
Partition Search

Matthew IL. Ginsberg
CIRL

1269 University of Oregon
Eugene, OR 97403

ginsberg@cirl.uoregon.edu

Abstract

We introduce a new form of game search called parti-
tion search that incorporates dependency analysis, al-
lowing substantial reductions in the portion of the tree
that needs to be expanded. Both theoretical results
and experimental data are presented. For the game
of bridge, partition search provides approximately as
much of an improvement over existing methods as a-0
pruning provides over minimax.

Introduction
Computers are effective game players to the extent that
brute-force search can overcome innate stupidity; most
of their time spent searching is spent examining moves
that a human player would discard as obviously with-
out merit.

As an example, suppose that White has a forced win
in a particular chess position, perhaps beginning with
an attack on Black’s queen. A human analyzing the
position will see that if Black doesn’t respond to the
attack, he will lose his queen; the analysis considers
places to which the queen could move and appropriate
responses to each.

A machine considers responses to the queen moves
as well, of course. But it must also analyze in detail
every other Black move, carefully demonstrating that
each of these other moves can be refuted by capturing
the Black queen. A six-ply search will have to ana-
lyze every one of these moves five further ply, even if
the refutations are identical in all cases. Conventional
pruning techniques cannot help here; using a-P prun-
ing, for example, the entire “main line” (White’s win-
ning choices and all of Black’s losing responses) must
be analyzed even though there is a great deal of ap-
parent redundancy in this analysis.’

In other search problems, techniques based on the
ideas of dependency maintenance (Stallman & Suss-
man 1977) can potentially be used to overcome this

‘An informal solution to this is Adelson-Velskiy et.al.‘s
method of analogies (Adelson-Velskiy, Arlazarov, & Don-
skoy 1975). This approach appears to have been of little
use in practice because it is restricted to a specific class of
situations arising in chess games.

228 Constraint Satisfaction

sort of difficulty. As an example, consider chronological
backtracking applied to a map coloring problem. When
a dead end is reached and the search backs up, no in-
formation is cached and the effect is to eliminate only
the specific dead end that was encountered. Recording
information giving the reason for the failure can make
the search substantially more efficient.

In attempting to color a map with only three col-
ors, for example, thirty countries may have been col-
ored while the detected contradiction involves only five.
By recording the contradiction for those five countries,
dead ends that fail for the same reason can be avoided.

Dependency-based methods have been of limited use
in practice because of the overhead involved in con-
structing and using the collection of accumulated rea-
sons. There is substantial promise for overcoming this
difficulty in game search, however, since most algo-
rithms already include similar information in the form
of a transposition table.

A transposition table stores a single game position
and the backed up value that has been associated with
it. The name reflects the fact that many games “trans-
pose” in that identical positions can be reached by
swapping the order in which moves are made. The
transposition table eliminates the need to recompute
values for positions that have already been analyzed.

These collected observations lead naturally to the
idea that transposition tables should store not single
positions and their values, but sets of positions and
their values. Continuing the dependency-maintenance
analogy, a transposition table storing sets of positions
can prune the subsequent search far more efficiently
than a table that stores only singletons.

There are two reasons that this approach works. The
first, which we have already mentioned, is that most
game-playing programs already maintain transposition
tables, thereby incurring the bulk of the computational
expense involved in storing such tables in a more gen-
eral form. The second and more fundamental reason is
that when a game ends with one player the winner, the
reason for the victory is generally a local one. A chess
game can be thought of as ending when one side has
its king captured (a completely local phenomenon); a

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

-* y$ y+$ Gj-pf
Figure 1: A portion of the game tree for tic-tat-toe

checkers game, when one side runs out of pieces. Even
if an internal search node is evaluated before the game
ends, the reason for assigning it any specific value is
likely to be independent of some global features (e.g.,
is the Black pawn on a5 or a6?). Partition search ex-
ploits both the existence of transposition tables and
the locality of evaluation for realistic games.

This paper explains these ideas via an example and
then describes them formally. Experimental results for
the game of bridge are also presented.

An example

Our illustrative examples will be taken from the
game of tic-tat-toe. A portion of the game tree for
this game appears in Figure 1, where we are analyzing
a position that is a win for X. We show O’s four possi-
ble moves, and a winning response for X in each case.
Although X frequently wins by making a row across
the top of the diagram, a-@ pruning cannot reduce the
size of this tree because O’s losing options must all be
analyzed separately.

Consider now the position at the lower left in the
diagram, where X has won:

(1)

The reason that X has won is local. If we are retaining
a list of positions with known outcomes, the entry we
can make because of this position is:

(2)

where the ? means that it is irrelevant whether the
associated square is marked with an X, an 0, or un-
marked. This table entry corresponds not to a single
position, but to approximately 3” because the unas-
signed squares can contain X’s, O’s, or be blank. We
can reduce the game tree in Figure 1 to:

0

0 moves

0 x

\I/ I
xxx

xx0

? ? ?

OX

? ? ? 0 x

Continuing the analysis, it is clear that the position

is a win for X if X is on play.2 So is

X??

? ?
? ?X

and the tree can be reduced to:

XIX1

Finally, consider the position

(3)

where it is O’s turn as opposed to X’s. Since every one
of O’s moves leads to a position that is known to be a
win for X, we can conclude that the above position is
a win for X as well. The root node in the reduced tree
can therefore be replaced with the position of (4).

These positions capture the essence of the algorithm
we will propose: If player z can move to a position
that is a member of a set known to be a win for x, the
given position is a win as well. If every move is to a
position that is a loss, the original position is also.

2We assume that 0 has not already won the game here,
since X would not be “on play” if the game were over.

Game-Tree Search 229

Existing methods
In this section, we present a summary of existing meth-
ods for evaluating positions in game trees. There is
nothing new here; our aim is simply to develop a pre-
cise framework in which our new results can be pre-
sented.

Definition 1 A game is a quadruple (G,pl, s, ev),
where G is a finite set of legal positions, pr E G is
the initial position, s : G -+ 2G gives the successors of
a given position, and ev is an evaluation function

ev : G -+ {max,min} U [0, l]

Informally, p’ E s(p) means that position p’ can be
reached from p. The structures G, PI, s and ev are
required to satisfy the following conditions:

There is no sequence of positions po, . . . , p, with
n > 0, pi E s(pi_1) for each i and p, = PO. In
other words, there are no lcloops” that return to an
identical position.

ev(p) E [0, l] if and only if s(p) = 0. In other words,
ev assigns a numerical value to p if and only if the
game is over. Informally, ev(p) = max means that
the maximizer is to play and ev(p) = min means that
the minimizer is to play.

We use 2G to denote the power set of G, the set
of subsets of G. There are two further things to note
about this definition.

First, the requirement that the game have no “loops”
is consistent with all modern games. In chess, for ex-
ample, positions can repeat but there is a concealed
counter that draws the game if either a single position
repeats three times or a certain number of moves pass
without a capture or a pawn move. In fact, dealing
with the hidden counter is more natural in a parti-
tion search setting than a conventional one, since the
evaluation function is in general (although not always)
independent of the value of the counter.

Second, the range of ev includes the entire unit in-
terval [0, 11. The value 0 represents a win for the min-
imizer, and 1 a win for the maximizer. The interme-
diate values might correspond to intermediate results
(e.g., a draw) or, more importantly, allow us to deal
with internal search nodes that are being treated as
terminal and assigned approximate values because no
time remains for additional search.

The evaluation function ev can be used to assign
numerical values to the entire set G of positions:

Definition 2 Given a game (G,p1, s, ev), we intro-
duce a function ev, : G --+ [0,1] defined recursively by

{

dP> > if ev(p) E [O, 11;

ev&> = max,l Es(r) ev,(p’), if ev(p) = max;
minPIEs(p) ev,(p’), if ev(p) = min.

The value of (G, pi, s, ev) is defined to be ev,(pl) .

To evaluate a position in a game, we can use the
well-known minimax procedure:

Algorithm 3 (Minimax) For a game (G, pl, s, ev)
and a position p E G, to compute minimax(

if ev(p) E [0, l] return ev(p)
if ev(p) = max return max,, escp) minimax
if ev(p) = min return min,,Es(pJ minimax

There are two ways in which the above algorithm is
typically extended. The first involves the introduction
of transposition tables; we will assume that a new entry
is added to the transposition table T whenever one
is computed. (A modification to cache only selected
results is straightforward.) The second involves the
introduction of a-,0 pruning. Incorporating these ideas
gives us:

Algorithm 4 (Q-P pruning with transposition
tables) Given a game (G,pl, s, ev), a position p E G,
cutoffs [x, y] c_ [O, l] and a transposition table T con-
sisting of triples (p, [a, b], w) with p E G and a, b, v E

[O, 11, to compute @(P, [x, ~1):

if there is an entry (p, [x, y], z) in T return z
if ev(p) E [0, l] then uans = ev(p)
if ev(p) = max then

vans := 0
for each p’ E s(p) do

Vnew = %W, [mdGns, 4, Yl)
if v new 2 Y then

T := T U (P7 [z Y Y] 7 unew)
return W*ew

if vnew > vans then vans = vn,w
if ev(p) = min then

vans := 1
for each p’ E s(p) do

Vnew = aP(P’9 [2, mWh, XI)])
if vnew 5 x then

T :=Tu (P,[X,Yyl,%ew)

return Unew
if vnew < van, then van, = vnew

T := T U (P7 [X,Y],%ns)

return vans

Each entry in the transposition table consists of a
position p, the current cutoffs [x, y], and the computed
value v. We need to include the cutoff information be-
cause it is only for these cutoffs that the value returned
by Algorithm 4 is only guaranteed to be correct.

The upper cutoff y is the currently smallest value
assigned to a minimizing node; the minimizer can do at
least this well in that he can force a value of y or lower.
Similarly, x is the currently greatest value assigned to
a maximizing node.

Proposition 5 Suppose that w = &(p, [x, y/I) for each

entry (P, [x, Y],d in T. Then if ev,(p) E [x, y], the
value returned by Algorithm 4 is ev, (p).

230 Constraint Satisfaction

Partition search

We are now in a position to present our new ideas. We
begin by formalizing the idea of a position that can
reach a known winning position or one that can reach
only known losing ones.

Definition 6 Given a game (G,p1, s, ev) and a set of
positions S C G, we will say that the set of positions
that can reach S is the set of all p for which s(p) nS #
0. This set will be denoted Ro(S).

The set of positions constrained to reach S is the
set of all p for which s(p) C S, and is denoted Co(S).

In practice, of course, it may not be feasible to con-
struct the Ro and Co operators exactly; the data struc-
tures being used to describe a set S of situations may
not conveniently describe the set of all situations from
which S can be reached. Somewhat more specifically,
we may be analyzing a particular position p and know
that it is a win for the maximizer because the maxi-
mizer can move from p to the winning set S; in other
words, p is a win because it is in Ro (S). We would
like to record at this point the fact that the set Ro(S)
is a win for the maximizer, but may not be able to
construct or represent this set conveniently. We will
therefore assume that we have some computationally
effective way to approximate the Ro and Co functions.
We will also assume that when our evaluation function
returns a specific value, it provides us with information
about a set of positions that would evaluate similarly:

Definition 7 Let (G,p1, S, ev) be a game. Let f be
any function with range 2G, so that f selects a set of
positions based on its arguments. We will say that f
respects the evaluation function ev if whenever p,p’ E
F for any F in the range of f, ev(p) = ev(p’).

A partition system for the game is a triple (P, R, C)
of functions that respect ev such that:

P : G + 2G maps positions into sets of positions
such that for any position p, p E P(p).

R : G x 2G -+ 2G accepts as arguments a position p
and a set of positions S. If p E Ro(S), so that p can
reach S, then p E R(p, S) and R(p, S) & Ro(S).

C : G x 2G -+ 2G accepts as arguments a position
p and a set of positions S. If p E Co(S), so that
p is constrained to reach S, then p E C(p, S) and

C(P, s> G Co(S).

From a commonsense point of view, the function P
tells us which positions are sufficiently “like” p that
they evaluate to the same value. In tic-tat-toe, for
exa-mple, the position (1) where X has won with a row
across the top might be generalized by P to the set of
positions

as in (2).

xxx

? ? ? (5)
? ? ?

The functions R and C approximate Ro and Co.
Once again turning to our tic-tat-toe example, suppose
that we take S to be the set of positions appearing in
(5) and that p is given by

XX

00
0 x

so that S can be reached from p. R(p, S) might be

xx

? ?? (6)
? ??

as in (3), although we could also take R(p, S) = {p} or
R(p, S) to be

although this last union might be awkward to repre-
sent. Note that R and C are functions of p as well as
S; the set returned must include the given position p
but can otherwise be expected to vary as p does.

We will now modify Algorithm 4 so that the trans-
position table, instead of caching results for single posi-
tions, caches results for sets of positions. As discussed
in the introduction, this corresponds to the introduc-
tion of truth maintenance techniques into adversary
search. The modified algorithm appears in Figure 2
and returns a pair of values - the value for the given
position, and a set of positions that will take the same
value.

Theorem 8 Suppose that v = a,O(p, [x, y]) for every
(S, [x, y], w) in T and p E S. Then if ev,(p) E [IX, y],
the value returned by Algorithm 9 is eve(p) .

Zero-window search

The effectiveness of partition search depends crucially
on the size of the sets maintained in the transposition
table. If the sets are large, many positions will be
evaluated by lookup. If the sets are small, partition
search collapses to conventional a-0 pruning.

An examination of Algorithm 9 suggests that the
points in the algorithm at which the sets are reduced
the most are those marked with a dagger in the de-
scription, where an intersection is required because we
need to ensure both that the player can make a move
equivalent to his best one and that there are no other
options. The effectiveness of the method would be im-
proved if this possibility were removed,

To see how to do this, suppose for a moment that the
evaluation function always returned 0 or 1, as opposed
to intermediate values. Now if the maximizer is on
play and the value 21,~~ = 1, a prune will be generated
because there can be no better value found for the
maximizer. If all of the vnew are 0, then vans = 0
and we can avoid the troublesome intersection. The

Game-Tree Search 231

Algorithm 9 (Partition search) Given a game
(G,~~,s,ev) and (P, R,C) a partition system for it,
a position p E G, cutoffs [x, y] E [0, l] and a trans-
position table T consisting of triples (S, [a, b], v) with
S E G and a, b, v E [0, 11, to compute afl(p, [x, y]):

if there is an entry (S, [LC, y], x) with p E S return (x, S)
if ev(p) E [O, 13 then (Q&%-& = (&p),P(p))
if ev(p) = max then

vans :=
$11 := ;
for each p’ E s(p) do

(%w , Sew) = @(P’, [ma+ans, &Y])
if vnew 2 y then

a new estimate is needed. Most of the time is spent on
the last iteration or two, developing tight bounds on
the position being considered. There is an analog in
conventional a-0 pruning, where the bounds typically
get tight quickly and the bulk of the analysis deals with
a situation where the value of the original position is
known to lie in a fairly narrow range.

In zero-window search, a node always evaluates to 0
or 1, since either v > e or v 5 e. This allows a straight-
forward modification to Algorithm 9 that avoids the
troublesome cases mentioned earlier.

Experimental results for bridge

27 := T u (Slew, [x, Yl, %ew)

return (vnew , Sew)

if vnew > vans then (vans 7 Sam) = (vnew 7 snew >

S all *- *- Sal1 u Snew

if Van,cj = 0 then Sam = C(P, SalI>

else Sans = R(p, Sam) n C(P, Sail) t
if ev(p) = min then

Vans I=

SalI := A
for each p’ E s(p) do

(vnew 7 hew) = 4W, [XT min(van,, Y)])

if hew 5 x then

37 := 57 U (Snew, [xc, Y],%ew)

return (%ew 7 Sew)

Partition search was tested by analyzing 1000 ran-
domly generated bridge hands and comparing the num-
ber of nodes expanded using partition search and con-
ventional methods.

Bridge was used as the test domain because it is a
game for which partition search can be expected to be
useful. In order for this to happen, two criteria must
be met: First, the functions Ro and Co must support
a partition-like analysis: It must be the case that an
analysis of one situation will apply equally well to a
variety of similar ones. Second, it must be possible
to build approximating functions R and C that are
reasonably accurate representatives of Ro and Co.

if Vnew < vans then (Vans, Sam) = (vnew 7 Sew)

S all .- ‘- Sal1 U Sew

if Vans = 1 then Sam = C(P, Sail)

else Sans = R(P, Sam> n C(P, SalI> t
T := 57 U (Sam y [x7 Y] 7 vans)

return (?Jans , Sam)

Figure 2: The partition search algorithm

maximizer loses and there is no “best” move that we
have to worry about making.

In reality, the restriction to values of 0 or 1 is unre-
alistic. Some games, such as bridge, allow more than
two outcomes, while others cannot be analyzed to ter-
mination and need to rely on evaluation functions that
return approximate values for internal nodes. We can
deal with these situations using a technique known
as xero-window search (originally called scout search
(Pearl 1980)). To evaluate a specific position, one
first estimates the value to be e and then determines
whether the actual value is above or below e by treat-
ing any value Y > e as a win for the maximizer and any
value v 5 e as a win for the minimizer. The results of
this calculation can then be used to refine the guess,
and the process is repeated. If no initial estimate is
available, a binary search can be used to find the value
to within any desired tolerance.

Bridge satisfies both of these properties. Expert dis-
cussion of a particular hand often will refer to small
cards as X’S, indicating that it is indeed the case that
the exact ranks of these cards are irrelevant. Second,
it is possible to “back up” x’s from one position to its
predecessors. If, for example, one player plays a club
with no chance of having it impact the rest of the game,
and by doing so reaches a position in which subsequent
analysis shows him to have two small clubs, then he
clearly must have had three small clubs originally. Fi-
nally, the fact that cards are simply being replaced by
x’s means that it is possible to construct data struc-
tures for which the time per node expanded is virtually
unchanged from that using conventional methods.

Although the details of the approximation functions
and data structures are dependent on the rules of
bridge and a discussion of their implementation is out-
side the scope of this paper, let me include at least a
single example. Consider the following partial bridge
hand in which there are no trumps:

r(r-
v-
OAK

-4 *--
Zero-window search is effective because little time is v-

wasted on iterations where the estimate is wildly inac- o-
curate; there will typically be many lines showing that &-

232 Constraint Satisfaction

-1.57x0.76 - * :

lo5

Partition

lo3

PO

10 lo3 lo5 lo7
Conventional

Figure 3: Nodes expanded as a function of method

An analysis of this situation shows that in the main
line, the only cards that win tricks by virtue of their
ranks are the spade Ace, King and Queen. This sanc-
tions the replacement of the above figure by the fol-
lowing more general one:

-

X AQ
X -

-

- -

v-

o-

JE-

Because of the suitability of the domain, the results
we are about to describe are stronger than the results
that would be obtained by applying partition search to
other games. The results for bridge are striking, how-
ever, leading to performance improvements of an or-
der of magnitude or more on fairly small search spaces
(perhaps lo6 nodes). The hands we tested involved
between 12 and 48 cards and were analyzed to termi-
nation, so that the depth of the search varied from
12 to 48. The branching factor for minimax without
transposition tables appeared to be approximately 4.
The results appear in Figure 3.

Each point in the graph corresponds to a single
hand. The position of the point on the x-axis indicates
the number of nodes expanded using a-P pruning and
transposition tables, and the position on the y-axis the
number expanded using partition search. Both axes
are plotted logarithmically.

In both the partition and conventional cases, a bi-
nary zero-window search was used to determine the ex-
act value to be assigned to the hand, which the rules of
bridge constrain to range from 0 to $ times the number
of cards in play. Hands generated using a full deck of
52 cards were not considered because the conventional
method was in general incapable of solving them. The

program expands approximately 15K nodes/second on
a Spare 5 or PowerMac 6100. The transposition table
uses approximately 6 bytes/node.

The dotted line in the figure is y = x and corre-
sponds to the break-even point relative to the best cur-
rent methods. The solid line is the least-squares best fit
to the logarithmic data, and is given by y = 157x0.76.
This suggests that partition search is leading to an ef-
fective reduction in branching factor of b + b”*76. This
improvement, above and beyond that provided by a-
@ pruning, can be contrasted with a-P pruning itself,
which gives a reduction when compared to pure min-
imax of b + b o.75 if the moves are ordered randomly
(Pearl 1982) and b -+ b”.5 if the ordering is optimal.

Conclusion
Partition search brings dependency maintenance tech-
niques to bear on problems in adversary search. The
principal difficulty that has arisen in the application
of dependency techniques generally is that there is no
convenient way to store the conclusions drawn as the
search proceeds; this is frequently not an issue in ad-
versary search because transposition tables are con-
structed and maintained in any event.

Partition search does require that one find effective
computational representations for the set of game posi-
tions that can reach a particular position p, or the set of
positions from which one player is constrained to reach
a fixed set of positions S. If these computational rep-
resentations can be found, however, the method leads
to substantial reductions in the number of nodes ex-
panded when evaluating game trees.

Acknowledgement
This work has been supported by AFOSR under con-
tract 92-0693, by ARPA/Rome Labs under contracts
F30602-91-C-0036 and F30602-93-C-00031, and by the
NSF under grant number STI-9413532. I would like to
thank Murray Campbell, Jimi Crawford, Ari Jonsson,
Rich Korf, David McAllester, Bart Massey, Bart Sel-
man, and the members of CIRL for discussing these
ideas with me.

References
Adelson-Velskiy, G.; Arlazarov, V.; and Donskoy, M.
1975. Some methods of controlling the tree search in
chess programs. Artificial Intelligence 6:361-371.
Pearl, J. 1980. Asymptotic properties of minimax
trees and game-searching procedures. Artificial Intel-
ligence 14(2):113-138.

Pearl, J. 1982. A solution for the branching factor of
the alpha-beta pruning algorithm and its optimality.
Comm. ACM 25(8):559-564.

Stallman, R. M., and Sussman, G. J. 1977. Forward
reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis. Artificial
Intelligence 9:135-196.

Game-Tree Search 233

