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Abstract 

We introduce a new form of game search called parti- 
tion search that incorporates dependency analysis, al- 
lowing substantial reductions in the portion of the tree 
that needs to be expanded. Both theoretical results 
and experimental data are presented. For the game 
of bridge, partition search provides approximately as 
much of an improvement over existing methods as a-0 
pruning provides over minimax. 

Introduction 
Computers are effective game players to the extent that 
brute-force search can overcome innate stupidity; most 
of their time spent searching is spent examining moves 
that a human player would discard as obviously with- 
out merit. 

As an example, suppose that White has a forced win 
in a particular chess position, perhaps beginning with 
an attack on Black’s queen. A human analyzing the 
position will see that if Black doesn’t respond to the 
attack, he will lose his queen; the analysis considers 
places to which the queen could move and appropriate 
responses to each. 

A machine considers responses to the queen moves 
as well, of course. But it must also analyze in detail 
every other Black move, carefully demonstrating that 
each of these other moves can be refuted by capturing 
the Black queen. A six-ply search will have to ana- 
lyze every one of these moves five further ply, even if 
the refutations are identical in all cases. Conventional 
pruning techniques cannot help here; using a-P prun- 
ing, for example, the entire “main line” (White’s win- 
ning choices and all of Black’s losing responses) must 
be analyzed even though there is a great deal of ap- 
parent redundancy in this analysis.’ 

In other search problems, techniques based on the 
ideas of dependency maintenance (Stallman & Suss- 
man 1977) can potentially be used to overcome this 

‘An informal solution to this is Adelson-Velskiy et.al.‘s 
method of analogies (Adelson-Velskiy, Arlazarov, & Don- 
skoy 1975). This approach appears to have been of little 
use in practice because it is restricted to a specific class of 
situations arising in chess games. 
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sort of difficulty. As an example, consider chronological 
backtracking applied to a map coloring problem. When 
a dead end is reached and the search backs up, no in- 
formation is cached and the effect is to eliminate only 
the specific dead end that was encountered. Recording 
information giving the reason for the failure can make 
the search substantially more efficient. 

In attempting to color a map with only three col- 
ors, for example, thirty countries may have been col- 
ored while the detected contradiction involves only five. 
By recording the contradiction for those five countries, 
dead ends that fail for the same reason can be avoided. 

Dependency-based methods have been of limited use 
in practice because of the overhead involved in con- 
structing and using the collection of accumulated rea- 
sons. There is substantial promise for overcoming this 
difficulty in game search, however, since most algo- 
rithms already include similar information in the form 
of a transposition table. 

A transposition table stores a single game position 
and the backed up value that has been associated with 
it. The name reflects the fact that many games “trans- 
pose” in that identical positions can be reached by 
swapping the order in which moves are made. The 
transposition table eliminates the need to recompute 
values for positions that have already been analyzed. 

These collected observations lead naturally to the 
idea that transposition tables should store not single 
positions and their values, but sets of positions and 
their values. Continuing the dependency-maintenance 
analogy, a transposition table storing sets of positions 
can prune the subsequent search far more efficiently 
than a table that stores only singletons. 

There are two reasons that this approach works. The 
first, which we have already mentioned, is that most 
game-playing programs already maintain transposition 
tables, thereby incurring the bulk of the computational 
expense involved in storing such tables in a more gen- 
eral form. The second and more fundamental reason is 
that when a game ends with one player the winner, the 
reason for the victory is generally a local one. A chess 
game can be thought of as ending when one side has 
its king captured (a completely local phenomenon); a 
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-* y$ y+$ Gj-pf 
Figure 1: A portion of the game tree for tic-tat-toe 

checkers game, when one side runs out of pieces. Even 
if an internal search node is evaluated before the game 
ends, the reason for assigning it any specific value is 
likely to be independent of some global features (e.g., 
is the Black pawn on a5 or a6?). Partition search ex- 
ploits both the existence of transposition tables and 
the locality of evaluation for realistic games. 

This paper explains these ideas via an example and 
then describes them formally. Experimental results for 
the game of bridge are also presented. 

An example 

Our illustrative examples will be taken from the 
game of tic-tat-toe. A portion of the game tree for 
this game appears in Figure 1, where we are analyzing 
a position that is a win for X. We show O’s four possi- 
ble moves, and a winning response for X in each case. 
Although X frequently wins by making a row across 
the top of the diagram, a-@ pruning cannot reduce the 
size of this tree because O’s losing options must all be 
analyzed separately. 

Consider now the position at the lower left in the 
diagram, where X has won: 

(1) 

The reason that X has won is local. If we are retaining 
a list of positions with known outcomes, the entry we 
can make because of this position is: 

(2) 

where the ? means that it is irrelevant whether the 
associated square is marked with an X, an 0, or un- 
marked. This table entry corresponds not to a single 
position, but to approximately 3” because the unas- 
signed squares can contain X’s, O’s, or be blank. We 
can reduce the game tree in Figure 1 to: 

0 

# 
0 moves 

0 x 

\I/ I 
xxx 

# 
xx0 

? ? ? 

# 
OX 

? ? ? 0 x 

Continuing the analysis, it is clear that the position 

is a win for X if X is on play.2 So is 

X?? 

# 

? ? 
? ?X 

and the tree can be reduced to: 

XIX1 

Finally, consider the position 

(3) 

where it is O’s turn as opposed to X’s. Since every one 
of O’s moves leads to a position that is known to be a 
win for X, we can conclude that the above position is 
a win for X as well. The root node in the reduced tree 
can therefore be replaced with the position of (4). 

These positions capture the essence of the algorithm 
we will propose: If player z can move to a position 
that is a member of a set known to be a win for x, the 
given position is a win as well. If every move is to a 
position that is a loss, the original position is also. 

2We assume that 0 has not already won the game here, 
since X would not be “on play” if the game were over. 
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Existing methods 
In this section, we present a summary of existing meth- 
ods for evaluating positions in game trees. There is 
nothing new here; our aim is simply to develop a pre- 
cise framework in which our new results can be pre- 
sented. 

Definition 1 A game is a quadruple (G,pl, s, ev), 
where G is a finite set of legal positions, pr E G is 
the initial position, s : G -+ 2G gives the successors of 
a given position, and ev is an evaluation function 

ev : G -+ {max,min} U [0, l] 

Informally, p’ E s(p) means that position p’ can be 
reached from p. The structures G, PI, s and ev are 
required to satisfy the following conditions: 

There is no sequence of positions po, . . . , p, with 
n > 0, pi E s(pi_1) for each i and p, = PO. In 
other words, there are no lcloops” that return to an 
identical position. 

ev(p) E [0, l] if and only if s(p) = 0. In other words, 
ev assigns a numerical value to p if and only if the 
game is over. Informally, ev(p) = max means that 
the maximizer is to play and ev(p) = min means that 
the minimizer is to play. 

We use 2G to denote the power set of G, the set 
of subsets of G. There are two further things to note 
about this definition. 

First, the requirement that the game have no “loops” 
is consistent with all modern games. In chess, for ex- 
ample, positions can repeat but there is a concealed 
counter that draws the game if either a single position 
repeats three times or a certain number of moves pass 
without a capture or a pawn move. In fact, dealing 
with the hidden counter is more natural in a parti- 
tion search setting than a conventional one, since the 
evaluation function is in general (although not always) 
independent of the value of the counter. 

Second, the range of ev includes the entire unit in- 
terval [0, 11. The value 0 represents a win for the min- 
imizer, and 1 a win for the maximizer. The interme- 
diate values might correspond to intermediate results 
(e.g., a draw) or, more importantly, allow us to deal 
with internal search nodes that are being treated as 
terminal and assigned approximate values because no 
time remains for additional search. 

The evaluation function ev can be used to assign 
numerical values to the entire set G of positions: 

Definition 2 Given a game (G,p1, s, ev), we intro- 
duce a function ev, : G --+ [0,1] defined recursively by 

{ 

dP> > if ev(p) E [O, 11; 

ev&> = max,l Es(r) ev,(p’), if ev(p) = max; 
minPIEs(p) ev,(p’), if ev(p) = min. 

The value of (G, pi, s, ev) is defined to be ev,(pl) . 

To evaluate a position in a game, we can use the 
well-known minimax procedure: 

Algorithm 3 (Minimax) For a game (G, pl, s, ev) 
and a position p E G, to compute minimax( 

if ev(p) E [0, l] return ev(p) 
if ev(p) = max return max,, escp) minimax 
if ev(p) = min return min,,Es(pJ minimax 

There are two ways in which the above algorithm is 
typically extended. The first involves the introduction 
of transposition tables; we will assume that a new entry 
is added to the transposition table T whenever one 
is computed. (A modification to cache only selected 
results is straightforward.) The second involves the 
introduction of a-,0 pruning. Incorporating these ideas 
gives us: 

Algorithm 4 (Q-P pruning with transposition 
tables) Given a game (G,pl, s, ev), a position p E G, 
cutoffs [x, y] c_ [O, l] and a transposition table T con- 
sisting of triples (p, [a, b], w) with p E G and a, b, v E 

[O, 11, to compute @(P, [x, ~1): 

if there is an entry (p, [x, y], z) in T return z 
if ev(p) E [0, l] then uans = ev(p) 
if ev(p) = max then 

vans := 0 
for each p’ E s(p) do 

Vnew = %W, [mdGns, 4, Yl) 
if v new 2 Y then 

T := T U (P7 [z Y Y] 7 unew) 
return W*ew 

if vnew > vans then vans = vn,w 
if ev(p) = min then 

vans := 1 
for each p’ E s(p) do 

Vnew = aP(P’9 [ 2, mWh, XI)]) 
if vnew 5 x then 

T :=Tu (P,[X,Yyl,%ew) 

return Unew 
if vnew < van, then van, = vnew 

T := T U (P7 [X,Y],%ns) 

return vans 

Each entry in the transposition table consists of a 
position p, the current cutoffs [x, y], and the computed 
value v. We need to include the cutoff information be- 
cause it is only for these cutoffs that the value returned 
by Algorithm 4 is only guaranteed to be correct. 

The upper cutoff y is the currently smallest value 
assigned to a minimizing node; the minimizer can do at 
least this well in that he can force a value of y or lower. 
Similarly, x is the currently greatest value assigned to 
a maximizing node. 

Proposition 5 Suppose that w = &(p, [x, y/I) for each 

entry (P, [x, Y],d in T. Then if ev,(p) E [x, y], the 
value returned by Algorithm 4 is ev, (p). 
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Partition search 

We are now in a position to present our new ideas. We 
begin by formalizing the idea of a position that can 
reach a known winning position or one that can reach 
only known losing ones. 

Definition 6 Given a game (G,p1, s, ev) and a set of 
positions S C G, we will say that the set of positions 
that can reach S is the set of all p for which s(p) nS # 
0. This set will be denoted Ro(S). 

The set of positions constrained to reach S is the 
set of all p for which s(p) C S, and is denoted Co(S). 

In practice, of course, it may not be feasible to con- 
struct the Ro and Co operators exactly; the data struc- 
tures being used to describe a set S of situations may 
not conveniently describe the set of all situations from 
which S can be reached. Somewhat more specifically, 
we may be analyzing a particular position p and know 
that it is a win for the maximizer because the maxi- 
mizer can move from p to the winning set S; in other 
words, p is a win because it is in Ro (S). We would 
like to record at this point the fact that the set Ro(S) 
is a win for the maximizer, but may not be able to 
construct or represent this set conveniently. We will 
therefore assume that we have some computationally 
effective way to approximate the Ro and Co functions. 
We will also assume that when our evaluation function 
returns a specific value, it provides us with information 
about a set of positions that would evaluate similarly: 

Definition 7 Let (G,p1, S, ev) be a game. Let f be 
any function with range 2G, so that f selects a set of 
positions based on its arguments. We will say that f 
respects the evaluation function ev if whenever p,p’ E 
F for any F in the range of f, ev(p) = ev(p’). 

A partition system for the game is a triple (P, R, C) 
of functions that respect ev such that: 

P : G + 2G maps positions into sets of positions 
such that for any position p, p E P(p). 

R : G x 2G -+ 2G accepts as arguments a position p 
and a set of positions S. If p E Ro(S), so that p can 
reach S, then p E R(p, S) and R(p, S) & Ro(S). 

C : G x 2G -+ 2G accepts as arguments a position 
p and a set of positions S. If p E Co(S), so that 
p is constrained to reach S, then p E C(p, S) and 

C(P, s> G Co(S). 

From a commonsense point of view, the function P 
tells us which positions are sufficiently “like” p that 
they evaluate to the same value. In tic-tat-toe, for 
exa-mple, the position (1) where X has won with a row 
across the top might be generalized by P to the set of 
positions 

as in (2). 

xxx 

# 

? ? ? (5) 
? ? ? 

The functions R and C approximate Ro and Co. 
Once again turning to our tic-tat-toe example, suppose 
that we take S to be the set of positions appearing in 
(5) and that p is given by 

XX 

# 

00 
0 x 

so that S can be reached from p. R(p, S) might be 

xx 

# 

? ?? (6) 
? ?? 

as in (3), although we could also take R(p, S) = {p} or 
R(p, S) to be 

although this last union might be awkward to repre- 
sent. Note that R and C are functions of p as well as 
S; the set returned must include the given position p 
but can otherwise be expected to vary as p does. 

We will now modify Algorithm 4 so that the trans- 
position table, instead of caching results for single posi- 
tions, caches results for sets of positions. As discussed 
in the introduction, this corresponds to the introduc- 
tion of truth maintenance techniques into adversary 
search. The modified algorithm appears in Figure 2 
and returns a pair of values - the value for the given 
position, and a set of positions that will take the same 
value. 

Theorem 8 Suppose that v = a,O(p, [x, y]) for every 
(S, [x, y], w) in T and p E S. Then if ev,(p) E [IX, y], 
the value returned by Algorithm 9 is eve(p) . 

Zero-window search 

The effectiveness of partition search depends crucially 
on the size of the sets maintained in the transposition 
table. If the sets are large, many positions will be 
evaluated by lookup. If the sets are small, partition 
search collapses to conventional a-0 pruning. 

An examination of Algorithm 9 suggests that the 
points in the algorithm at which the sets are reduced 
the most are those marked with a dagger in the de- 
scription, where an intersection is required because we 
need to ensure both that the player can make a move 
equivalent to his best one and that there are no other 
options. The effectiveness of the method would be im- 
proved if this possibility were removed, 

To see how to do this, suppose for a moment that the 
evaluation function always returned 0 or 1, as opposed 
to intermediate values. Now if the maximizer is on 
play and the value 21,~~ = 1, a prune will be generated 
because there can be no better value found for the 
maximizer. If all of the vnew are 0, then vans = 0 
and we can avoid the troublesome intersection. The 

Game-Tree Search 231 



Algorithm 9 (Partition search) Given a game 
(G,~~,s,ev) and (P, R,C) a partition system for it, 
a position p E G, cutoffs [x, y] E [0, l] and a trans- 
position table T consisting of triples (S, [a, b], v) with 
S E G and a, b, v E [0, 11, to compute afl(p, [x, y]): 

if there is an entry (S, [LC, y], x) with p E S return (x, S) 
if ev(p) E [O, 13 then (Q&%-& = (&p),P(p)) 
if ev(p) = max then 

vans := 
$11 := ; 
for each p’ E s(p) do 

(%w , Sew) = @(P’, [ma+ans, &Y]) 
if vnew 2 y then 

a new estimate is needed. Most of the time is spent on 
the last iteration or two, developing tight bounds on 
the position being considered. There is an analog in 
conventional a-0 pruning, where the bounds typically 
get tight quickly and the bulk of the analysis deals with 
a situation where the value of the original position is 
known to lie in a fairly narrow range. 

In zero-window search, a node always evaluates to 0 
or 1, since either v > e or v 5 e. This allows a straight- 
forward modification to Algorithm 9 that avoids the 
troublesome cases mentioned earlier. 

Experimental results for bridge 

27 := T u (Slew, [x, Yl, %ew) 

return (vnew , Sew) 

if vnew > vans then (vans 7 Sam) = (vnew 7 snew > 

S all *- *- Sal1 u Snew 

if Van,cj = 0 then Sam = C(P, SalI> 

else Sans = R(p, Sam) n C(P, Sail) t 
if ev(p) = min then 

Vans I= 

SalI := A 
for each p’ E s(p) do 

(vnew 7 hew) = 4W, [XT min(van,, Y)]) 

if hew 5 x then 

37 := 57 U (Snew, [xc, Y],%ew) 

return (%ew 7 Sew) 

Partition search was tested by analyzing 1000 ran- 
domly generated bridge hands and comparing the num- 
ber of nodes expanded using partition search and con- 
ventional methods. 

Bridge was used as the test domain because it is a 
game for which partition search can be expected to be 
useful. In order for this to happen, two criteria must 
be met: First, the functions Ro and Co must support 
a partition-like analysis: It must be the case that an 
analysis of one situation will apply equally well to a 
variety of similar ones. Second, it must be possible 
to build approximating functions R and C that are 
reasonably accurate representatives of Ro and Co. 

if Vnew < vans then (Vans, Sam) = (vnew 7 Sew) 

S all .- ‘- Sal1 U Sew 

if Vans = 1 then Sam = C(P, Sail) 

else Sans = R(P, Sam> n C(P, SalI> t 
T := 57 U (Sam y [x7 Y] 7 vans) 

return (?Jans , Sam) 

Figure 2: The partition search algorithm 

maximizer loses and there is no “best” move that we 
have to worry about making. 

In reality, the restriction to values of 0 or 1 is unre- 
alistic. Some games, such as bridge, allow more than 
two outcomes, while others cannot be analyzed to ter- 
mination and need to rely on evaluation functions that 
return approximate values for internal nodes. We can 
deal with these situations using a technique known 
as xero-window search (originally called scout search 
(Pearl 1980)). To evaluate a specific position, one 
first estimates the value to be e and then determines 
whether the actual value is above or below e by treat- 
ing any value Y > e as a win for the maximizer and any 
value v 5 e as a win for the minimizer. The results of 
this calculation can then be used to refine the guess, 
and the process is repeated. If no initial estimate is 
available, a binary search can be used to find the value 
to within any desired tolerance. 

Bridge satisfies both of these properties. Expert dis- 
cussion of a particular hand often will refer to small 
cards as X’S, indicating that it is indeed the case that 
the exact ranks of these cards are irrelevant. Second, 
it is possible to “back up” x’s from one position to its 
predecessors. If, for example, one player plays a club 
with no chance of having it impact the rest of the game, 
and by doing so reaches a position in which subsequent 
analysis shows him to have two small clubs, then he 
clearly must have had three small clubs originally. Fi- 
nally, the fact that cards are simply being replaced by 
x’s means that it is possible to construct data struc- 
tures for which the time per node expanded is virtually 
unchanged from that using conventional methods. 

Although the details of the approximation functions 
and data structures are dependent on the rules of 
bridge and a discussion of their implementation is out- 
side the scope of this paper, let me include at least a 
single example. Consider the following partial bridge 
hand in which there are no trumps: 

r(r- 
v- 
OAK 

-4 *-- 
Zero-window search is effective because little time is v- 

wasted on iterations where the estimate is wildly inac- o- 
curate; there will typically be many lines showing that &- 
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-1.57x0.76 - * : 

lo5 

Partition 

lo3 

PO 

10 lo3 lo5 lo7 
Conventional 

Figure 3: Nodes expanded as a function of method 

An analysis of this situation shows that in the main 
line, the only cards that win tricks by virtue of their 
ranks are the spade Ace, King and Queen. This sanc- 
tions the replacement of the above figure by the fol- 
lowing more general one: 

- 

X AQ 
X - 

- 

- - 

v- 

o- 

JE- 

Because of the suitability of the domain, the results 
we are about to describe are stronger than the results 
that would be obtained by applying partition search to 
other games. The results for bridge are striking, how- 
ever, leading to performance improvements of an or- 
der of magnitude or more on fairly small search spaces 
(perhaps lo6 nodes). The hands we tested involved 
between 12 and 48 cards and were analyzed to termi- 
nation, so that the depth of the search varied from 
12 to 48. The branching factor for minimax without 
transposition tables appeared to be approximately 4. 
The results appear in Figure 3. 

Each point in the graph corresponds to a single 
hand. The position of the point on the x-axis indicates 
the number of nodes expanded using a-P pruning and 
transposition tables, and the position on the y-axis the 
number expanded using partition search. Both axes 
are plotted logarithmically. 

In both the partition and conventional cases, a bi- 
nary zero-window search was used to determine the ex- 
act value to be assigned to the hand, which the rules of 
bridge constrain to range from 0 to $ times the number 
of cards in play. Hands generated using a full deck of 
52 cards were not considered because the conventional 
method was in general incapable of solving them. The 

program expands approximately 15K nodes/second on 
a Spare 5 or PowerMac 6100. The transposition table 
uses approximately 6 bytes/node. 

The dotted line in the figure is y = x and corre- 
sponds to the break-even point relative to the best cur- 
rent methods. The solid line is the least-squares best fit 
to the logarithmic data, and is given by y = 157x0.76. 
This suggests that partition search is leading to an ef- 
fective reduction in branching factor of b + b”*76. This 
improvement, above and beyond that provided by a- 
@ pruning, can be contrasted with a-P pruning itself, 
which gives a reduction when compared to pure min- 
imax of b + b o.75 if the moves are ordered randomly 
(Pearl 1982) and b -+ b”.5 if the ordering is optimal. 

Conclusion 
Partition search brings dependency maintenance tech- 
niques to bear on problems in adversary search. The 
principal difficulty that has arisen in the application 
of dependency techniques generally is that there is no 
convenient way to store the conclusions drawn as the 
search proceeds; this is frequently not an issue in ad- 
versary search because transposition tables are con- 
structed and maintained in any event. 

Partition search does require that one find effective 
computational representations for the set of game posi- 
tions that can reach a particular position p, or the set of 
positions from which one player is constrained to reach 
a fixed set of positions S. If these computational rep- 
resentations can be found, however, the method leads 
to substantial reductions in the number of nodes ex- 
panded when evaluating game trees. 
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