
Neighborhood Inverse Consistency Preprocessing

Eugene C. F’reuder and Charles D. Elfe

Department of Computer Science
University of New Hampshire

Durham, New Hampshire 03824, USA
ecf,cde@cs.unh.edu

Abstract
Constraint satisfaction consistency preprocessing
methods are used to reduce search effort. Time and
especially space costs limit the amount of preprocess-
ing that will be cost effective. A new form of con-
sistency preprocessing, neighborhood inverse consis-
tency, can achieve more problem pruning than the
usual arc consistency preprocessing in a cost effective
manner. There are two basic ideas: 1) Common forms
of consistency enforcement basically operate by iden-
tifying and remembering solutions to subproblems for
which a consistent value cannot be found for some ad-
ditional problem variable. The space required for this
memory can quickly become prohibitive. Inverse con-
sistency basically operates by removing values for vari-
ables that are not consistent with any solution to some
subproblem involving additional variables. The space
requirement is at worst linear. 2) Typically consis-
tency preprocessing achieves some level of consistency
uniformly throughout the problem. A subproblem so-
lution will be tested against each additional variable
that constrains any subproblem variable. Neighbor-
hood consistency focuses attention on the subproblem
formed by the variables that are all constrained by the
value in question. By targeting highly relevant sub-
problems we hope to “shim the cream”, obtaining a
high payoff for a limited cost.

Key Ideas
Introduction

Many problems in artificial intelligence can be repre-
sented as constraint satisfaction problems. Preprocess-
ing the problem representation to achieve limited con-
sistency is often used to reduce problem solving effort.
The most common preprocessing achieves only very
local consistency. Higher order consistency techniques
can further reduce subsequent effort, but the prepro-
cessing effort may not be cost effective. The prepro-
cessing time may exceed the subsequent savings, or the
cost of storing the results of the preprocessing may be
excessive. The space problem in particular has been
little studied, but can be crucial for large scale realis-
tic problems.

Neighborhood inverse consistency is a new form
of consistency that achieves higher order consistency

202 Constraint Satisfaction

while addressing these cost concerns, especially the
space issue. There are two basic ideas:

Inverse Consistency: Common forms of consistency
enforcement basically operate by identifying and re-
membering solutions to subproblems for which a con-
sistent value cannot be found for some additional prob-
lem variable. The space required for this memory can
quickly become prohibitive. Inverse consistency basi-
cally operates by removing values for variables that are
not consistent with any solution to some subproblem
involving additional variables. The space requirement
is at worst linear; if the potential variable values are
already represented explicitly, even high order inverse
consistency processing can actually save space.

Neighborhood Consistency: Typically consistency
preprocessing achieves some level of consistency uni-
formly throughout the problem. A subproblem so-
lution will be tested against each additional variable
that constrains any subproblem variable. Neighbor-
hood consistency focuses attention on the subproblem
formed by the variables that are all constrained by the
value in question. By targeting highly relevant sub-
problems we hope to “skim the cream”, obtaining a
high payoff for a limited cost.

Combining these two ideas give us neighborhood in-
verse consistency. We present experimental evidence
that suggests that for an interesting class of problems
neighborhood inverse consistency preprocessing can be
superior to conventional preprocessing methods.

In Section 2 we will present the basic idea of in-
verse consistency, including neighborhood inverse con-
sistency as a special case. In Section 3 we present
preprocessing algorithms that we tested. In Section 4
we describe experimental results with these algorithms.
Section 5 presents conclusions and directions for fur-
ther work.

Related Work

Freuder introduced, but did not implement, inverse
consistency, as (1, k - l)- consistency in (Freuder 1985).
In (Prosser 1993b) there is a form of “directed con-
sistency” learning that might be viewed as acquir-
ing some partial inverse consistency during the search

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

process. Directed and adaptive c(
& Pearl 1987)

Bnsistency (Dechter
might be viewed as limited forms of

partial neighborhood consistency preprocessing, em-
playing standard, not inverse consistency. (Dechter &
Meiri 1994) compares a variety of preprocessing meth-
ods experimentally.

Inverse Consistency
Constraint satisfaction problems (CSPs) involve find-
ing values for problem variables subject to restrictions
(constraints) on what combinations of values are al-
lowed. A solution is an assignment of a value to
each variable such that all the constraints are satis-
fied. Often, as here, we restrict our attention to binary
constraints that involve two variables at a time. Bi-
nary CSPs can be represented by constraint graphs,
where variables correspond to vertices, potential val-
ues are vertex labels, and constraints correspond to
edges. Figure 1 is a sample CSP where the constraints
are all the inequality constraint.

Most forms of consistency can be viewed as special
cases of (i, j&consistency (Freuder 1985). Basically,
a problem is’(i, j)-consistent if any solution to a sub-
problem of i variables can be extended to a solution
including any j additional variables. When i is k - 1
and j is 1 we have k-consistency (Freuder 1978). If k is
2 we have arc consistency (AC) (Mackworth 1977); if k
is 3 we have path consistency (PC) (Montanari 1974).

Figure 1. Path inverse consistency.

When i is 1 and j is k - 1 we have k inverse consis-
tency. When k is 3 we have path inverse consistency
(PIC). (Arc inverse consistency is no different from arc
consistency.) In Figure 1, there is no solution for vari-
ables X and Y that is consistent with the choice of a
for W. This implies that we can eliminate a as a po-
tential value for W; we will say that we delete a from
the domain of W.

All these forms of consistency are defined locally, but
enforcing this local consistency can propagate. Delet-
ing a value because it is locally inconsistent can make
some other value inconsistent that depended on the
deleted value; that value in turn can be deleted. Since
experience has shown that sometimes less consistency
pruning is more cost effective, we also test a limited
neighborhood inverse consistency algorithm that only
processes each variable once for neighborhood consis-
tency, and thus does not necessarily take into account
all such propagation to fully achieve neighborhood in-
verse consistency. We call this ONIC, for one pass
neighborhood inverse consistency.

The variables joined by an edge to a variable in
a constraint graph are called its neighborhood. Ba-
sically, neighborhood inverse consistency (NIC) en-
forces, for each variable V, k inverse consistency for
the k variables in the neighborhood of V.

The time complexity of k inverse consistency is com-
parable to that of k-consistency. In terms of space
complexity, however, inverse consistency has a consid-
erable advantage. In general, achieving k-consistency
requires creating and storing constraints involving k- 1
variables, which can require 0(&-l) space, assuming
d potential values for each variable. Achieving inverse
consistency only requires specifying that values cannot
be permitted for variables. At, worst this requires linear
space. If the potential values are already listed explic-
itly, inverse consistency can reduce space requirements
by deleting some of these values.

The subproblem induced by a set of variables, S, The time complexity of k-consistency is polynomial
corresponds to S and all the edges between two vari- with the exponent dependent on k. The time complex-
ables in S. A value v for variable V is consistent with ity of neighborhood inverse consistency is polynomial
a value u for variable U if those values satisfy, i.e. are with the polynomial dependent on the maximum de-

allowed by, the constraint between V and U. A value
v is consistent with a solution to a subproblem, if it is
individually consistent with each of the values in the
solution; in this case we also can say that the solution
is consistent with V.

A constraint graph is neighborhood inverse consis-
tent if, given any value v for any variable V, we can
find a solution to the subproblem induced by the neigh-
borhood of V that is consistent with V.

w

Figure 2. Neighborhood inverse consistency.

For example, In Figure 2, there is no solution for the
neighborhood of variable W that is consistent with the
choice of a for W. This implies that we can eliminate
a as a potential value for W.

Data Consistency 203

gree of the constraint graph. However, for the prob-
lems we consider experimentally below, neighborhood
inverse consistency preprocessing is considerably faster
than even path consistency preprocessing.

Neighborhood inverse consistency processing will

When a value is deleted from a domain of a variable,
V, the deletion may affect all of the variables that share
a constraint with V. As a result, all adjacent variables,
which are precisely the neighbors, are inserted into the
agenda. In this fashion, domain value deletions are

delete a value, v, from a variable V that is not con-
sistent with any value for an individual neighboring
variable U. (If this is the case, clearly v is not con-
sistent with any solution for the neighboring subprob-
lem.) This deletion can propagate. Thus neighbor-
hood consistency preprocessing leaves the problem arc
consistent. Arc consistency is also achieved by path in-
verse consistency preprocessing since all nodes sharing
edges with V are examined, and the deletions are al-
lowed to propagate. Thus we have the following simple
proposition:

allowed to propagate.

ALGORITHM NIC
1. insert each variable v into agenda A, a queue

without duplicates

2. while the agenda A is not empty
3. extract a variable v from front of agenda A
4. let the neighborhood N(v) be the set of all

nodes which share an edge with v
5. set the flag deleted to false

Proposition: Neighborhood and path inverse consis-
tency both imply arc consistency.

In particular, this means that NIC preprocessing is
“stronger” than AC preprocessing. It deletes at least
as many values.

6. for each value a in domain of v
7. if there is no solution for N(v) when a

is assigned to v
8. remove value a from the domain of v
9. change deleted to true

Algorithms
We tested various old and new preprocessing schemes.

for this paper. The ‘preprocessing algorithms arc con-

In each case the search algorithm used after prepro-
cessing was FC-CBJ-DMD, which is a combination of

sistency and path consistency are also from van Beek’s

forward checking with conflict-directed backjumping
and dynamic minimum domain size ordering. This is

library. They are implementations of AC-3 and PC-

a good modern search algorithm. The code for FC-
CBJ (Prosser 1993a) is from Peter van Beek’s code

2 algorithms, respectively, similar to those described

library (available on the Internet via anonymous ftp
at ftp.cs.ualberta.ca); the dynamic ordering was added

by Tsang in (Tsang 1993), but make use of a stack to
maintain the edges and paths, respectively, that need
to be reexamined.

10. if the domain of v is empty
11. return wipeout

12. if deleted is true
13. insert all z E N(v) into agenda A, which

are not already in A
14. return consistent

except that each variable is examined only once; no fur-

Figure 3: Algorithm for performing neighborhood

ther propagation is performed. In our implementation,

inverse consistency.

the variables are examined in lexical order. Removal

The algorithm for ONIC is identical to that for NIC,

of lines 5, 9, 11, and 12 from Figure 3 results in an
algorithm for ONIC, since it is these lines which are
responsible for allowing propagation beyond one pass
to take place.

Path inverse consistency (PIC), neighborhood in-
verse consistency (NIC), and one pass neighborhood
inverse consistency (ONIC) were all coded for this pa-
per. All algorithms are coded in C.

Shown in Figure 3 is an algorithm for achieving
neighborhood inverse consistency (NIC). An agenda is
used to keep track of those variables that still need to
be examined, and so initially, all variables are placed
on the agenda. The algorithm proceeds by examin-
ing each value a in the domain of a variable v to see
whether or not there is a solution among the variable’s
neighbors. If when a is assigned to v, no solution can
be found for the variable’s neighbors, i.e. the induced
subproblem consisting of v and all neighbors of v, then
a is removed from the domain of v. In our implemen-
tation, line 7 is performed by creating the subproblem
induced by v (with the single value a) and N(v), and
then running FC-CBJ-DMD on the subproblem to see
if there is a solution.

PIC is similar to NIC, with the exception of line
7. Instead of selecting all neighbors of ZI and trying
to find a solution among them, for each of the values
in the domain of V, PIC generates all combinations of
three distinct nodes which include v and verifies for
each 3-tuple that a solution exists with a for v.

As a result of a few observations, it follows that not
all 3-tuples need to be generated. For example, some
are duplicates, like (2, y, z) and (2, Z, y), which contain
the same set of variables. Yet other 3-tuples, like those
with no constraints are unable to force a domain value
to be deleted.

In our implementation of PIC, only those sets of
three nodes, where at least one node shares an edge
with v are generated. If v is connected to neither of
the two other nodes x and y, and they do not share an
edge, no preclusion would have taken place, since there
are no constraints. If v is connected to neither z nor y,
but they do share an edge, then if any value for v could

204 Constraint Satisfaction

be precluded, it is clearly because there is no solution
to the subproblem induced by x and y, regardless of
the value of v. In this case there will be no solution to
the problem as a whole. In our implementation, this
situation is recognized at the point that PIC examines
either x or y.

Experiments
Test problems were created using a random problem
generator requiring four inputs: the number of vari-
ables, the number of values for each variable, the tight-
ness, and the density. We chose 100 variables and 6
values to supply us with reasonably difficult problems.

Roughly speaking the lightness is a measure of how
constraining the constraints are, and the den&y is a
measure of how full of edges the constraint graph is.
We ensure that our constraint graphs are connected.

Recent work on “really hard problems”, e.g.
(Cheeseman, Kanefsky, & Taylor 1991), suggests that
most hard problems exist at the point where a phase
transition from problems with solutions to those with-
out occurs, and that for given size problem (variables
and values) and a given tightness, we can find this tran-
sition area, or complexity peak, by varying the density.

We tested problems at a midrange tightness of .5.
In other words, there is a 50% probability that an in-
dividual pair of values will be allowed by a constraint.
Problems were generated and run around the transi-
tional area. We took another “cut” through the “com-
plexity ridge” at a lower tightness of .4. (At .6 the
problems were very easy.)

Consistency Preprocessing Results

I I I 1
110

lof I I I I

0.0325 0.035 0.0375 0.04 0.0425
density

Figure 4. Running time in seconds
tightness = 0.4.

for problems at

We tested search alone (FC-CBJ-DMD). We also
tested search preceded by each one of the preprocess-
ing methods: AC, PC, PIC, NIC, ONIC. In Figures 4
and 5 we plot the results for the 3 best options: search
preceeded by AC, NIC and ONIC. Figure 4 shows the
average effort to solve sets of 25 problems at several dif-

ferent density values around the peak region for tight-
ness of .4. Figure 5 does the same for tightness of .5.

Along the density axis each .Ol of added density cor-
responds to roughly 50 more constraints. At 0 den-
sity we would still have roughly 100 constraints, form-
ing a minimally connected, tree-structured constraint
graph. At .02 density the average degree of a node in
the constraint graph is roughly 4; i.e. each variable is
involved in an average of roughly 4 constraints. This
may seem sparsely constrained, but there is reason to
believe that many practical problems are large and rel-
atively sparse.

Consistency Preprocessing Results
12

10

8

6

4

2

0
0.015 0.0175 0.02 0.0225 0.025

density

Figure 5. Running time in seconds for problems at
tightness = 0.5.

Our new algorithms do well in general, doing bet-
ter for the hardest problems at .5 than at .4. Note
the y-axes are different in the two figures; the denser
problems at .4 are considerably harder in general than
the sparser ones at .5. Table 1 details the performance
on the problems at tightness .5, density .02, where we
see a peak in Figure 5. The time for preprocessing
and the total time for preprocessing plus subsequent
search are given for all the preprocessing methods (e.g.
AC denoting AC preprocessing, and AC+S denoting
AC preprocessing plus search), and we see the time
for search without any preprocessing (S denoting FC-
CBJ-DMD). Underlining indicates that preprocessing
deleted all values from a variable domain, so no further
search was required. Boldface identifies the minimum
times. We indicate whether or not there is a solution.
Notice that our new proprocessing can excel in either
case.

Notice that the maximum effort for NIC preprocess-
ing plus search is only about 22 seconds, while the
maximum effort for AC preprocessing plus search is
over 3 minutes. For the problem that requires over 3
minutes of AC plus search, NIC plus search finishes in
about a tenth of a second. NIC is the outright “win-
ner” on relatively few problems. However, the wins are
more significant than the losses.

Data Consistency

II -11 11 AC I AC+S II PC PC+S 11 PIC I PIC+S 11 ONIC I sol

yes
no
no
no
yes
yes
Yes
no
no
no
no

yes
no
yes
no
no
no
yes
Yes
no
no

yes
Yes
no

4%

5
1.48

11.46
17.87

0.78
5.03
0.70

0.06
3.25

86.77
45.21
32.95
0.09
14.56
0.07

49.53
46.54
15.10
0.08

57.42
37.86

212.15
1.55

42.11
2.29

135.70
32.82

0.05 1.57 142.01 142.03 15.81 17.16 0.05
0.07 1.31 114.67 114.67 19.01 19.92 0.06
0.05 1.68 86.12 86.12 15.45 15.88 0.05
0.07 0.16 52.68 52.68 21.31 21.32 0.06
0.05 0.12 214.27 217.16 16.87 17.27 0.06
0.06 0.09 133.70 133.72 16.84 16.87 0.05
0.06 1.78 107.67 107.69 15.51 17.25 0.06
0.15 0.15 62.52 62.52 30.75 30.75 0.06
0.05 29.78 271.35 271.35 15.65 37.00 0.07
0.06 4.82 97.17 97.17 18.09 18.33 0.06
0.08 0.10 106.45 106.45 32.60 32.61 0.06
0.06 6.58 255.04 255.06 16.90 24.02 0.06
0.06 0.38 79.92 79.92 28.19 28.19 0.06
0.05 1.12 291.25 291.27 15.34 16.32 0.06
0.07 0.99 75.91 75.91 17.61 18.16 0.06
0.07 0.08 46.24 46.24 14.14 14.14 0.06
0.07 0.10 47.13 47.13 19.96 20.01 0.05
0.05 191.41 131.45 131.48 14.15 14.17 0.05
0.06 8.13 250.73 250.75 16.38 21.57 0.06
0.06 2.15 140.52 140.52 18.95 22.23 0.06
0.05 1.18 104.57 104.57 19.36 20.35 0.06
0.06 3.29 148.57 148.59 22.20 23.07 0.06
0.05 2.51 211.61 211.78 17.18 19.64 0.06
0.08 0.08 39.89 39.89 9.44 9.44 0.06
0.08 1.31 53.30 53.30 18.13 18.13 0.06
0.06 10.43 130.59 130.72 18.63 20.55 0.06

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

avg

ONIC+S

0.30
0.78
0.49
0.18
0.89
0.09
0.11
0.23

21.55
0.41
1.27
7.51

0.19
5.03
0.88

0.07
0.07
1.29

0.61
1.69
1.55
1.04

1.47
0.08
2.07

1.99

NIC NIC+S

0.13 1.47
0.15 1.18
0.11 0.54
0.21 0.22
0.12 0.51
0.11 0.14
0.11 1.82
0.27 0.27
0.11 21.45
0.13 0.37
0.26 0.27
0.13 7.34
0.34 0 34
0.11 1.08
0.20 0.73
0.18 0 18
0.14 -zl
0.11 0.13
0.12 5.33
0.13 3.41
0.14 1.13
0.15 1.02
0.11 2.58
0.14 0 14
0.25 0.25
0.16 2.08

Table 1. Running time in seconds for twenty-five random problems with 100 variables, a domain
size of 6, tightness = 0.5, and density = 0.02.

Apparently the additional pruning done by NIC can
sufficiently improve performance on hard problems to
outweigh the rather small processing penalty involved
in achieving NIC rather than AC. More efficient AC
preprocessing, or partial AC preprocessing like di-
rected arc consistency, could lower the AC preprocess-
ing costs further, but would not address the real issue:
the extreme search cost penalty that is sometimes paid
for doing less preprocessing pruning than NIC. Finally,
recall that NIC does not incur high space costs.

Figures 6 and 7 plots the results for the 10 problems
in each problem set that are most difficult for AC pre-
processing plus search, with the problems aligned on
the horizontal axis in order of difficulty. These plots
demonstrate how NIC is especially successful at keep-
ing down the maximum effort required, and outper-
forming AC on the hardest problems. Such behavior
would seem especially useful for real-time problems in-
volving human interaction, where it is well known that
large fluctuations in response time are especially an-
noying.

Conclusion
We have demonstrated that inverse consistency can ef-
fectively introduce higher order consistency without a
significant space penalty. Neighborhood consistency
limits the time commitment by targeting highly rele-
vant subproblems. Neighborhood inverse consistency
has shown some success at outperforming the standard
arc consistency preprocessing by doing more pruning
at small additional cost. It appears that this can ame-
liorate the risk of encountering unusually costly prob-
lems.

There are several opportunities for further research:

e The algorithms have been implemented in rather
straightforward fashion; there is considerable room
for improvement. In particular, some redun-
dant processing of overlapping subproblems may be
avoided.

e The information obtained during subproblem solu-
tion may be profitably retained, at some space cost.

e Inverse consistency can be interleaved with search in
hybrid algorithms, analogous to forward checking.

206 Constraint Satisfaction

running times (sets) at density = 0.0325 running times (sets) at density = 0.0150

600
500
400
300
200
100

0

running times (sets) at density = 0.0350 running times (sets) at density = 0.0200

300
250
200

150
100

50
0

2500

2000

1500

1000

500

running times (sets) at density = 0.0375 running times (sets) at density = 0.0225

% -
160 - “arc” +

running times (sets) at density = 0.0400
250

200

150

100

50

running times (sets) at density = 0.0425 running times (sets) at density = 0.0275
400
350
300
250
200
150
100

50
0

Figure 6. Most difficult ten problems for arc Figure 7. Most difficult ten problems for arc
consistency ordered by difficulty for arc consistency consistency ordered by difficulty for arc consistency

at tightness = 0.4 and different densities. at tightness = 0.5 and different densities.

“arc” +

94
7ynic’p m m

18
16

10
8
6

running times (sets) at density = 0.0250
35
30
25
20
15
10

5
0

Data Consistency 207

o Neighborhood consistency, as opposed to neighbor-
hood inverse consistency, should be considered.

o Higher order k inverse consistency should be studied.
Inverse consistency can be combined with higher or-
der k-consistency.

e Other forms of “targeted” consistency, as opposed
to neighborhood consistency, based on syntactic or
semantic understanding of individual problems, may
prove useful.

Acknowledgements
This material is based on work supported by the
National Science Foundation under Grant No. IRI-
9207633 and Grant No. IRI-9504316. We thank
Richard Wallace for his contributions to this work.

References
Cheeseman, P., Kanefsky, B. and Taylor, W. 1991.
Where the readly hard problems are. In Proceedings
of the Twelfth International Joint Conference on Ar-
tificial Intelligence, 331-337.
Dechter, R. and Meiri, I. 1994. Experimental evalua-
tion of preprocessing techniques in constraint satisfac-
tion problems. Artificial Intelligence, 68(2), 211-241.
Dechter, R. and Pearl, J. 1987. Network-based heuris-
tics for constraint satisfaction problems. Artificial In-
telzigence, 34(1)) l-38.
Freuder, E. 1978. Synthesizing Constraint Express-
sions. Communications of the ACM, 21(11): 958-966.
Freuder, E. 1985. A sufficient condition for backtrack-
bounded search. Journad of the ACM, 32(4): 755-761.
Mackworth, A. 1977. Consistency in Networks of
Relations, Artificial Inteldigence, 8:99-118.
Montanari, II. 1974. Networks of constraints fun-
damental properties and applications to picture pro-
cessing, Information Sciences, 7:95-132.
Prosser, P. 1993a. Hybrid algorithms for the con-
straint satisfaction problem. Computational InteZZi-
gence, 9:268-299.
Prosser, P. 1993b. Domain filtering can degrade in-
telligent backtracking search. In Proceedings of the
Thirteenth International Joint Conference on Artifi-
cial Intelligence, 262-267.
Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press, London.

208 Constraint Satisfaction

