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Abstract 

Arc consistency filtering is widely used in the framework of 
binary constraint satisfaction problems: with a low complex- 
ity, inconsistency may be detected,and domains are filtered. 
In this paper, we show that when detecting inconsistency is 
the objective, a systematic domain filtering is useless and a 
lazy approach is more adequate. Whereas usual arc consis- 
tency algorithms produce the maximum arc consistent sub- 
domain, when it exists, we propose a method, called LACY, 
which only looks for any arc consistent sub-domain. 

solution. When considering wipe-out detection only, the 
computation of the maximum arc consistent sub-domain is 
useless and one arc consistent sub-domain is sufficient since 
it proves the absence of wipe-out. 

In some cases, wipe-out detection alone is not enough: 
backtrack tree-search algorithms such as ReaZZy FUZZ Look- 
Ahead or MAC also use domain sizes as a heuristic to choose 
the next variable to instantiate. Lazy arc consistency can 
then be extended to provide the additional service of locating 
one variable with a minimum domain size in the maximum 

The algorithm is then extended to provide the additional 
service of locating one variable with a minimum domain car- 
dinality in the maximum arc consistent sub-domain, without 
necessarily computing all domain sizes. 
Finally, we compare traditional AC enforcing and lazy AC 
enforcing using several benchmark problems, both randomly 
generated CSP and real life problems. 

arc consistent domain, without exhaustive filtering. 
After a short introduction to constraint satisfaction prob- 

lems and arc consistency, lazy arc consistency filtering is 
introduced and the corresponding algorithm, called LACT, 
is described. We prove its correctness and study its space 
and time complexity. We then extend the algorithm in order 
to locate a variable with a minimum domain size and we 

The Constraint Satisfaction Problem (CSP) framework 
is increasingly used to represent and solve numerous OR 
and AI problems. When constraints are binary, arc consis- 
tency filtering is one of the most prominent filtering tech- 
niques, applied either before any search, or incrementally 
during backtrack search: (1) it has a limited space and 
time worst-case complexity, (2) if a domain becomes empty 
while filtering, the inconsistency of the problem is proven, 
(3) otherwise, variable domains are filtered and the search 
for a solution can start on a reduced space. 

On some problems, systematic domain filtering may be- 
come unproductive and costly. This observation has already 
been made about forward-checking in (ZE89) and largely 
clarified in (DM94): the only possible cause for backtrack 
being a wipe-out, it suffices to prove that at least one value 
remains in each filtered domain. Obviously the worst-case 
complexity is the same as for usual forward-checking and 
the average-case behavior is far better, especially when the 
domains are large. 

This paper is devoted to a similar approach applied to 
arc consistency filtering. Traditional AC filtering try to 
produce, when it exists, the maximum arc consistent sub- 
domain. If this maximum arc consistent sub-domain does 
not exist (a domain wipe-out occurred), inconsistency is 
proven. If it exists, it can be used as a basis for a fur- 
ther search, since removed values cannot take part in any 

experiment and compare 
AC enforcing algorithms. 

these algorithms with traditional 

Arc consistency filtering 
A binary CSP is defined as follows: 

Definition 1 A binary CSP is a triple (V, D, R) where: 
a V is a sequence (1, . . . , i, . . . , n) of n variables; 
8 D is a sequence (01, . . . , Di, . . . , Dn) of domains, such 

that, Qi E V, Di is theJinite set ofpossible values for i; 
d is the size of the largest domain; 

o R is a sequence (. . . , Rij, . . .) of e binary relations (or 
constraints) such that VRij E R, Rij relates the two 
variables i and j and is defined by a subset of the Carte- 
sian product Di x Dj which spec$es the allowed pairs 
of values for variables i and j. 

As it is usual for AC enforcing algorithms, we associate 
to any binary CSP a symmetric directed graph G, with 
one vertex for each variable and two directed edges (i, j) 
and (j, i) for each constraint between variables i and j. 
Since relations are bidirectional (this is not a restriction), if 
the relation Rij is associated to the edge (i, j), a relation 
Rji can be associated to the inverse edge (j, i), such that 
Qa E Di,b E Dj, Rij(a,b) = Rji(b,a). We will use 
EDGES(G) to refer to the set of directed edges in G and 
NEIGHBORS(i) to refer to the Set of variables j such that 
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(i, j) E EDGES(G). In the remainder of the paper, i, j, . . . 
will be used to refer to variables, and a, b, . . . to refer to 
values. 

Definition 2 If D = (D1 , . . . , Dn) is a CSP domain, a sub- 
domain D’ is a sequence (0; , . . . , Oh), s.t. Qi, 0: c Di. 

Arc consistency (AC) is a local consistency property, 
which uses the concept of support and viability: 

Definition 3 Let D’ = (0; , . . . , 0;) be a sub-domain, i be 
a variable, a E Di be a value of i and (i, j) E EDGES(G); 
the value a is supported by Di along (i, j) iff there exists 
a value b E 03 s.t. Rij (a, b); b is called a support for a 
along (i, j). Obviously, a is also a support for b along the 
inverse edge (j, i). 

Definition 4 Let D’ = (0; , . . . , 0;) be a sub-domain, i be 
a variable and a E 0: be a value of i; the value a is viable 
with respect to D’ iff Qj E NEIGHBORS(~), a is supported 
by D$ along (i, j). 

Definition 5 A sub-domain D’ is arc consistent1 iflit is non 
empty (Qi E V, 0; # B), and all the values in D’ are viable 
with respect to D’. 

Property I The union of two arc consistent sub-domains is 
also arc consistent. Thus, if it exists, there is one maximum 
arc consistent sub-domain (w.r t. the partial order induced 
by the inclusion relation). This maximum sub-domain is the 
union of all arc consistent sub-domains. 

Property 2 If a CSP is consistent, there exists a maximum 
arc consistent sub-domain and any value which takes part 
in a solution belongs to it. 

Arc consistency filtering produces the maximum arc consis- 
tent sub-domain (if it exists) by deleting all the values which 
are not viable with respect to the current domain D. It may 
either detect inconsistency, using the tist part of property 2 
or else reduce the search space, using the second part of 
property 2. 

Filtering a CSP by arc consistency can be achieved, ei- 
ther before any search, or incrementally during a back- 
track search (Nad89; SF94). Many algorithms have been 
proposed to enforce arc consistency: first AC3 (Mac77), 
then AC4 (MH86) with optimal worst-case time complex- 
ity O(ed2), AC5 (vHDT92), AC6 (Bes94), which brings a 
lower worst-case space complexity (O(ed)). More recently, 
AC6++/AC7 (BFR95) has been introduced: it uses the fact 
that constraints are bidirectional to improve AC6. Finally, 
the AC-Inference schema (BFR95) tries to exploit specific 
constraint properties in order to save constraint checks, but 
it has a space complexity O(ed2). We have chosen the 
algorithm AC7 as the basis of our work. 

Lazy Arc Consistency Filtering 
Lazy AC filtering relies on the fact that (1) an arc consistent 
sub-domain is a sub-domain of the maximum arc consistent 
sub-domain and (2) a consistent CSP has necessarily an arc 

consistent sub-domain. The occurrence of a wipe-out is 
therefore equivalent to the inexistence of an arc consistent 
sub-domain. Consider the CSP whose so-called micro- 
structure (or consistency graph) is given below. For each 
of the three constraints, each compatible pair of values is 
represented by an edge. The three domains are respectively 
D1 = D2 = D3 = {1,2,3,4}. 
---. , The CSP has a single solu- 

j tion: (4,4,2). Its maximum 
1 arc consistent sub-domain is 
i ({2,3,4), {2,3,4), {L% 3)). 
I It has two arc consistent sub- 

. domains ({2,3}, {2,3}, {1,3}) 
and ({4}, {4}, (2)). Proving 
that any of them is arc consis- 

-------- -----’ tent would also prove that no 
- wipe-out can occur when AC is enforced. 

The LA& algorithm defined in this paper is derived from 
the algorithm AC7 proposed in (BFR95). Therefore, it 
conserves all the desirable properties of AC7 and exploits 
the general property of bidirectionality verified by any con- 
straint (Qa E Di, b E Dj, Rij(a, b) = Rji(b, a)). 

Data structures: the data structures of LA& contain all 
the data structures of AC7 plus some new data-structures 
for laziness (but LA& may nevertheless need much less 
memory than AC7 because of its laziness). 

Since LA& tries to build an arc consistent sub-domain 
D’ c D, it needs to remember, for each variable i, which 
values from the initial domain Di are actually in the sub- 
domain 0: and which values remain available for a possible 
insertion in 0:. Two arrays of booleans ACTIVE[i, a] and 
UNCHECKED[i, a] are used with this purpose. For each vari- 
able i, an integer CARDACTIVE[i] contains the number of 
values of its domain which are currently active. 

As in AC7, sets of supported values SUPPORTED[(i, j), a] 
are used to remember the values b for which a is a current 
support on edge (i, j)2 (not necessarily the smallest support, 
unlike AC6). The array lNI%UPPORT[(i, j), a] contains, for 
each ((id, > a a value b such that no support for a on edge 
(i, j) can be found strictly before b. Precisely, the data 
structures of LA& are composed of: 

8 an array of booleans, ACTIVE[i, a], keeps track of the val- 
ues that are currently in 0:. In this array, each initial do- 
main Di is considered as the integer range 1 . . .I Di I. The 
following constant time procedures are used to handle Di 
lists: Zast(Di) returns the greatest value in Di if Di # 0 
or 0 else. If a E Di - (Zast(Di)j, nezt(a, Di) returns 
the smallest value in Di-greater than a. &novk(a, Di) 
removes value a from Di. 
an array of integers, CARDACTIVE[i] holds the number of 
active values for each variable; 

@ an array of booleans, UNCHECKED[i , a], keeps track of the 
values which have not been introduced in 0:. No support 
is seeked for unchecked values and they cannot support 
active values. ACTIVE[i, a] and UNCHECKED[i, a] can not 

2Traditionally, these sets are denoted by Sij,. ‘We consider here that arc consistency is strong 2-consistency. 
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be simultaneously true. After execution, an active value 
is provenly viable, an unchecked value has an unknown 
status and a value which is neither active nor unchecked 
is deleted. 

e an array of lists, SUPPORTED[@,~), u], contains all the 
active values b from Dj which are currently considered 
as supported by (i, a) on edge (j, i), j E NEIGHBORS(~). 
As in AC7, the current support of a value is not necessarily 
the smallest. 

e an array of integers, INFSUPPORT[(~, j), a] contains 
a value from Dj such that every value in Dj 
compatible with (i, a) is greater than or equal to 
INF~UPPORT[(~, j), a]. 

o a single list, SUPPORTSEEKINGLIST is used to store de- 
mands for support. It contains edge-value pairs such as 
((i,j),a) (value a seeking support on edge (i,j),j E 
NEIGHBORS@)). It replaces the WaitingList of AC6 and 
the two lists of AC7. 

The SUPPORTED[(~, j), U] and INF~UPPORT[(~, j), a] of 
AC7 are used by LAC, to guarantee that AC7 properties 
are still verified by LAC7 (see (BFR95)). 

Algorithm: the algorithm is embodied in the function 
LAC7. All the data-structures are denoted by global vari- 
ables, with unlimited scope. Initially, all the values are 
unchecked and inactive. There are two main operations: 

1. When an unchecked value (i, a) is activated, a sup- 
port has to be found for (i, a) on all the edges 
(i, j), j E NEIGHBORS(~). Therefore, all corresponding 
pairs ((i, j), a) are added in the SUPPORTSEEKINGLIST 
(see function ActivateValue on next page); 

2. In order to find a support on edge (i, j) for value (i, a), 
LAC7 first looks in SUPPORTED[ (i, j), u] to check if (i, a) 
already supports an active value (j, b) (see function Seek- 
Triviahpport). If so, (j, b) also supports (i, a) and (i, a) 
is inserted in SlJPPORTED[(j, i), b] (Def. 3). 
Else, a support is sought among active or unchecked val- 
ues in Dj, starting from the current INFSUPPORT[ (i, j) , a] 
(see function SeekNextSupport). If a support b is found, 
(i, a) is inserted in SUPPORTED[( j, i), b] and the inte- 
ger INF~UPPORT[(~, j), a] is updated. If the value b was 
unchecked, it is activated. 
If no support is found, the value is deleted and made in- 
active. If no active value remains in the domain, and if 
no unchecked value is available, wipe-out occurs. Else, 
an unchecked value is activated (see function Empty- 
Domain). Then, the pairs ((j, i), b) such that (j, b) was 
supported by (i, a) are introduced in the SUPPORTSEEK- 
INGLIST. 

The algorithm runs until either a wipe-out occurs (if 
EmptyDomain returns true on line 4) or the SUPPORTSEEK- 
INGLIST becomes empty: all the active values have an active 
support, an arc consistent sub-domain has been built. 

Note that LAC7 offers the usual incrementality of AC 
algorithms and more: if the status of an unchecked value 
is desired, it suffices to activate the value and to start again 
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Function LAC7(): boolean 
SUPPORTSEEKINGLIST t RI 
for all i E V do 

I 

CARDACTIVE[~]= 0 
FOR& a E Di DO 

1 

ACTM+, a] tfalse 
UNCHECKED[~, a] t true 

for all (i,j) E EDGES(G) do 

1 

for all a E D; do 

1 
SUPPORTED[(~,~),~] + 0 
INF!~UPPORT[(~, j), a] t 1 

I for all i E V do 
L if EmptyDomain then returnfalse 

peat 
Pick ((i,j),a) from SU~PORTSEEKINGLIST 
if ACTIW[i,a] then 

if SeekTrivia/Support((i, j), a, b) then 
L Put a in SUPPORTED[(~,~),~] 

else 
b t INF&PPORT[(~,~),~] 
if SeekNextSupport((i, j), a, b) then 

if not ACTIVE[~, b] then ActivateValue(j, b) 
Put a in SUPPORTED[(~,~), b] 
INFSWPORT[(~,~), a] t b 

else 

.I 

remove(a, 0;) 
ACTIW+, a] tfalse 
CARDACTIVE[~] t CARDACTIVE[~] - 1 
if EmptyDomain then returnfalse 
for all j E NEIGHBORS(~) do 

1 

for b E SUPPORTED[(~,~),~] do 

1 
Remove b from S~PPORTED[(~,~),~] 
Put ((j,i), b) in SUPPORTSEEKINGLIST 

= 0 

with LA& from line 2; if a value a is deleted from D,, either 
it is unchecked and nothing has to be done or it is active and 
it suffices to propagate the deletion as in the algorithm (after 
line 4) and to start again with LA& from line 2. Generally, 
if a constraint is added, all the active values of the variables 
linked by this constraint have to seek a support along it and 
it is then sufficient to start again with LA& from line 2. 

After the execution of LAC7, 
using the usual order on 
integers, we obtain the 
arc consistent sub-domain 
(Ch 3}, {2,3), {1,3}). The 
sub-domain ((4}, {4}, {2}), 
a solution, would have been 

Unchecked 
produced if the inverse order 

------------- had been used. 

Correctness: We denote Do = (0: , . . . , DE) the initial 
domain of the CSP, D = (01, . . . , Dn) the domain defined 
by unchecked or active values, Da = (DF, . . . , Dg) for 



Function SeekTrivialSupport(in (i, j): edge, in a: value, 
out b: value) : boolean 
while SWPORTED[(~, j), a] # 0 do 

1 

b t an element of SWPORTED[ (i, j) , a] 
if ACTIVE(~, b) then return true 
else Remove b from SUPPORTED[ (i, j) , a] 

returnfalse 

Function SeekNextSupport(in (i, j): edge, in a: value, in 
out b: value) : boolean 
while b 5 Zast(Dj) do 

1 

if (ACTIVE(~, b) or UNCHECKED(~, b)) then 
if INFSUPPORT[(~, i), b] 5 a then 
L if Rij (a, b) then return true 

b t nezt(b, Dj) 
else 
Lb+-b+l 

returnfalse 

Procedure ActivateValue(in i: variable, in a: value) 
ACTIVE[~, a] t true 
CARDACTIVE[~] t CARDACTIVE[~] + 1 
UNCHECKED[~, a] tfalse 
for uZZ j E NEIGHBORS(~) do 
L Put ((i, j) , a) in SUPPORTSEEKINGLIST 

Function EmptyDomain(in i: variable) : boolean 
if CARDACTIVE[~] = 0 then 

if D; # w then 
a t an element of D; 
ActivateValue(i, a) 
return false 

else 
L return true 

else return false 

active values only and DT for the maximum arc consistent 
sub-domain of the CSP (if any). The proof relies on three 
lemmas. 

Lemma 1 When LACT returns true, Da # w + Da is 
arc-consistent. 

When a value is activated (see function ActivateValue), 
a demand for support on all incident edges is posted in 
SUPPORTSEEKINGLIST and when an active value is found 
without support, it is removed from Di and made inac- 
tive. So, every active value has either an active support or 
a demand for support pending. When LACY returns true, 
SUPPORTSEEKINGLIST is empty hence every active value 
is supported. Now, we have to show that all supports are 
active. This is obviously true after initialization and it re- 
mains true afterwards, since (1) when a support is found 
by SeekNextSupport, it is immediately activated on line 3 
of function LA&, (2) SeekTrivialSupport seeks only ac- 
tive values (test on line 1 of the function), (3) when a 
value a is removed from Di and made inactive, the set 
SUPPORTED[(~, j), a] is emptied (line 5 of function LAC7). 

Lemma 2 If DT exists then DT 2 D. 

As in AC7, the array INFSUPPORT is updated in such 
a way that if Rij (a, b) holds for (i, a), (j, b) E D then 
INFSUPPORT[ (i, j) , a] 5 b. Hence, when a value is seeking 
a support and no trivial active support is found, we can start 
the search after INF~UPPORT[(~, j), a] without loosing any 
support and we do not have to check Rij (a, b) for values 
b such that INF~UPPORT[(~, i), b] > a. Therefore, a value 
(i, a) is removed from Di when it has no support in Dj on 
edge (i , j). So, if all previously removed values are out of 
DT, then this value (i, a) is out of DT. Since, initially, 
D C Do = D, by induction a value is removed only if it 
is not in DT which proves the lemma. 

Lemma 3 When LACT ends, Da = 0 e LAC7 returned 
false. 

After initialization and line 1, either D and therefore Da 
is already empty and LA& returnsfalse or one value of each 
variable has been activated i.e., Da # 0. Afterwards, when 
an active value (i, a) is deleted, the function EmptyDomain 
is called on line 4 of the function LA& and either Di is non 
empty and one value is active (or made active) or Di and 
therefore 04 is empty and LA& retumsfilse. 

Now, at the end of LA&, if DT exists, it is included 
in D (by Lemma 2), which is therefore not empty, thus 
LA& return z?ue and Da is not empty (by Lemma 3) and 
arc consistent (by Lemma 1). Conversely, if LA& returns 
true, Da is non empty (by Lemma 3) and arc-consistent (by 
Lemma 1) and therefore DT exists. 

Further Analysis 
First of all, the desirable properties of AC7 are simply inher- 
ited by LAC7 because of the data-structures INFSUPPORT and 
SUPPORTED, which are managed as in AC7. The worst-case 
space complexity of LA& is also 0 (e&) because the new 
data-structures CARDACTIVE and UNCHECKED are 0 (TX) and 
(nd) respectively3. Thus the total space complexity remains 
O(ed). In practice, it should be noticed that the SUPPORTED 
lists are empty for non active values, which may actually 
save a lot of space. 

Very simply, one can observe that the time complexity 
of LAC7 is bounded by the complexity of AC7 since the 
algorithm will stop as soon as any arc consistent sub-domain 
is built (or a wipe-out is detected). LA& can save a lot of 
constraint checks on loose CSP. In the (unrealistic) case of 
a CSP entirely composed of constraints such that Rij (a, b) 
always holds, LACT will perform 0 (e) constraint checks (to 
prove that no wipe-out can occur) while AC7 will perform 
O(ed) tests (to enforce arc consistency). 

Improving LA&: if the CSP has only one connected 
component, the line 1 in LAC7 is useless and applying 
EmptyDomain on any variable suffices. This avoids the 
possibly useless activation of the first value of each variable. 

Still trying to minimize the arbitrary activation of val- 
ues, one can observe that LA& seeks support following the 

3The sets SUPPORTED keep a reasonable O( ed) space complex- 
ity as in AC7 because each edge-value pair ((i, j) , a) has at most 
one current support (an element of SUPPORTED[ (j, i) , b]). 
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initial domain order. A better idea would be to look for sup- 
port among already active values first and then only among 
unchecked values. This is, however, not immediate because 
the domain order is used in LA& to avoid redundancies in 
constraint checks. We first need to remember the order of 
insertion of values in the active domain. This is done us- 
ing a bounded stack of size d, a pointer to a value being 
pushed on the stack when this value is activated. Then, 
in order to avoid redundant constraint checks, we need a 
second INFSUPPORT-like data-structure, called INFSUPPOR- 
TACT. The original array INFSUPPORT[ (i, j) , a] contains, for 
each ((i, j) , a) a value b such that no support for a on edge 
(i, j) can be found strictly before b using the initial domain 
order, while the array INFSUPPORTACT[(~, j) , U] contains, 
for each ((i, j) , a) the position p in the stack such that no 
support for a on edge (i, j) can be found before p. 

Finally, the SeekNextSupport procedure is modified: a 
support is first seeked in the corresponding bounded stack, 
starting at INFSUPPORTACT[ (i, j) , a] and then only among 
unchecked values. The two INFSUPPORT data-structures are 
also used to avoid necessarily failed constraint checks, as 
in AC7. The algorithm defined is noted LAC: and has the 
same worst-case space/time complexities as LA&. 

Finding the smallest domain variable: For a given vari- 
able v, we will respectively note ]vIT, Iv]“, Iv]” the number 
of values for v in the maximum arc consistent domain, the 
number of active values for v and the number of unchecked 
values for v. Obviously, after LA& has been executed, we 
“““L”,/vL 5 lvlT 5 (1~1” + 1~1”). 

= min,(]v]“), p = min,(]vlT) and y = 
min,((v(” + 1~1~). A ccording to the previous inequality, 
we have a 5 p < y. Therefore, if the condition o = y is 
met, we know that a variable vi = urgmin, ( IvIa + IV/~) is 
a minimum domain size variable in the maximum arc con- 
sistent domain without necessarily computing the whole 
maximum arc consistent domain. Otherwise, we can sim- 
ply activate one unchecked value in all variables w’such that 
MU = a, launch LAC 7 again, and loop until the condition is 
met. This will necessarily occur since when all unchecked 
values are exhausted, ]w]” = 1~1” + Iv]“. This defines the 
MinLAC$ algorithm. 

In the spirit of the A,* algorithms, one could also identify 
a variable which is guaranteed to be close to the optimum by 
using the new condition (( 1 + ~)a 2 y). More generally, 
instead of using domain size, we may consider any criteria f 
that depends monotonically on the domain size, for example 
the domain by degree ratio, usually much more efficient. 

Experiments 
We have compared LA&, LAC: and MinLACT with 
AC7 (BFR95). For AC7, the problem considered is the 
computation of the maximum arc consistent sub-domain. 
The algorithm is modified as in (BFR95) to stop as soon 
as a wipe-out occurs. For LACY and LACT the problem is 
to compute any arc consistent sub-domain or to stop when 
a wipe-out occurs. For MinLAC$, the problem is both to 
compute an arc consistent sub-domain and to find an op- 

Figure 1: The n queens problem (#cc) 

timal variable or to stop when a wipe-out occurs. In the 
sequel, two criteria will be considered: minimum domain 
size (noted MinLAC:D) and minimum domain size by de- 
gree ratio (noted MinLACt3). We report the number of 
constraint checks or ccks. (testing a constraint Rij on a pair 
of values, see function SeekNextSupport at line 2). 

Academic problems: For the Zebra problem, the results 
obtained using random orderings for variables and domains 
are 899 ccks. for AC7, 408 ccks. for LAC7 and 452 ccks. 
for LACF. The results for MinLAC;f D and MinLAC;’ 5 are 
identical to the results of LAC;f ( there exist variables with 
cardinality one initially). 

Fig. 1 presents the number of constraint checks performed 
on the n queens problem. MinLAC$algorithms have the 
same performances as AC7 since these problems are already 
arc consistent with uniform domain size and degree. 

Random problems have been generated as in (HF92), 
with 40 variables, 15 values per domain and a number of 
constraints equal to (n - 1) + 1 (n-1).(n-2)1. The constraint 
tightness goes from 5% to 100% in 5% steps. Fifty problems 
are solved at each point. The mean number of constraint 
checks for all algorithms are given in Fig. 2. Since all LAC7 
algorithms use the AC7 heuristics that consists in propa- 
gating deletions immediately, it obtains the good results of 
AC7 when wipe-out occurs. When no wipe-out occurs, 
large savings are obtained by laziness. 

Things are more subtle with MinLAC;fD: when the CSP 
is already arc consistent, and since all domains have the 
same size, MinLACt D carries out all the work done by 
AC7 to locate a minimum domain variable. But as soon as 
some values get deleted, the domain of some of the vari- 
ables diminishes and MinLAC;’ D saves constraints checks 
while still locating the minimum domain size variable. This 
is visible just before the “wipe-out” threshold, which occurs 
at a constraint tightness of 70%. MinLACF$ can imme- 
diatly take advantage of the variability in the degree and 
immediatly saves constraint checks. 

LAC7 appears especially useful on under-constrained 
CSP. MinLACg D and MinLACT 4 improve AC7 perfor- 
mances, but in limited way because of random CSP artificial 

220 Constraint Satisfaction 



35000 
AC? c 

LAc7 +- 

30000 

25000 

20000 

15000 

10000 

5000 

0 
0 10 20 30 40 50 80 70 50 60 100 

Figure 2: Random CSP (# ccks) Figure 3: Random CSP, domain variability (# ccks) 

uniformity. We therefore tried the same algorithms on ran- 
dom CSP with a domain size randomly chosen between 
5 and 25, with uniform probability. Twenty problems are 
solved at each point. The results are given in Fig. 3. There is 
no clear “wipe-out” threshold as in the usual model: wipe- 
outs appear for a tightness of 10% but it is only at a tightness 
of 65% that all the CSP generated actually “wipe-out”. We 
can see that MinLAC$D and MinLACF 9 save a lot of 
constraint checks: an important variability in the criteria 
minimized by MinLAC;f seems to help. 

Real life problems: we conclude our test with some large 
problems (up to 680 variables, several thousands of con- 
straints and domain sizes above 70). Eleven radio-link 
frequency assignment problems have been made avail- 
able by the french “Centre d’Electronique de 1’Armement” 
in (CEL94). It is not surprising that enormous savings are 
achieved on problem 3 and 11 since these problems are 
rather under-constrained. For problems with a large num- 
ber of deleted values (problem 5) or immediate wipe-out 
(problem 9), the performances of both algorithms are very 
similar (the differences are due to different orderings in- 
duced by different behaviors). Similar results are obtained 
on other instances or by using MinLAC;f 4. 

r Pb.3 I Pb5 IPb.91 Pb. 11 1 
AC7 #ccks 412 594 696 221 6 833 638 932 

# del. 0 12046 499 0 

The last set of test problems comes from molecular biol- 
ogy (RNA secondary structure prediction). These problems 
have a complete constraint graph with loose constraints. 
Beyond the large savings in constraint checks, which were 
quite predictable, another good point of LA&-style algo- 
rithms lies in their low memory consumption when few 
values are checked. The results of LAC$ and MinLAC$ 
algorithms are the same as LAC7 results. 

tRNAthrTcoli HIV1 1 rnasepcoli 
1 AC7 #ccks 146 276 650 839 1 Memory 

# del. 370 
LAC;r#ccks 2 850 

# del. 0 

497 exhausted 
7 626 70 876 

0 0 

Further research: The next step is to incorporate LA& 
or MinLAC7 algorithms inside a backtrack search algorithm, 
such as the MAC algorithms (SF94; BFR95) and to eval- 
uate the savings that can be achieved more precisely. For 
MinLACT, all the usual services of AC7 are still offered: 
domain wipe-out detection and best variable choice. For 
LAC7, larger savings are achieved, but the loss of the do- 
main size information could be costly. 

eferences 
C. Bessiere. Arc-consistency and arc-consistency again. Artijcial 
Intelligence, 65 ( 1): 179- 190, 1994. 
C. Bessiere, E.C. Freuder, and J.C. RCgin. Using inference to 
reduce arc-consistency computation. In Proc. of the Z4th ZKAZ, 
Montreal, Canada, August 1995. 
CELAR. RLFAP benchmarks. URL ftp://ftp.cs.city.ac.uk/ 
pub/constraints/csp-benchmarks/celar, 1994. 
M. Dent and R. Mercer. Minimal Forward Checking. In Proc. of 
the 6th IEEE International Conference on Tools with Artijcial 
Intelligence (TAZ94), pages 432-438, New Orleans, LA, 1994. 
P. Hubbe and E. Freuder. An Efficient Cross-Product Represen- 
tation of the Constraint Satisfaction Problem Search Space. In 
Proc. of AAAZ-92, pages 421-427, San Jose, CA, 1992. 
A. Mackworth. Consistency in networks of relations. Artijcial 
Intelligence, 8(1):99-l 18, 1977. 
R. Mohr and T. Henderson. Arc and path consistency revisited. 
ArtiJicial Intelligence, 28(2):225-233, 1986. 
B. A. Nadel. Constraint satisfaction algorithms. Comput. Intell., 
5(4): 188-224, November 1989. 
D. Sabin and G. Freuder. Contradicting conventional wisdom 
in constraint satisfaction. In Proc. of ECAZ-94, pages 125-129, 
Amsterdam, 1994. 
P. van Hentenryck, Y. Deville, and C. Teng. A generic arc- 
consistency algorithm and its specializations. Artijcial Zntelli- 
gence, 57:291-321, 1992. 
M. Zweben and M. Eskey. Constraint Satisfaction with Delayed 
Evaluation. In Proc. ofNCAZ-89, pages 875-880, Detroit, 1989. 

Data Consistency 221 


