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Abstract 
Constraint satisfaction consistency preprocessing 
methods are used to reduce search effort. Time and 
especially space costs limit the amount of preprocess- 
ing that will be cost effective. A new form of con- 
sistency preprocessing, neighborhood inverse consis- 
tency, can achieve more problem pruning than the 
usual arc consistency preprocessing in a cost effective 
manner. There are two basic ideas: 1) Common forms 
of consistency enforcement basically operate by iden- 
tifying and remembering solutions to subproblems for 
which a consistent value cannot be found for some ad- 
ditional problem variable. The space required for this 
memory can quickly become prohibitive. Inverse con- 
sistency basically operates by removing values for vari- 
ables that are not consistent with any solution to some 
subproblem involving additional variables. The space 
requirement is at worst linear. 2) Typically consis- 
tency preprocessing achieves some level of consistency 
uniformly throughout the problem. A subproblem so- 
lution will be tested against each additional variable 
that constrains any subproblem variable. Neighbor- 
hood consistency focuses attention on the subproblem 
formed by the variables that are all constrained by the 
value in question. By targeting highly relevant sub- 
problems we hope to “shim the cream”, obtaining a 
high payoff for a limited cost. 

Key Ideas 
Introduction 

Many problems in artificial intelligence can be repre- 
sented as constraint satisfaction problems. Preprocess- 
ing the problem representation to achieve limited con- 
sistency is often used to reduce problem solving effort. 
The most common preprocessing achieves only very 
local consistency. Higher order consistency techniques 
can further reduce subsequent effort, but the prepro- 
cessing effort may not be cost effective. The prepro- 
cessing time may exceed the subsequent savings, or the 
cost of storing the results of the preprocessing may be 
excessive. The space problem in particular has been 
little studied, but can be crucial for large scale realis- 
tic problems. 

Neighborhood inverse consistency is a new form 
of consistency that achieves higher order consistency 
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while addressing these cost concerns, especially the 
space issue. There are two basic ideas: 

Inverse Consistency: Common forms of consistency 
enforcement basically operate by identifying and re- 
membering solutions to subproblems for which a con- 
sistent value cannot be found for some additional prob- 
lem variable. The space required for this memory can 
quickly become prohibitive. Inverse consistency basi- 
cally operates by removing values for variables that are 
not consistent with any solution to some subproblem 
involving additional variables. The space requirement 
is at worst linear; if the potential variable values are 
already represented explicitly, even high order inverse 
consistency processing can actually save space. 

Neighborhood Consistency: Typically consistency 
preprocessing achieves some level of consistency uni- 
formly throughout the problem. A subproblem so- 
lution will be tested against each additional variable 
that constrains any subproblem variable. Neighbor- 
hood consistency focuses attention on the subproblem 
formed by the variables that are all constrained by the 
value in question. By targeting highly relevant sub- 
problems we hope to “skim the cream”, obtaining a 
high payoff for a limited cost. 

Combining these two ideas give us neighborhood in- 
verse consistency. We present experimental evidence 
that suggests that for an interesting class of problems 
neighborhood inverse consistency preprocessing can be 
superior to conventional preprocessing methods. 

In Section 2 we will present the basic idea of in- 
verse consistency, including neighborhood inverse con- 
sistency as a special case. In Section 3 we present 
preprocessing algorithms that we tested. In Section 4 
we describe experimental results with these algorithms. 
Section 5 presents conclusions and directions for fur- 
ther work. 

Related Work 

Freuder introduced, but did not implement, inverse 
consistency, as (1, k - l)- consistency in (Freuder 1985). 
In (Prosser 1993b) there is a form of “directed con- 
sistency” learning that might be viewed as acquir- 
ing some partial inverse consistency during the search 
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process. Directed and adaptive c( 
& Pearl 1987) 

Bnsistency (Dechter 
might be viewed as limited forms of 

partial neighborhood consistency preprocessing, em- 
playing standard, not inverse consistency. (Dechter & 
Meiri 1994) compares a variety of preprocessing meth- 
ods experimentally. 

Inverse Consistency 
Constraint satisfaction problems (CSPs) involve find- 
ing values for problem variables subject to restrictions 
(constraints) on what combinations of values are al- 
lowed. A solution is an assignment of a value to 
each variable such that all the constraints are satis- 
fied. Often, as here, we restrict our attention to binary 
constraints that involve two variables at a time. Bi- 
nary CSPs can be represented by constraint graphs, 
where variables correspond to vertices, potential val- 
ues are vertex labels, and constraints correspond to 
edges. Figure 1 is a sample CSP where the constraints 
are all the inequality constraint. 

Most forms of consistency can be viewed as special 
cases of (i, j&consistency (Freuder 1985). Basically, 
a problem is’(i, j)-consistent if any solution to a sub- 
problem of i variables can be extended to a solution 
including any j additional variables. When i is k - 1 
and j is 1 we have k-consistency (Freuder 1978). If k is 
2 we have arc consistency (AC) (Mackworth 1977); if k 
is 3 we have path consistency (PC) (Montanari 1974). 

Figure 1. Path inverse consistency. 

When i is 1 and j is k - 1 we have k inverse consis- 
tency. When k is 3 we have path inverse consistency 
(PIC). (Arc inverse consistency is no different from arc 
consistency.) In Figure 1, there is no solution for vari- 
ables X and Y that is consistent with the choice of a 
for W. This implies that we can eliminate a as a po- 
tential value for W; we will say that we delete a from 
the domain of W. 

All these forms of consistency are defined locally, but 
enforcing this local consistency can propagate. Delet- 
ing a value because it is locally inconsistent can make 
some other value inconsistent that depended on the 
deleted value; that value in turn can be deleted. Since 
experience has shown that sometimes less consistency 
pruning is more cost effective, we also test a limited 
neighborhood inverse consistency algorithm that only 
processes each variable once for neighborhood consis- 
tency, and thus does not necessarily take into account 
all such propagation to fully achieve neighborhood in- 
verse consistency. We call this ONIC, for one pass 
neighborhood inverse consistency. 

The variables joined by an edge to a variable in 
a constraint graph are called its neighborhood. Ba- 
sically, neighborhood inverse consistency (NIC) en- 
forces, for each variable V, k inverse consistency for 
the k variables in the neighborhood of V. 

The time complexity of k inverse consistency is com- 
parable to that of k-consistency. In terms of space 
complexity, however, inverse consistency has a consid- 
erable advantage. In general, achieving k-consistency 
requires creating and storing constraints involving k- 1 
variables, which can require 0(&-l) space, assuming 
d potential values for each variable. Achieving inverse 
consistency only requires specifying that values cannot 
be permitted for variables. At, worst this requires linear 
space. If the potential values are already listed explic- 
itly, inverse consistency can reduce space requirements 
by deleting some of these values. 

The subproblem induced by a set of variables, S, The time complexity of k-consistency is polynomial 
corresponds to S and all the edges between two vari- with the exponent dependent on k. The time complex- 
ables in S. A value v for variable V is consistent with ity of neighborhood inverse consistency is polynomial 
a value u for variable U if those values satisfy, i.e. are with the polynomial dependent on the maximum de- 

allowed by, the constraint between V and U. A value 
v is consistent with a solution to a subproblem, if it is 
individually consistent with each of the values in the 
solution; in this case we also can say that the solution 
is consistent with V. 

A constraint graph is neighborhood inverse consis- 
tent if, given any value v for any variable V, we can 
find a solution to the subproblem induced by the neigh- 
borhood of V that is consistent with V. 

w 

Figure 2. Neighborhood inverse consistency. 

For example, In Figure 2, there is no solution for the 
neighborhood of variable W that is consistent with the 
choice of a for W. This implies that we can eliminate 
a as a potential value for W. 
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gree of the constraint graph. However, for the prob- 
lems we consider experimentally below, neighborhood 
inverse consistency preprocessing is considerably faster 
than even path consistency preprocessing. 

Neighborhood inverse consistency processing will 

When a value is deleted from a domain of a variable, 
V, the deletion may affect all of the variables that share 
a constraint with V. As a result, all adjacent variables, 
which are precisely the neighbors, are inserted into the 
agenda. In this fashion, domain value deletions are 

delete a value, v, from a variable V that is not con- 
sistent with any value for an individual neighboring 
variable U. (If this is the case, clearly v is not con- 
sistent with any solution for the neighboring subprob- 
lem.) This deletion can propagate. Thus neighbor- 
hood consistency preprocessing leaves the problem arc 
consistent. Arc consistency is also achieved by path in- 
verse consistency preprocessing since all nodes sharing 
edges with V are examined, and the deletions are al- 
lowed to propagate. Thus we have the following simple 
proposition: 

allowed to propagate. 

ALGORITHM NIC 
1. insert each variable v into agenda A, a queue 

without duplicates 

2. while the agenda A is not empty 
3. extract a variable v from front of agenda A 
4. let the neighborhood N(v) be the set of all 

nodes which share an edge with v 
5. set the flag deleted to false 

Proposition: Neighborhood and path inverse consis- 
tency both imply arc consistency. 

In particular, this means that NIC preprocessing is 
“stronger” than AC preprocessing. It deletes at least 
as many values. 

6. for each value a in domain of v 
7. if there is no solution for N(v) when a 

is assigned to v 
8. remove value a from the domain of v 
9. change deleted to true 

Algorithms 
We tested various old and new preprocessing schemes. 

for this paper. The ‘preprocessing algorithms arc con- 

In each case the search algorithm used after prepro- 
cessing was FC-CBJ-DMD, which is a combination of 

sistency and path consistency are also from van Beek’s 

forward checking with conflict-directed backjumping 
and dynamic minimum domain size ordering. This is 

library. They are implementations of AC-3 and PC- 

a good modern search algorithm. The code for FC- 
CBJ (Prosser 1993a) is from Peter van Beek’s code 

2 algorithms, respectively, similar to those described 

library (available on the Internet via anonymous ftp 
at ftp.cs.ualberta.ca); the dynamic ordering was added 

by Tsang in (Tsang 1993), but make use of a stack to 
maintain the edges and paths, respectively, that need 
to be reexamined. 

10. if the domain of v is empty 
11. return wipeout 

12. if deleted is true 
13. insert all z E N(v) into agenda A, which 

are not already in A 
14. return consistent 

except that each variable is examined only once; no fur- 

Figure 3: Algorithm for performing neighborhood 

ther propagation is performed. In our implementation, 

inverse consistency. 

the variables are examined in lexical order. Removal 

The algorithm for ONIC is identical to that for NIC, 

of lines 5, 9, 11, and 12 from Figure 3 results in an 
algorithm for ONIC, since it is these lines which are 
responsible for allowing propagation beyond one pass 
to take place. 

Path inverse consistency (PIC), neighborhood in- 
verse consistency (NIC), and one pass neighborhood 
inverse consistency (ONIC) were all coded for this pa- 
per. All algorithms are coded in C. 

Shown in Figure 3 is an algorithm for achieving 
neighborhood inverse consistency (NIC). An agenda is 
used to keep track of those variables that still need to 
be examined, and so initially, all variables are placed 
on the agenda. The algorithm proceeds by examin- 
ing each value a in the domain of a variable v to see 
whether or not there is a solution among the variable’s 
neighbors. If when a is assigned to v, no solution can 
be found for the variable’s neighbors, i.e. the induced 
subproblem consisting of v and all neighbors of v, then 
a is removed from the domain of v. In our implemen- 
tation, line 7 is performed by creating the subproblem 
induced by v (with the single value a) and N(v), and 
then running FC-CBJ-DMD on the subproblem to see 
if there is a solution. 

PIC is similar to NIC, with the exception of line 
7. Instead of selecting all neighbors of ZI and trying 
to find a solution among them, for each of the values 
in the domain of V, PIC generates all combinations of 
three distinct nodes which include v and verifies for 
each 3-tuple that a solution exists with a for v. 

As a result of a few observations, it follows that not 
all 3-tuples need to be generated. For example, some 
are duplicates, like (2, y, z) and (2, Z, y), which contain 
the same set of variables. Yet other 3-tuples, like those 
with no constraints are unable to force a domain value 
to be deleted. 

In our implementation of PIC, only those sets of 
three nodes, where at least one node shares an edge 
with v are generated. If v is connected to neither of 
the two other nodes x and y, and they do not share an 
edge, no preclusion would have taken place, since there 
are no constraints. If v is connected to neither z nor y, 
but they do share an edge, then if any value for v could 
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be precluded, it is clearly because there is no solution 
to the subproblem induced by x and y, regardless of 
the value of v. In this case there will be no solution to 
the problem as a whole. In our implementation, this 
situation is recognized at the point that PIC examines 
either x or y. 

Experiments 
Test problems were created using a random problem 
generator requiring four inputs: the number of vari- 
ables, the number of values for each variable, the tight- 
ness, and the density. We chose 100 variables and 6 
values to supply us with reasonably difficult problems. 

Roughly speaking the lightness is a measure of how 
constraining the constraints are, and the den&y is a 
measure of how full of edges the constraint graph is. 
We ensure that our constraint graphs are connected. 

Recent work on “really hard problems”, e.g. 
(Cheeseman, Kanefsky, & Taylor 1991), suggests that 
most hard problems exist at the point where a phase 
transition from problems with solutions to those with- 
out occurs, and that for given size problem (variables 
and values) and a given tightness, we can find this tran- 
sition area, or complexity peak, by varying the density. 

We tested problems at a midrange tightness of .5. 
In other words, there is a 50% probability that an in- 
dividual pair of values will be allowed by a constraint. 
Problems were generated and run around the transi- 
tional area. We took another “cut” through the “com- 
plexity ridge” at a lower tightness of .4. (At .6 the 
problems were very easy.) 

Consistency Preprocessing Results 

I I I 1 
110 

lof I I I I 

0.0325 0.035 0.0375 0.04 0.0425 
density 

Figure 4. Running time in seconds 
tightness = 0.4. 

for problems at 

We tested search alone (FC-CBJ-DMD). We also 
tested search preceded by each one of the preprocess- 
ing methods: AC, PC, PIC, NIC, ONIC. In Figures 4 
and 5 we plot the results for the 3 best options: search 
preceeded by AC, NIC and ONIC. Figure 4 shows the 
average effort to solve sets of 25 problems at several dif- 

ferent density values around the peak region for tight- 
ness of .4. Figure 5 does the same for tightness of .5. 

Along the density axis each .Ol of added density cor- 
responds to roughly 50 more constraints. At 0 den- 
sity we would still have roughly 100 constraints, form- 
ing a minimally connected, tree-structured constraint 
graph. At .02 density the average degree of a node in 
the constraint graph is roughly 4; i.e. each variable is 
involved in an average of roughly 4 constraints. This 
may seem sparsely constrained, but there is reason to 
believe that many practical problems are large and rel- 
atively sparse. 

Consistency Preprocessing Results 
12 

10 

8 

6 

4 

2 

0 
0.015 0.0175 0.02 0.0225 0.025 

density 

Figure 5. Running time in seconds for problems at 
tightness = 0.5. 

Our new algorithms do well in general, doing bet- 
ter for the hardest problems at .5 than at .4. Note 
the y-axes are different in the two figures; the denser 
problems at .4 are considerably harder in general than 
the sparser ones at .5. Table 1 details the performance 
on the problems at tightness .5, density .02, where we 
see a peak in Figure 5. The time for preprocessing 
and the total time for preprocessing plus subsequent 
search are given for all the preprocessing methods (e.g. 
AC denoting AC preprocessing, and AC+S denoting 
AC preprocessing plus search), and we see the time 
for search without any preprocessing (S denoting FC- 
CBJ-DMD). Underlining indicates that preprocessing 
deleted all values from a variable domain, so no further 
search was required. Boldface identifies the minimum 
times. We indicate whether or not there is a solution. 
Notice that our new proprocessing can excel in either 
case. 

Notice that the maximum effort for NIC preprocess- 
ing plus search is only about 22 seconds, while the 
maximum effort for AC preprocessing plus search is 
over 3 minutes. For the problem that requires over 3 
minutes of AC plus search, NIC plus search finishes in 
about a tenth of a second. NIC is the outright “win- 
ner” on relatively few problems. However, the wins are 
more significant than the losses. 
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II -11 11 AC I AC+S II PC PC+S 11 PIC I PIC+S 11 ONIC I sol 

yes 
no 
no 
no 
yes 
yes 
Yes 
no 
no 
no 
no 

yes 
no 
yes 
no 
no 
no 
yes 
Yes 
no 
no 

yes 
Yes 
no 

4% 

5 
1.48 

11.46 
17.87 

0.78 
5.03 
0.70 

0.06 
3.25 

86.77 
45.21 
32.95 
0.09 
14.56 
0.07 

49.53 
46.54 
15.10 
0.08 

57.42 
37.86 

212.15 
1.55 

42.11 
2.29 

135.70 
32.82 

0.05 1.57 142.01 142.03 15.81 17.16 0.05 
0.07 1.31 114.67 114.67 19.01 19.92 0.06 
0.05 1.68 86.12 86.12 15.45 15.88 0.05 
0.07 0.16 52.68 52.68 21.31 21.32 0.06 
0.05 0.12 214.27 217.16 16.87 17.27 0.06 
0.06 0.09 133.70 133.72 16.84 16.87 0.05 
0.06 1.78 107.67 107.69 15.51 17.25 0.06 
0.15 0.15 62.52 62.52 30.75 30.75 0.06 
0.05 29.78 271.35 271.35 15.65 37.00 0.07 
0.06 4.82 97.17 97.17 18.09 18.33 0.06 
0.08 0.10 106.45 106.45 32.60 32.61 0.06 
0.06 6.58 255.04 255.06 16.90 24.02 0.06 
0.06 0.38 79.92 79.92 28.19 28.19 0.06 
0.05 1.12 291.25 291.27 15.34 16.32 0.06 
0.07 0.99 75.91 75.91 17.61 18.16 0.06 
0.07 0.08 46.24 46.24 14.14 14.14 0.06 
0.07 0.10 47.13 47.13 19.96 20.01 0.05 
0.05 191.41 131.45 131.48 14.15 14.17 0.05 
0.06 8.13 250.73 250.75 16.38 21.57 0.06 
0.06 2.15 140.52 140.52 18.95 22.23 0.06 
0.05 1.18 104.57 104.57 19.36 20.35 0.06 
0.06 3.29 148.57 148.59 22.20 23.07 0.06 
0.05 2.51 211.61 211.78 17.18 19.64 0.06 
0.08 0.08 39.89 39.89 9.44 9.44 0.06 
0.08 1.31 53.30 53.30 18.13 18.13 0.06 
0.06 10.43 130.59 130.72 18.63 20.55 0.06 

# 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

avg 

ONIC+S 

0.30 
0.78 
0.49 
0.18 
0.89 
0.09 
0.11 
0.23 

21.55 
0.41 
1.27 
7.51 

0.19 
5.03 
0.88 

0.07 
0.07 
1.29 

0.61 
1.69 
1.55 
1.04 

1.47 
0.08 
2.07 

1.99 

NIC NIC+S 

0.13 1.47 
0.15 1.18 
0.11 0.54 
0.21 0.22 
0.12 0.51 
0.11 0.14 
0.11 1.82 
0.27 0.27 
0.11 21.45 
0.13 0.37 
0.26 0.27 
0.13 7.34 
0.34 0 34 
0.11 1.08 
0.20 0.73 
0.18 0 18 
0.14 -zl 
0.11 0.13 
0.12 5.33 
0.13 3.41 
0.14 1.13 
0.15 1.02 
0.11 2.58 
0.14 0 14 
0.25 0.25 
0.16 2.08 

Table 1. Running time in seconds for twenty-five random problems with 100 variables, a domain 
size of 6, tightness = 0.5, and density = 0.02. 

Apparently the additional pruning done by NIC can 
sufficiently improve performance on hard problems to 
outweigh the rather small processing penalty involved 
in achieving NIC rather than AC. More efficient AC 
preprocessing, or partial AC preprocessing like di- 
rected arc consistency, could lower the AC preprocess- 
ing costs further, but would not address the real issue: 
the extreme search cost penalty that is sometimes paid 
for doing less preprocessing pruning than NIC. Finally, 
recall that NIC does not incur high space costs. 

Figures 6 and 7 plots the results for the 10 problems 
in each problem set that are most difficult for AC pre- 
processing plus search, with the problems aligned on 
the horizontal axis in order of difficulty. These plots 
demonstrate how NIC is especially successful at keep- 
ing down the maximum effort required, and outper- 
forming AC on the hardest problems. Such behavior 
would seem especially useful for real-time problems in- 
volving human interaction, where it is well known that 
large fluctuations in response time are especially an- 
noying. 

Conclusion 
We have demonstrated that inverse consistency can ef- 
fectively introduce higher order consistency without a 
significant space penalty. Neighborhood consistency 
limits the time commitment by targeting highly rele- 
vant subproblems. Neighborhood inverse consistency 
has shown some success at outperforming the standard 
arc consistency preprocessing by doing more pruning 
at small additional cost. It appears that this can ame- 
liorate the risk of encountering unusually costly prob- 
lems. 

There are several opportunities for further research: 

e The algorithms have been implemented in rather 
straightforward fashion; there is considerable room 
for improvement. In particular, some redun- 
dant processing of overlapping subproblems may be 
avoided. 

e The information obtained during subproblem solu- 
tion may be profitably retained, at some space cost. 

e Inverse consistency can be interleaved with search in 
hybrid algorithms, analogous to forward checking. 
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o Neighborhood consistency, as opposed to neighbor- 
hood inverse consistency, should be considered. 

o Higher order k inverse consistency should be studied. 
Inverse consistency can be combined with higher or- 
der k-consistency. 

e Other forms of “targeted” consistency, as opposed 
to neighborhood consistency, based on syntactic or 
semantic understanding of individual problems, may 
prove useful. 
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