
Lazy Arc Consistency

Thomas Schiex
INRA

BP 27, Castanet-Tolosan
3 1326 Cedex, France

tschiex@toulouse.inra.fr

Jean-Charles Wgin
ILOG SA.

BP 85, Gentilly
F-94253 Cedex, France

regin@ilog.fr

Christine Gaspin
INRA

BP 27, Castanet-Tolosan
3 1326 Cedex, France

gaspin@toulouse.inra.fr

G&ard Verfaillie
CERT/ONERA

BP 4025, Toulouse
3 1055 Cedex, France

verfail@cert.fr

Abstract

Arc consistency filtering is widely used in the framework of
binary constraint satisfaction problems: with a low complex-
ity, inconsistency may be detected,and domains are filtered.
In this paper, we show that when detecting inconsistency is
the objective, a systematic domain filtering is useless and a
lazy approach is more adequate. Whereas usual arc consis-
tency algorithms produce the maximum arc consistent sub-
domain, when it exists, we propose a method, called LACY,
which only looks for any arc consistent sub-domain.

solution. When considering wipe-out detection only, the
computation of the maximum arc consistent sub-domain is
useless and one arc consistent sub-domain is sufficient since
it proves the absence of wipe-out.

In some cases, wipe-out detection alone is not enough:
backtrack tree-search algorithms such as ReaZZy FUZZ Look-
Ahead or MAC also use domain sizes as a heuristic to choose
the next variable to instantiate. Lazy arc consistency can
then be extended to provide the additional service of locating
one variable with a minimum domain size in the maximum

The algorithm is then extended to provide the additional
service of locating one variable with a minimum domain car-
dinality in the maximum arc consistent sub-domain, without
necessarily computing all domain sizes.
Finally, we compare traditional AC enforcing and lazy AC
enforcing using several benchmark problems, both randomly
generated CSP and real life problems.

arc consistent domain, without exhaustive filtering.
After a short introduction to constraint satisfaction prob-

lems and arc consistency, lazy arc consistency filtering is
introduced and the corresponding algorithm, called LACT,
is described. We prove its correctness and study its space
and time complexity. We then extend the algorithm in order
to locate a variable with a minimum domain size and we

The Constraint Satisfaction Problem (CSP) framework
is increasingly used to represent and solve numerous OR
and AI problems. When constraints are binary, arc consis-
tency filtering is one of the most prominent filtering tech-
niques, applied either before any search, or incrementally
during backtrack search: (1) it has a limited space and
time worst-case complexity, (2) if a domain becomes empty
while filtering, the inconsistency of the problem is proven,
(3) otherwise, variable domains are filtered and the search
for a solution can start on a reduced space.

On some problems, systematic domain filtering may be-
come unproductive and costly. This observation has already
been made about forward-checking in (ZE89) and largely
clarified in (DM94): the only possible cause for backtrack
being a wipe-out, it suffices to prove that at least one value
remains in each filtered domain. Obviously the worst-case
complexity is the same as for usual forward-checking and
the average-case behavior is far better, especially when the
domains are large.

This paper is devoted to a similar approach applied to
arc consistency filtering. Traditional AC filtering try to
produce, when it exists, the maximum arc consistent sub-
domain. If this maximum arc consistent sub-domain does
not exist (a domain wipe-out occurred), inconsistency is
proven. If it exists, it can be used as a basis for a fur-
ther search, since removed values cannot take part in any

experiment and compare
AC enforcing algorithms.

these algorithms with traditional

Arc consistency filtering
A binary CSP is defined as follows:

Definition 1 A binary CSP is a triple (V, D, R) where:
a V is a sequence (1, . . . , i, . . . , n) of n variables;
8 D is a sequence (01, . . . , Di, . . . , Dn) of domains, such

that, Qi E V, Di is theJinite set ofpossible values for i;
d is the size of the largest domain;

o R is a sequence (. . . , Rij, . . .) of e binary relations (or
constraints) such that VRij E R, Rij relates the two
variables i and j and is defined by a subset of the Carte-
sian product Di x Dj which spec$es the allowed pairs
of values for variables i and j.

As it is usual for AC enforcing algorithms, we associate
to any binary CSP a symmetric directed graph G, with
one vertex for each variable and two directed edges (i, j)
and (j, i) for each constraint between variables i and j.
Since relations are bidirectional (this is not a restriction), if
the relation Rij is associated to the edge (i, j), a relation
Rji can be associated to the inverse edge (j, i), such that
Qa E Di,b E Dj, Rij(a,b) = Rji(b,a). We will use
EDGES(G) to refer to the set of directed edges in G and
NEIGHBORS(i) to refer to the Set of variables j such that

216 Constraint Satisfaction

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

(i, j) E EDGES(G). In the remainder of the paper, i, j, . . .
will be used to refer to variables, and a, b, . . . to refer to
values.

Definition 2 If D = (D1 , . . . , Dn) is a CSP domain, a sub-
domain D’ is a sequence (0; , . . . , Oh), s.t. Qi, 0: c Di.

Arc consistency (AC) is a local consistency property,
which uses the concept of support and viability:

Definition 3 Let D’ = (0; , . . . , 0;) be a sub-domain, i be
a variable, a E Di be a value of i and (i, j) E EDGES(G);
the value a is supported by Di along (i, j) iff there exists
a value b E 03 s.t. Rij (a, b); b is called a support for a
along (i, j). Obviously, a is also a support for b along the
inverse edge (j, i).

Definition 4 Let D’ = (0; , . . . , 0;) be a sub-domain, i be
a variable and a E 0: be a value of i; the value a is viable
with respect to D’ iff Qj E NEIGHBORS(~), a is supported
by D$ along (i, j).

Definition 5 A sub-domain D’ is arc consistent1 iflit is non
empty (Qi E V, 0; # B), and all the values in D’ are viable
with respect to D’.

Property I The union of two arc consistent sub-domains is
also arc consistent. Thus, if it exists, there is one maximum
arc consistent sub-domain (w.r t. the partial order induced
by the inclusion relation). This maximum sub-domain is the
union of all arc consistent sub-domains.

Property 2 If a CSP is consistent, there exists a maximum
arc consistent sub-domain and any value which takes part
in a solution belongs to it.

Arc consistency filtering produces the maximum arc consis-
tent sub-domain (if it exists) by deleting all the values which
are not viable with respect to the current domain D. It may
either detect inconsistency, using the tist part of property 2
or else reduce the search space, using the second part of
property 2.

Filtering a CSP by arc consistency can be achieved, ei-
ther before any search, or incrementally during a back-
track search (Nad89; SF94). Many algorithms have been
proposed to enforce arc consistency: first AC3 (Mac77),
then AC4 (MH86) with optimal worst-case time complex-
ity O(ed2), AC5 (vHDT92), AC6 (Bes94), which brings a
lower worst-case space complexity (O(ed)). More recently,
AC6++/AC7 (BFR95) has been introduced: it uses the fact
that constraints are bidirectional to improve AC6. Finally,
the AC-Inference schema (BFR95) tries to exploit specific
constraint properties in order to save constraint checks, but
it has a space complexity O(ed2). We have chosen the
algorithm AC7 as the basis of our work.

Lazy Arc Consistency Filtering
Lazy AC filtering relies on the fact that (1) an arc consistent
sub-domain is a sub-domain of the maximum arc consistent
sub-domain and (2) a consistent CSP has necessarily an arc

consistent sub-domain. The occurrence of a wipe-out is
therefore equivalent to the inexistence of an arc consistent
sub-domain. Consider the CSP whose so-called micro-
structure (or consistency graph) is given below. For each
of the three constraints, each compatible pair of values is
represented by an edge. The three domains are respectively
D1 = D2 = D3 = {1,2,3,4}.
---. , The CSP has a single solu-

j tion: (4,4,2). Its maximum
1 arc consistent sub-domain is
i ({2,3,4), {2,3,4), {L% 3)).
I It has two arc consistent sub-

. domains ({2,3}, {2,3}, {1,3})
and ({4}, {4}, (2)). Proving
that any of them is arc consis-

-------- -----’ tent would also prove that no
- wipe-out can occur when AC is enforced.

The LA& algorithm defined in this paper is derived from
the algorithm AC7 proposed in (BFR95). Therefore, it
conserves all the desirable properties of AC7 and exploits
the general property of bidirectionality verified by any con-
straint (Qa E Di, b E Dj, Rij(a, b) = Rji(b, a)).

Data structures: the data structures of LA& contain all
the data structures of AC7 plus some new data-structures
for laziness (but LA& may nevertheless need much less
memory than AC7 because of its laziness).

Since LA& tries to build an arc consistent sub-domain
D’ c D, it needs to remember, for each variable i, which
values from the initial domain Di are actually in the sub-
domain 0: and which values remain available for a possible
insertion in 0:. Two arrays of booleans ACTIVE[i, a] and
UNCHECKED[i, a] are used with this purpose. For each vari-
able i, an integer CARDACTIVE[i] contains the number of
values of its domain which are currently active.

As in AC7, sets of supported values SUPPORTED[(i, j), a]
are used to remember the values b for which a is a current
support on edge (i, j)2 (not necessarily the smallest support,
unlike AC6). The array lNI%UPPORT[(i, j), a] contains, for
each ((id, > a a value b such that no support for a on edge
(i, j) can be found strictly before b. Precisely, the data
structures of LA& are composed of:

8 an array of booleans, ACTIVE[i, a], keeps track of the val-
ues that are currently in 0:. In this array, each initial do-
main Di is considered as the integer range 1 . . .I Di I. The
following constant time procedures are used to handle Di
lists: Zast(Di) returns the greatest value in Di if Di # 0
or 0 else. If a E Di - (Zast(Di)j, nezt(a, Di) returns
the smallest value in Di-greater than a. &novk(a, Di)
removes value a from Di.
an array of integers, CARDACTIVE[i] holds the number of
active values for each variable;

@ an array of booleans, UNCHECKED[i , a], keeps track of the
values which have not been introduced in 0:. No support
is seeked for unchecked values and they cannot support
active values. ACTIVE[i, a] and UNCHECKED[i, a] can not

2Traditionally, these sets are denoted by Sij,. ‘We consider here that arc consistency is strong 2-consistency.

Data Consistency 217

be simultaneously true. After execution, an active value
is provenly viable, an unchecked value has an unknown
status and a value which is neither active nor unchecked
is deleted.

e an array of lists, SUPPORTED[@,~), u], contains all the
active values b from Dj which are currently considered
as supported by (i, a) on edge (j, i), j E NEIGHBORS(~).
As in AC7, the current support of a value is not necessarily
the smallest.

e an array of integers, INFSUPPORT[(~, j), a] contains
a value from Dj such that every value in Dj
compatible with (i, a) is greater than or equal to
INF~UPPORT[(~, j), a].

o a single list, SUPPORTSEEKINGLIST is used to store de-
mands for support. It contains edge-value pairs such as
((i,j),a) (value a seeking support on edge (i,j),j E
NEIGHBORS@)). It replaces the WaitingList of AC6 and
the two lists of AC7.

The SUPPORTED[(~, j), U] and INF~UPPORT[(~, j), a] of
AC7 are used by LAC, to guarantee that AC7 properties
are still verified by LAC7 (see (BFR95)).

Algorithm: the algorithm is embodied in the function
LAC7. All the data-structures are denoted by global vari-
ables, with unlimited scope. Initially, all the values are
unchecked and inactive. There are two main operations:

1. When an unchecked value (i, a) is activated, a sup-
port has to be found for (i, a) on all the edges
(i, j), j E NEIGHBORS(~). Therefore, all corresponding
pairs ((i, j), a) are added in the SUPPORTSEEKINGLIST
(see function ActivateValue on next page);

2. In order to find a support on edge (i, j) for value (i, a),
LAC7 first looks in SUPPORTED[(i, j), u] to check if (i, a)
already supports an active value (j, b) (see function Seek-
Triviahpport). If so, (j, b) also supports (i, a) and (i, a)
is inserted in SlJPPORTED[(j, i), b] (Def. 3).
Else, a support is sought among active or unchecked val-
ues in Dj, starting from the current INFSUPPORT[(i, j) , a]
(see function SeekNextSupport). If a support b is found,
(i, a) is inserted in SUPPORTED[(j, i), b] and the inte-
ger INF~UPPORT[(~, j), a] is updated. If the value b was
unchecked, it is activated.
If no support is found, the value is deleted and made in-
active. If no active value remains in the domain, and if
no unchecked value is available, wipe-out occurs. Else,
an unchecked value is activated (see function Empty-
Domain). Then, the pairs ((j, i), b) such that (j, b) was
supported by (i, a) are introduced in the SUPPORTSEEK-
INGLIST.

The algorithm runs until either a wipe-out occurs (if
EmptyDomain returns true on line 4) or the SUPPORTSEEK-
INGLIST becomes empty: all the active values have an active
support, an arc consistent sub-domain has been built.

Note that LAC7 offers the usual incrementality of AC
algorithms and more: if the status of an unchecked value
is desired, it suffices to activate the value and to start again

218 Constraint Satisfaction

Function LAC7(): boolean
SUPPORTSEEKINGLIST t RI
for all i E V do

I

CARDACTIVE[~]= 0
FOR& a E Di DO

1

ACTM+, a] tfalse
UNCHECKED[~, a] t true

for all (i,j) E EDGES(G) do

1

for all a E D; do

1
SUPPORTED[(~,~),~] + 0
INF!~UPPORT[(~, j), a] t 1

I for all i E V do
L if EmptyDomain then returnfalse

peat
Pick ((i,j),a) from SU~PORTSEEKINGLIST
if ACTIW[i,a] then

if SeekTrivia/Support((i, j), a, b) then
L Put a in SUPPORTED[(~,~),~]

else
b t INF&PPORT[(~,~),~]
if SeekNextSupport((i, j), a, b) then

if not ACTIVE[~, b] then ActivateValue(j, b)
Put a in SUPPORTED[(~,~), b]
INFSWPORT[(~,~), a] t b

else

.I

remove(a, 0;)
ACTIW+, a] tfalse
CARDACTIVE[~] t CARDACTIVE[~] - 1
if EmptyDomain then returnfalse
for all j E NEIGHBORS(~) do

1

for b E SUPPORTED[(~,~),~] do

1
Remove b from S~PPORTED[(~,~),~]
Put ((j,i), b) in SUPPORTSEEKINGLIST

= 0

with LA& from line 2; if a value a is deleted from D,, either
it is unchecked and nothing has to be done or it is active and
it suffices to propagate the deletion as in the algorithm (after
line 4) and to start again with LA& from line 2. Generally,
if a constraint is added, all the active values of the variables
linked by this constraint have to seek a support along it and
it is then sufficient to start again with LA& from line 2.

After the execution of LAC7,
using the usual order on
integers, we obtain the
arc consistent sub-domain
(Ch 3}, {2,3), {1,3}). The
sub-domain ((4}, {4}, {2}),
a solution, would have been

Unchecked
produced if the inverse order

------------- had been used.

Correctness: We denote Do = (0: , . . . , DE) the initial
domain of the CSP, D = (01, . . . , Dn) the domain defined
by unchecked or active values, Da = (DF, . . . , Dg) for

Function SeekTrivialSupport(in (i, j): edge, in a: value,
out b: value) : boolean
while SWPORTED[(~, j), a] # 0 do

1

b t an element of SWPORTED[(i, j) , a]
if ACTIVE(~, b) then return true
else Remove b from SUPPORTED[(i, j) , a]

returnfalse

Function SeekNextSupport(in (i, j): edge, in a: value, in
out b: value) : boolean
while b 5 Zast(Dj) do

1

if (ACTIVE(~, b) or UNCHECKED(~, b)) then
if INFSUPPORT[(~, i), b] 5 a then
L if Rij (a, b) then return true

b t nezt(b, Dj)
else
Lb+-b+l

returnfalse

Procedure ActivateValue(in i: variable, in a: value)
ACTIVE[~, a] t true
CARDACTIVE[~] t CARDACTIVE[~] + 1
UNCHECKED[~, a] tfalse
for uZZ j E NEIGHBORS(~) do
L Put ((i, j) , a) in SUPPORTSEEKINGLIST

Function EmptyDomain(in i: variable) : boolean
if CARDACTIVE[~] = 0 then

if D; # w then
a t an element of D;
ActivateValue(i, a)
return false

else
L return true

else return false

active values only and DT for the maximum arc consistent
sub-domain of the CSP (if any). The proof relies on three
lemmas.

Lemma 1 When LACT returns true, Da # w + Da is
arc-consistent.

When a value is activated (see function ActivateValue),
a demand for support on all incident edges is posted in
SUPPORTSEEKINGLIST and when an active value is found
without support, it is removed from Di and made inac-
tive. So, every active value has either an active support or
a demand for support pending. When LACY returns true,
SUPPORTSEEKINGLIST is empty hence every active value
is supported. Now, we have to show that all supports are
active. This is obviously true after initialization and it re-
mains true afterwards, since (1) when a support is found
by SeekNextSupport, it is immediately activated on line 3
of function LA&, (2) SeekTrivialSupport seeks only ac-
tive values (test on line 1 of the function), (3) when a
value a is removed from Di and made inactive, the set
SUPPORTED[(~, j), a] is emptied (line 5 of function LAC7).

Lemma 2 If DT exists then DT 2 D.

As in AC7, the array INFSUPPORT is updated in such
a way that if Rij (a, b) holds for (i, a), (j, b) E D then
INFSUPPORT[(i, j) , a] 5 b. Hence, when a value is seeking
a support and no trivial active support is found, we can start
the search after INF~UPPORT[(~, j), a] without loosing any
support and we do not have to check Rij (a, b) for values
b such that INF~UPPORT[(~, i), b] > a. Therefore, a value
(i, a) is removed from Di when it has no support in Dj on
edge (i , j). So, if all previously removed values are out of
DT, then this value (i, a) is out of DT. Since, initially,
D C Do = D, by induction a value is removed only if it
is not in DT which proves the lemma.

Lemma 3 When LACT ends, Da = 0 e LAC7 returned
false.

After initialization and line 1, either D and therefore Da
is already empty and LA& returnsfalse or one value of each
variable has been activated i.e., Da # 0. Afterwards, when
an active value (i, a) is deleted, the function EmptyDomain
is called on line 4 of the function LA& and either Di is non
empty and one value is active (or made active) or Di and
therefore 04 is empty and LA& retumsfilse.

Now, at the end of LA&, if DT exists, it is included
in D (by Lemma 2), which is therefore not empty, thus
LA& return z?ue and Da is not empty (by Lemma 3) and
arc consistent (by Lemma 1). Conversely, if LA& returns
true, Da is non empty (by Lemma 3) and arc-consistent (by
Lemma 1) and therefore DT exists.

Further Analysis
First of all, the desirable properties of AC7 are simply inher-
ited by LAC7 because of the data-structures INFSUPPORT and
SUPPORTED, which are managed as in AC7. The worst-case
space complexity of LA& is also 0 (e&) because the new
data-structures CARDACTIVE and UNCHECKED are 0 (TX) and
(nd) respectively3. Thus the total space complexity remains
O(ed). In practice, it should be noticed that the SUPPORTED
lists are empty for non active values, which may actually
save a lot of space.

Very simply, one can observe that the time complexity
of LAC7 is bounded by the complexity of AC7 since the
algorithm will stop as soon as any arc consistent sub-domain
is built (or a wipe-out is detected). LA& can save a lot of
constraint checks on loose CSP. In the (unrealistic) case of
a CSP entirely composed of constraints such that Rij (a, b)
always holds, LACT will perform 0 (e) constraint checks (to
prove that no wipe-out can occur) while AC7 will perform
O(ed) tests (to enforce arc consistency).

Improving LA&: if the CSP has only one connected
component, the line 1 in LAC7 is useless and applying
EmptyDomain on any variable suffices. This avoids the
possibly useless activation of the first value of each variable.

Still trying to minimize the arbitrary activation of val-
ues, one can observe that LA& seeks support following the

3The sets SUPPORTED keep a reasonable O(ed) space complex-
ity as in AC7 because each edge-value pair ((i, j) , a) has at most
one current support (an element of SUPPORTED[(j, i) , b]).

Data Consistency 219

initial domain order. A better idea would be to look for sup-
port among already active values first and then only among
unchecked values. This is, however, not immediate because
the domain order is used in LA& to avoid redundancies in
constraint checks. We first need to remember the order of
insertion of values in the active domain. This is done us-
ing a bounded stack of size d, a pointer to a value being
pushed on the stack when this value is activated. Then,
in order to avoid redundant constraint checks, we need a
second INFSUPPORT-like data-structure, called INFSUPPOR-
TACT. The original array INFSUPPORT[(i, j) , a] contains, for
each ((i, j) , a) a value b such that no support for a on edge
(i, j) can be found strictly before b using the initial domain
order, while the array INFSUPPORTACT[(~, j) , U] contains,
for each ((i, j) , a) the position p in the stack such that no
support for a on edge (i, j) can be found before p.

Finally, the SeekNextSupport procedure is modified: a
support is first seeked in the corresponding bounded stack,
starting at INFSUPPORTACT[(i, j) , a] and then only among
unchecked values. The two INFSUPPORT data-structures are
also used to avoid necessarily failed constraint checks, as
in AC7. The algorithm defined is noted LAC: and has the
same worst-case space/time complexities as LA&.

Finding the smallest domain variable: For a given vari-
able v, we will respectively note]vIT, Iv]“, Iv]” the number
of values for v in the maximum arc consistent domain, the
number of active values for v and the number of unchecked
values for v. Obviously, after LA& has been executed, we
“““L”,/vL 5 lvlT 5 (1~1” + 1~1”).

= min,(]v]“), p = min,(]vlT) and y =
min,((v(” + 1~1~). A ccording to the previous inequality,
we have a 5 p < y. Therefore, if the condition o = y is
met, we know that a variable vi = urgmin, (IvIa + IV/~) is
a minimum domain size variable in the maximum arc con-
sistent domain without necessarily computing the whole
maximum arc consistent domain. Otherwise, we can sim-
ply activate one unchecked value in all variables w’such that
MU = a, launch LAC 7 again, and loop until the condition is
met. This will necessarily occur since when all unchecked
values are exhausted,]w]” = 1~1” + Iv]“. This defines the
MinLAC$ algorithm.

In the spirit of the A,* algorithms, one could also identify
a variable which is guaranteed to be close to the optimum by
using the new condition ((1 + ~)a 2 y). More generally,
instead of using domain size, we may consider any criteria f
that depends monotonically on the domain size, for example
the domain by degree ratio, usually much more efficient.

Experiments
We have compared LA&, LAC: and MinLACT with
AC7 (BFR95). For AC7, the problem considered is the
computation of the maximum arc consistent sub-domain.
The algorithm is modified as in (BFR95) to stop as soon
as a wipe-out occurs. For LACY and LACT the problem is
to compute any arc consistent sub-domain or to stop when
a wipe-out occurs. For MinLAC$, the problem is both to
compute an arc consistent sub-domain and to find an op-

Figure 1: The n queens problem (#cc)

timal variable or to stop when a wipe-out occurs. In the
sequel, two criteria will be considered: minimum domain
size (noted MinLAC:D) and minimum domain size by de-
gree ratio (noted MinLACt3). We report the number of
constraint checks or ccks. (testing a constraint Rij on a pair
of values, see function SeekNextSupport at line 2).

Academic problems: For the Zebra problem, the results
obtained using random orderings for variables and domains
are 899 ccks. for AC7, 408 ccks. for LAC7 and 452 ccks.
for LACF. The results for MinLAC;f D and MinLAC;’ 5 are
identical to the results of LAC;f (there exist variables with
cardinality one initially).

Fig. 1 presents the number of constraint checks performed
on the n queens problem. MinLAC$algorithms have the
same performances as AC7 since these problems are already
arc consistent with uniform domain size and degree.

Random problems have been generated as in (HF92),
with 40 variables, 15 values per domain and a number of
constraints equal to (n - 1) + 1 (n-1).(n-2)1. The constraint
tightness goes from 5% to 100% in 5% steps. Fifty problems
are solved at each point. The mean number of constraint
checks for all algorithms are given in Fig. 2. Since all LAC7
algorithms use the AC7 heuristics that consists in propa-
gating deletions immediately, it obtains the good results of
AC7 when wipe-out occurs. When no wipe-out occurs,
large savings are obtained by laziness.

Things are more subtle with MinLAC;fD: when the CSP
is already arc consistent, and since all domains have the
same size, MinLACt D carries out all the work done by
AC7 to locate a minimum domain variable. But as soon as
some values get deleted, the domain of some of the vari-
ables diminishes and MinLAC;’ D saves constraints checks
while still locating the minimum domain size variable. This
is visible just before the “wipe-out” threshold, which occurs
at a constraint tightness of 70%. MinLACF$ can imme-
diatly take advantage of the variability in the degree and
immediatly saves constraint checks.

LAC7 appears especially useful on under-constrained
CSP. MinLACg D and MinLACT 4 improve AC7 perfor-
mances, but in limited way because of random CSP artificial

220 Constraint Satisfaction

35000
AC? c

LAc7 +-

30000

25000

20000

15000

10000

5000

0
0 10 20 30 40 50 80 70 50 60 100

Figure 2: Random CSP (# ccks) Figure 3: Random CSP, domain variability (# ccks)

uniformity. We therefore tried the same algorithms on ran-
dom CSP with a domain size randomly chosen between
5 and 25, with uniform probability. Twenty problems are
solved at each point. The results are given in Fig. 3. There is
no clear “wipe-out” threshold as in the usual model: wipe-
outs appear for a tightness of 10% but it is only at a tightness
of 65% that all the CSP generated actually “wipe-out”. We
can see that MinLAC$D and MinLACF 9 save a lot of
constraint checks: an important variability in the criteria
minimized by MinLAC;f seems to help.

Real life problems: we conclude our test with some large
problems (up to 680 variables, several thousands of con-
straints and domain sizes above 70). Eleven radio-link
frequency assignment problems have been made avail-
able by the french “Centre d’Electronique de 1’Armement”
in (CEL94). It is not surprising that enormous savings are
achieved on problem 3 and 11 since these problems are
rather under-constrained. For problems with a large num-
ber of deleted values (problem 5) or immediate wipe-out
(problem 9), the performances of both algorithms are very
similar (the differences are due to different orderings in-
duced by different behaviors). Similar results are obtained
on other instances or by using MinLAC;f 4.

r Pb.3 I Pb5 IPb.91 Pb. 11 1
AC7 #ccks 412 594 696 221 6 833 638 932

del. 0 12046 499 0

The last set of test problems comes from molecular biol-
ogy (RNA secondary structure prediction). These problems
have a complete constraint graph with loose constraints.
Beyond the large savings in constraint checks, which were
quite predictable, another good point of LA&-style algo-
rithms lies in their low memory consumption when few
values are checked. The results of LAC$ and MinLAC$
algorithms are the same as LAC7 results.

tRNAthrTcoli HIV1 1 rnasepcoli
1 AC7 #ccks 146 276 650 839 1 Memory

del. 370
LAC;r#ccks 2 850

del. 0

497 exhausted
7 626 70 876

0 0

Further research: The next step is to incorporate LA&
or MinLAC7 algorithms inside a backtrack search algorithm,
such as the MAC algorithms (SF94; BFR95) and to eval-
uate the savings that can be achieved more precisely. For
MinLACT, all the usual services of AC7 are still offered:
domain wipe-out detection and best variable choice. For
LAC7, larger savings are achieved, but the loss of the do-
main size information could be costly.

eferences
C. Bessiere. Arc-consistency and arc-consistency again. Artijcial
Intelligence, 65 (1): 179- 190, 1994.
C. Bessiere, E.C. Freuder, and J.C. RCgin. Using inference to
reduce arc-consistency computation. In Proc. of the Z4th ZKAZ,
Montreal, Canada, August 1995.
CELAR. RLFAP benchmarks. URL ftp://ftp.cs.city.ac.uk/
pub/constraints/csp-benchmarks/celar, 1994.
M. Dent and R. Mercer. Minimal Forward Checking. In Proc. of
the 6th IEEE International Conference on Tools with Artijcial
Intelligence (TAZ94), pages 432-438, New Orleans, LA, 1994.
P. Hubbe and E. Freuder. An Efficient Cross-Product Represen-
tation of the Constraint Satisfaction Problem Search Space. In
Proc. of AAAZ-92, pages 421-427, San Jose, CA, 1992.
A. Mackworth. Consistency in networks of relations. Artijcial
Intelligence, 8(1):99-l 18, 1977.
R. Mohr and T. Henderson. Arc and path consistency revisited.
ArtiJicial Intelligence, 28(2):225-233, 1986.
B. A. Nadel. Constraint satisfaction algorithms. Comput. Intell.,
5(4): 188-224, November 1989.
D. Sabin and G. Freuder. Contradicting conventional wisdom
in constraint satisfaction. In Proc. of ECAZ-94, pages 125-129,
Amsterdam, 1994.
P. van Hentenryck, Y. Deville, and C. Teng. A generic arc-
consistency algorithm and its specializations. Artijcial Zntelli-
gence, 57:291-321, 1992.
M. Zweben and M. Eskey. Constraint Satisfaction with Delayed
Evaluation. In Proc. ofNCAZ-89, pages 875-880, Detroit, 1989.

Data Consistency 221

