variable problems were tested 
to confirm results with smaller problems and to as- 
sess the effect of problem size. In this case only the 
more efficient prospective algorithms were tested. The 
15- and some of the 30-variable problems were of fixed 
density with varying domain size and constraint tight- 
ness. Variability was produced by randomly choos- 
ing a value between one and some maximum. For do- 
main size, the maximum was nine; for constraints, the 
maximum number of acceptable tuples was one less 
than the product of the sizes of the relevant domains. 
(These will be called Type 1 problems.) A second type 
of 30-variable problem was also tested, in which for 
an initial set of values or constraint tuples, each el- 
ement was included with a certain fixed probability. 
(These “Type 2” problems are more homogeneous in 
their quantitative features than Type 1 problems.) In 
all cases, a sample of 25 problems was generated. All 
tests were run on a DEC Alpha (DEC3000 MSOOLX), 
using compiled Lisp code. Program correctness was 
verified by automatically checking each solution to see 
that it had the number of violations reported and by 
cross-checking means and standard deviations for op- 
timal distances for a set of problems in different runs. 

Tables l-2 show results for 15-variable Type 1 prob- 
lems at the lowest density. Table 1 shows results for 
variants of backmarking, Table 2 for algorithms based 
on forward checking. When the upper bound is equal 
to the optimal distance, search effort is reduced by a 
factor of 1.5-6. The fall-off in efficiency as the value of 
the initial upper bound increases is nonlinear, with the 
greatest change near the optimal distance. Nonethe- 
less, there is a range of values above the optimum 
that still afford appreciable improvement. This im- 
provement must, of course, be compared with the hill- 
climbing effort required to produce these values. 

In these tests improvement due to the initial up- 
per bound did not cancel the effectiveness of tech- 
niques such as variable ordering and lower bound cal- 
culations. In contrast, value ordering based on incon- 
sistency counts had no effect when the initial upper 
bound was optimal. However, when the upper bound 
had a higher value, such ordering was still effective. 

Several variants of forward checking were also tested 
with problems of the same size having constraint graph 
densities of 0.33 and 0.66. Representative data are 
shown in Figure 1. This figure shows the average re- 
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Table 1: Effect of Initial Upper Bound on Retrospec- 
tive Algorithms 

init ub BM BM BM BM RPO RPO 
lex wd lex wd lex wd 

ACv ACv 

infinite 6228 16.9 1355 14.9 1097 9.7 
optim. 994 4.8 996 5.4 746 3.4 
opt.+1 2570 8.4 1293 12.8 1040 8.2 
opt.+2 4535 13.5 1343 13.5 1086 8.2 
ODt.+3 5865 14.4 1352 14.7 1094 9.5 

Note. 19variable problems, density = 0.16. Means for 25 
problems. Constraint checks in thousands (preprocessing 
included). BM is backmark; lex, lexical variable ordering; 
wd, width/domain variable ordering; ACv, value ordering 
by increasing arc consistency counts; RPO, “retrospective- 
prospective-ordering” procedure of Freuder and Wallace, or 
BM/AC with AC counts also used in lower bound calcula- 
tions. 

duction in search effort in relation to the initial upper 
bound in terms of the difference from the optimum 
distance. Despite the variability of the data, there is 
an overall trend toward a lower reduction as density 
increases. In addition, in all but two cases (FCdeg33 
and DAC33 in Figure 1) the reduction when the initial 
upper bound was more than 2 above the optimum was 
5 0.05. 

0 1 2 3 
Difference from Optimum 

__CI FCdegl6 

n DAC16 

- FCdeg33 

-. DAC33 

P FCdeg66 

--- DAC66 

Figure 1: Improvement in performance in relation to qual- 
ity of the initial upper bound for two different algorithms: 
forward checking (with degree ordering) and forward check- 
ing with directed arc consistency counts. 15-variable prob- 
lems at densities of 0.16, 0.33 and 0.66. 

Figure 2 shows similar results for 30-variable prob- 
lems, using forward checking with directed arc consis- 
tency, and variable and value ordering (DACdeg/ AC- 
val). The same trend toward diminishing effect of the 
upper bound technique with increasing density is also 
seen, although the range of densities is more limited. 
However, significant reduction in search effort is found 
for a greater range of initial bound values (up to 3-4 



Table 2: Effect of Initial Upper Bound on Prospective Table 3: Reduction in Search Effort in Relation to Ini- 
Algorithms tial Upper Bound 

init ub FC FC FC FC DAC FC 
lex lex de!3 d% d% W 

FCv FCv ACv FCv 

infinite 88 83 10.9 9.9 3.8 4.6 
optim. 28 28 2.0 2.0 1.6 2.6 
opt.+1 58 55 5.4 5.3 2.7 3.7 
opt.+2 79 75 9.0 8.8 3.2 4.5 
opt.+3 81 78 10.0 9.6 3.8 4.6 

Note. Problems and measures as in Table 1. FC is forward 
checking; deg, variable ordering by decreasing degree; dyd, 
dynamic ordering by minimum domain size; FCv, value 
ordering by increasing forward checking counts; ACv, value 
ordering by increasing arc consistency counts; DAC, FC 
with directed arc consistency counts. 

density 
low optimum high optimum 

init ub 0.10 0.30 0.50 0.10 0.30 
optim. .69 .86 .75 .44 .56 
opt.+1 .52 .68 .55 .20 .41 
opt.+2 .36 .54 .32 .13 .27 
opt.+3 .19 .37 .15 .08 .18 
opt.+4 .ll .29 .08 .05 .12 
opt.+5 .04 .16 .04 .02 .09 

Note. 30-variable problems with average optimal distance 
of about 2 (low optimal distance) or 8.5 (higher optimal 
distance). Varying constraint graph densities. Table entries 
are reduction in effort as a proportion of the search effort 
starting with an upper bound of ‘infinity’. Algorithm is 
FCdeg/FCval. 

above the optimum in most cases) than for the smaller 
problems. These trends were confirmed on these prob- 
lems using forward checking (FCdeg/FCval). 

- 0.04 

,-4j--- 0.07 

- 0.11 

- 0.15 

& 0.18 

Figure 2: Improvement in performance in relation to qual- 
ity of the initial upper bound. 30-variable problems with 
varying density. Algorithm is forward checking with degree 
ordering and directed arc consistency counts. 

In the experiments described so far, increasing den- 
sity was accompanied by an increase in magnitude of 
the mean optimal distance. Hence, it is not clear which 
factor is responsible for the changing effectiveness of 
the initial upper bound. These effects were separated 
by using Type 2 problems, where the average con- 
straint tightness could be varied along with density 
to give problems at different densities having the same 
average optimal distance. The results in Table 3 in- 
dicate that when the optimal distance is held roughly 
constant, increasing density has no clear-cut effect on 
improvement due to the initial upper bound. On the 
other hand, when the distance is greater, the effective- 
ness of this procedure is diminished. 

UPPer ounds From eusistic Procedures 

To get some idea of the performance of hill-climbing 
techniques in this domain, three heuristic repair pro- 
cedures were tested. In some cases the procedures de- 
scribed in the literature were altered to enhance per- 
formance. The procedures were, (i) min-conflicts hill- 
climbing (Minton et al. 1990), with a random walk 
component, as described for GSAT (Selman & Kautz 
1993); the probability of random walk was set to 0.10, 
since this had been found to be a good value in ear- 
lier work, (ii) the breakout procedure (Morris 1993), 
(iii) weak commitment search (Vokoo 1994), without 
the addition of nogoods during search; in earlier work 
it was found that the proliferation of these nogoods 
quickly slows down search, while the remainder of the 
procedure works quite well without this feature. In 
these tests, weak commitment search (weakcorn) per- 
formed somewhat better than mincon-walk, which, in 
turn, did better than breakout. 

Representative anytime curves are shown in Figure 
3 for the three heuristic procedures for one set of 30- 
variable Type 1 problems. These curves are based 
on five runs of the procedure per problem. Solutions 
within one cost unit of the optimum were found for 
almost all problems after l-2 seconds. For this set of 
problems, these procedures performed 30-40,000 con- 
straint checks per second, so good solutions were found 
after an average of less than 80,OO constraint checks. 

The effectiveness of these procedures is demon- 
strated in Figure 4. The branch and bound algo- 
rithm used in these tests was forward checking with 
directed arc consistency (DACdeg/ACval). Since these 
tests were assessments of the efficiency of heuristic 
repair methods in practice, each procedure was run 
only once with each cutoff value. For these problems, 
the mean performance of the basic algorithm (initial 
upper bound = ‘infinity’) was: for density = 0.07, 

Constraint Satisfaction 191 



- minconwalk 

0123456789 

Time (seconds) 
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10 

Figure 3: Anytime curves for three heuristic repair meth- 
ods. Curves show mean number of violations (distances) 
in the best solution found after increasing durations. 30- 
variable problems with density = 0.11 and mean optimal 
distance of 11.7. 

as 
--8- breakout a. 

0.4~ - minwnwalk 

0.3- 

0.2- 

O.l- 
density = 0.07 

3 b. 

*3 
2- 

3 1.8- 

3 
2 1.6- 
0 

2 lA- 
density = 0.11 

1 2 4 8 
heuristic cutoff time (set) 

Figure 4: Total constraint checks (for heuristic repair and 
branch and bound) when best distance found by heuristic 
procedure before the cutoff time is used for the initial upper 
bound. 30-variable problems. Branch and bound algorithm 
is DAC with degree and ACval ordering. For each problem 
set, by the last cutoff, weak commitment and mincon-walk 
found optimal distances for all problems. 

335,693 constraint checks, for density = 0.11,3,137,590 
constraint checks, for density = 0.15, 10,931,337 con- 
straint checks. In each case there is a range of cutoff 
times that give markedly better results. Performance 
of branch and bound with optimal distances as ini- 
tial upper bounds may be taken as the ideal reduction 
(impossible to attain in practice since some work must 
be performed to obtain the initial upper bound). For 
problems with 0.07 density, the ideal reduction was 
0.68, while the maximum reduction for each proce- 
dure varied from 0.56 (weakcorn) to 0.48 (breakout). 
For 0.11 density, the ideal reduction was 0.57, and 
the maximum reduction varied from 0.53 (weakcorn) 
to 0.49 (breakout). For 0.15 density, the ideal reduc- 
tion was 0.42, and the maximum reduction varied from 
0.39 (weakcorn) to 0.35 (breakout). It appears, there- 
fore, that hill-climbing procedures can give results that 
are close to the best that one could possibly obtain 
through use of good initial upper bounds. 

Directed Arc Consistency and 
Cascaded DACCs 

Background: Directed Arc Consistency 
and Forward Checking for MAX-CSPs 
The procedure for deriving directed arc consistency 
counts (DACCs) is shown in Figure 5. A variable 
search order is established at the outset. Arc consis- 
tency checking is then carried out in one pass through 
the ordered list of variables. Checking is done in one 
direction only; in the present work this is in the forward 
direction (i.e., against future variables in the search or- 
der) because forward DACCs can be used with forward 
checking. At each step, values in a domain are checked 
against values in the domain of each future variable 
that shares a constraint with the current variable. If 
a value in the current domain has no supporting val- 
ues in a future domain, the DACC for that value is 
incremented by one. 

Establish search order for variables 
Set DAC-count for each domain value to 0 

For each variable vi 
for each value a in domain d; 

for each variable o3 later than V, in the 
ordering such that VU; and vJ share 
a constraint 

if there is no value b in domain d, 
such that (a, b) is in the constraint 
between vi and vJ 

increment the DAC-count for a 

Figure 5: Directed arc consistency for MAX-CSPs. Here, 
checking is in forward direction, i. e., each value is tested 
for support in domains of future variables. 

In forward checking for MAX-CSPs (Freuder & Wal- 
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lace 1992) (Shapiro & Haralick 1981), a value CB be- 
ing considered for assignment to variable zli is tested 
against values in the domain of each uninstantiated 
(future) variable ~j, that shares a constraint with zli. 
If b, in the domain of ~j, is inconsistent with a, then an 
inconsistency count associated with b is incremented. 
This forward-checking count (FC count) is a kind of 
backward DACC, which is only valid for the current 
instantiation of the set of past variables. If the sum of 
this count and the current distance is as great as the 
current upper bound, b does not have to be considered 
for instantiation, given the current partial instantia- 
tion, including a. Lower bounds can be increased by 
adding the sum of the minimum FC counts for future 
domains. After directed arc consistency preprocessing, 
lower bounds can be augmented by two more factors: 
the DACC for b and the sum of the minimum forward 
DACCs. 

Cascaded Directed Arc Consistency 

Here a method is described for enhancing the effect of 
DACCs, especially at the beginning of search where 
pruning is likely to be most effective. After the ba- 
sic DACCs have been obtained, as in Figure 5, better 
estimates are derived for the minimal inconsistencies 
associated with each value, based on the DACCs of 
values later in the search order. These improved es- 
timates are then used during backtrack search to en- 
hance lower bounds. The procedure starts at the end 
of the search order and works backwards, so that in- 
ferences of eventual nonsupport in the form of DACCs 
can be carried forward. (For this reason these counts 
are referred to here as “cascaded” DACCs.) 

The manner of inferring inconsistency from DACCs 
is indicated in Figure 6. In this figure variables oi and 
wj share a constraint, and pi appears after pi in the 
search order. In addition, value a in the domain of pi 
is supported by values b and c in V~‘S domain (i.e., (a, 
b) and (a, c) are acceptable tuples), but not by d and 
e. The original DACCs are shown beside each value. 
(Those for a are from other constraints.) The upper 
diagram depicts a simple inference, the lower diagram 
a cascaded inference. Pseudocode for the cascading 
procedure is also shown in Figure 7. 

First, consider the upper diagram in Figure 6. In 
this case we can infer that, if a is assigned to vi, a 
minimum cost of 1 can be deduced from the counts 
for the values of ~j, although the original DACC for 
this constraint is zero, since a is supported. This infer- 
ence is possible because, (i) the minimum DACC for 
the supporting values is 1, (ii) the minimum DACC for 
the nonsupporting values is 0, but, if either d or e is 
assigned to ~j, an additional cost associated with this 
constraint will be incurred, which allows us to incre- 
ment this minimum. As a result, we can increase the 
DACC for value a to 3. 

When inferences are cascaded (lower diagram of Fig- 
ure 6)) the minimum counts must be adjusted, if the 

v . 
1 

DACC value 
‘j 

value DACC 

2 a b 1 
c 2 
d 1 

Inferred DAC Couni 

v . 
1 

C-DACC vdue 

0 

‘j 
value C-DACC 

2(chk%) a b 1 (C,) 
’ 2 (cj&,) (cjl Cln) 

: i cckl) (C*n) 
Cascaded DAC Counts 

Figure 6: Scheme for inferred DACCs and cascaded (in- 
ferred) DACCs. a-e are values in domains of V; and v3, 
lines from a to b and c indicate that a is supported by 
these values. (Czy ..) is a tag consisting of the constraints 
that contribute to a DACC. Further explanation in text. 

(possibly cascaded) count for a is based on some of the 
same constraints as the cascaded DACCS for wj’s val- 
ues. This is done with “tags” that denote the original 
violated constraints that each DACC is based on, and 
which are brought forward whenever a DACC is aug- 
mented and added to each set of tags for that value. 
In the present example, a, b, c and d each have one 
or more sets of tags, the size of each set being equal 
to the current DACC for that value. Since one of a’s 
tags is the same as one of b’s, the minimum inferred 
DACC for supporting values must be decremented by 
one, to zero. In this case we could not carry any in- 
ferred counts forward to augment the DACC for a. If, 
however, b’s tag had been Cl,, a’s DACC would be in- 
cremented, and this tag would be added to each of a’s 
tag sets. 

In the present implementation of cascaded directed 
arc consistency, the original DAC procedure is altered 
from an AC-3 style to an AC-4 style procedure, to 
collect sets of supporting and non-supporting values 
in each future adjacent domain. This obviates fur- 
ther constraint checking during cascading. Efficiency 
is also enhanced by using an integer representation for 
constraint-tags and by removing duplicate tags and 
performing subsumption tests on tag sets. 

In the present work, variable ordering was by de- 
creasing degree of the node in the constraint graph. 
Intuitively, this ordering should be well-suited for cas- 
cading DACCs to the front of the search order, since 
the initial variables should receive DACCs from a large 
number of adjacent variables. Cascaded DACCs can, 
of course, be used to order values in each domain. 

Unfortunately, use of cascaded DACCs, as opposed 
to ordinary DACCs, involves an important tradeoff. 
In the former case, the sum of the minimum DACCs 
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Find DACCs (as shown in Figure 5)) ‘tagging’ them with 
the constraints whose violation produced these counts. Table 4: Experimental Results with Cascaded DACCS 

For variable vi = n - 2 to I with respect to search order 
For each value a in domain di 

For each variable vj later than vi in the 
ordering such that vi and vj share a constraint 

Let min-suppct = minimum DACC for values 
in v3 that support a. 

Let min-nonsuppct = minimum DACC for values 
in vj that do not support a. 

If there are supporting values in vj, increment 
min-nonsupport by one. 

Let min-suppct’ = min-suppct adjusted for 
constraints common to DACCs associated with a 

Let min-nonsuppct’ = min-nonsuppct adjusted for 
constraints common to DACCs associated with a 

Add min (min-suppct’, min-nonsuppct’) to the 
DACC for a and update tag sets on which this 
DACC is based. 

Figure 7: Generation of cascaded directed arc consis- 
tency counts (cascaded DACCs). 

in each future domain (used for ‘global’ lower bound 
calculations) must be restricted to variables that are 
not connected to the current variable with respect to 
variables between them in the search order. Otherwise 
this sum could include counts that are redundant with 
the cascaded DACC for the current value. On the other 
hand, use of one lower bound estimate during search 
does not preclude use of the other, although there will 
be some extra overhead. For this reason, a version 
of search that used the maximum of the calculations 
based on either ordinary DAC or cascaded DAC counts 
was also tested. 

Table 4 shows results of tests with the Type 1 
30-variable problems. Times are given in addition 
to constraint checks because of differences in over- 
head involved in different procedures. Use of cas- 
caded DACCs, particularly in combination with ordi- 
nary DACCs (having better ‘global calculations’), re- 
sulted in consistent improvements in both measures, 
especially for the hardest problems. 

Combining Upper and 
Methods 

The techniques described in Sections 3 and 4 were 
tested together on the 30-variable Type 1 problems. 
In the first phase, a single run of weak commitment 
search was used to find an initial upper bound. Cut- 
off times for this phase were based on earlier tests 
reported above and were chosen conservatively to in- 
sure near-optimal bounds. This intention was met: for 
each problem set, all or all but one of the initial upper 
bounds were equal to the optimal distance, and in the 
remaining cases the bound was one greater than the 

algorithm density 
.04 .07 .I1 .15 .18 

FC ck 286 1,499 12,274 38,418 
571 1470 

3,138 10,931 43,755 
110 350 1439 

3,105 10,507 35,960 
116 350 1209 

2,497 8,347 29,783 
/ACv s 5 13 100 312 1053 

opt. dist. 4.0 6.4 11.7 14.7 19.8 

Note. Constraint checks (ck) in thousands. Times (s, for 
seconds) include arc consistency preprocessing. Variable 
ordering by decreasing degree. FC is forward checking; 
FCv, value ordering by increasing forward checking counts; 
ACv, value ordering by arc consistency counts; DAC, FC 
with ‘ordinary’ directed arc consistency counts; cast, FC 
with cascaded DACCs; comb, FC using ordinary and cas- 
caded DACCs in lower bound calculations. 

optimum. Complete search procedures were then run 
with the initial bound for each problem equal to that 
found by the hill-climbing procedure. 

In Table 5, results for the initial phase of heuristic re- 
pair are shown separately. The expected results were 
found: not only did the better initial upper bounds 
improve performance in all cases, but under these con- 
ditions the benefit due to cascaded DAC procedures 
was at least as great as when they were used alone. 

Table 5: Results with Initial Upper Bounds Derived 
from Hill-Climbing and Cascaded DACCs 

algorithm 

heuristic 
repair 

FC 
/FCv 

DAC 
/ACv 

DACcasc 
/ACv 

DACcomb 
/ACv 

density 
.04 .07 .ll .15 .18 

ck 19 39 182 382 797 
S 314 1 4 8 16 
ck 123 390 4,175 23,324 
S 8 17 146 864 
ck 53 108 1,342 6,322 26,055 
S 3 4 40 197 778 
ck 39 116 1,358 6,016 22,283 
S 2 4 40 199 712 
ck 37 82 864 4,453 17,758 
S 2 4 29 153 585 

Notes for Table 4 apply. Compare data with that table. 

Tests were also made with 40-variable problems, 
with densities of 0.03 (Table 6) and 0.08. In the for- 
mer case, weak commitment search was run for 4 sec- 
onds to obtain initial upper bounds. Optimal solutions 
were found in all but three cases by the hill-climbing 
procedure; in the latter, the distance was one greater 
than the optimum. Here the combination of upper 
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bound calculation and cascading DACCs (in combi- 
nation with ordinary DACCs) gave improvements of 
more than an order of magnitude compared to forward 
checking with ordinary DAC counts. Moreover, in five 
cases (20%) with combined DACC strategies, no back- 
track search was needed, since the initial lower bounds 
for all values of the first variable in the ordering were 
at least as large as the initial upper bound. (In com- 
parison, there was only one such case when ordinary 
DACCs were used.) 

Table 6: Results for 40-variable Problems 

algorithm no ub talc ub talc 
heur. B&B 

DACdeg ck 1,356 126 173 
/ACv S 99 4 10 
DACdegcasc ck 1,221 126 144 
/ACv S 78 4 8 
DACdegcomb ck 1,174 126 100 
/ACv S 90 4 8 

Note. Density = 0.03. Means of 25 problems. Constraint 
checks in thousands, time in seconds. Mean optimal dis- 
tance = 4.6. Abbreviations as in Table 4. 

For 40-variable Type 1 problems, problem difficulty 
increased enormously as density increased. (The mean 
distance increased in this case from 4.6 for density = 
0.03 to 15.0 for density = 0.08.) The 0.08 density 
problems were solved by forward checking with ordi- 
nary DAC counts after 274 million constraint checks, 
on average. The combination of cascaded and ordinary 
DACCs gave a mean of 113 million constraint checks. 
When hill-climbing was run for five seconds (perform- 
ing a mean of 147 thousand constraint checks), it found 
optimal solutions for 19 of the 25 problems, and dis- 
tances one above the optimum for the rest. With these 
upper bounds, the means for ordinary and combined 
DACCS were 105 and 60 million, respectively, a reduc- 
tion of almost l/2 in each case. For individual prob- 
lems the combined strategy sometimes reduced search 
effort by l-2 orders of magnitude. 

Conclusions 
The improvements in techniques for upper and lower 
bounds described in this paper have made it apprecia- 
bly easier to solve some PCSPs of moderate size with 
complete methods. There is some indication that these 
methods become more useful as problem size increases, 
since the results for 40-variable problems were gener- 
ally more impressive than those for smaller problems. 
It should be emphasized that many of these problems 
became quite easy to solve when these methods were 
used, although they were not easily solved by simpler 
algorithms, so that few or even no constraint checks 
were required during the phase of exhaustive search. 
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