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Abstract 

It is known that bounds on the minimax values of 
nodes in a game tree can be used to reduce the compu- 
tational complexity of minimax search for two-player 
games. We describe a very simple method to esti- 
mate bounds on the minimax values of interior nodes 
of a game tree, and use the bounds to improve min- 
imax search. The new algorithm, called forward es- 
timation, does not require additional domain knowl- 
edge other than a static node evaluation function, and 
has small constant overhead per node expansion. We 
also propose a variation of forward estimation, which 
provides a tradeoff between computational complexity 
and decision quality. Our experimental results show 
that forward estimation outperforms alpha-beta prun- 
ing on random game trees and the game of Othello. 

1. Introduction 
A game between two players, MIN and MAX, can 
be represented by a tree with MIN nodes followed by 
MAX nodes, and vice versa. It is usually infeasible to 
search to the end of a game and then make a move, 
due to the size of the game tree and the time limit on 
each move. 

The prevailing idea to overcome this difficulty is full- 
width, fixed-depth Minimax, which takes the nodes at 
a fixed depth as terminal nodes and backs up their 
static evaluations to the root by minimax rules. In 
spite of the pathology of deep search on some game 
trees (Beal 1980; Nau 1982), searching deeper usually 
strengthens a play in practice. For example, there is 
almost a linear correlation between the search depth 
and the rating of a chess program, and each addi- 
tional ply adds about 200 rating points to the playing 
strength (Hsu et al. 1990). 

Algorithms that compute exact minimax value in- 
clude alpha-beta pruning (Knuth & Moore 1975), 
SSS* (Stockman 1979)) Scout (Pearl 1984)) and as- 
piration alpha-beta (Kaindl, Shams, & Horacek 1991). 
These algorithms all reduce the computational com- 
plexity or effective branching factor of full-width, fixed- 

*This research was partially supported by NFS Grant, 
IRI-9119825, and by ARPA Contract, MDA972-94-2-0010. 

240 Constraint Satisfaction 

depth Minimax. For example, on a random tree 
with branching factor b, the effective branching factor 
of alpha-beta pruning is roughly b”.747 (Pearl 1984). 
Because of their simplicity and efficiency, full-width, 
fixed-depth Minimax algorithms, especially alpha-beta 
pruning and aspiration alpha-beta, are the dominating 
algorithms in practice. 

In contrast, selective search methods selectively ex- 
plore some promising avenues deeper than a fixed 
depth. A recent study (Smith & Nau 1994) suggests 
that selective search (called forward pruning in (Smith 
& Nau 1994)) may possibly be useful on games when 
there is a high correlation among the values of sib- 
ling nodes in the game tree. Many selective algo- 
rithms (Berliner 1979; McAllester 1988; Rivest 1987; 
Russell & Wefald 1989), h owever, are difficult to ap- 
ply or have large overhead. Two selective search algo- 
rithms that have been used or tested on real games are 
singular extension (Anantharaman, Campbell, & Hsu 
1990) and best-first minimax search (Korf & Chicker- 
ing to appear). In order to be effective, these two algo- 
rithms run alpha-beta pruning first to some depth and 
then extend some lines of play further if they seem to 
have more or direct impact on the outcome. Research 
on selective search was inspired by long standing ob- 
servation that heuristic information on interior nodes 
of a game tree can improve the efficiency of minimax 
search. 

A heuristic node evaluation can either be a single 
value measuring the merit of a node, or a bound on the 
minimax value of a node. Among these two kinds of 
evaluation functions, the interval-valued function has 
attracted a great deal of attention. Beliner (Berliner 
1979) first proposed to use an interval-valued evalua- 
tion and developed the B* algorithm. Ibaraki (Ibaraki 
1986) and Pijls and Bruin (Pijls & de Bruin Dee 
1992) considered how to improve alpha-beta pruning 
and SSS* algorithms with interval-valued evaluations. 
However, these algorithms have not been used in prac- 
tice, because of large overhead or lack of appropriate 
interval-valued functions that can be computed effi- 
ciently. Aspiration alpha-beta is a simple algorithm 
using interval-valued evaluations. It first estimates a 
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bound on the minimax value of a game tree, which is 
called the aspiration window. It then runs alpha-beta 
pruning using the aspiration window as an alpha-beta 
bound. One method to derive an aspiration window 
is iterative-deepening (Korf 1985): searching a tree in 
successively deeper and deeper iterations, and using 
information from the previous iteration to estimate an 
aspiration window for the current iteration. However, 
if the minimax value of the tree is not within the aspi- 
ration window, the tree needs to be re-searched with a 
modified aspiration window. 

We present a very simple method to estimate a 
bound on the minimax value of a node in a game 
tree without additional domain knowledge other than 
a static node evaluation function. Specifically, this 
method estimates the minimal and maximal possible 
values of the minimax value of a node. This estima- 
tion can be applied not only to the root node, but also 
to the interior nodes of a game tree. We then introduce 
this estimation method into alpha-beta pruning. The 
new algorithm, called forward estimation, has only a 
small constant overhead per node expansion. 

In order to explain the idea more clearly, we first 
present forward estimation on a random tree in which 
edges have costs and a node cost is computed as the 
sum of the edge costs on the path from the root to the 
node (Section 2). Due to space limit, we assume that 
the reader is familiar with Minimax search and alpha- 
beta pruning (Pearl 1984). Our experimental results 
show that the effective branching factor of forward es- 
timation is smaller than that of alpha-beta pruning 
with perfect node ordering on random trees. We then 
discuss how to apply the new algorithm when there is 
no information on edge costs (Section 3). We further 
discuss how to extend the search horizon by searching 
more selectively using forward estimation (Section 4). 
Our experimental results show that forward estimation 
outperforms alpha-beta pruning on games on random 
trees and the game of Othello (Section 5). Finally, our 
conclusions appear in Section 6. 

2. Forward estimation 
To obtain the minimax value of a node in a game tree 
without search is generally infeasible. Rather than di- 
rectly estimating the minimax value of a node, our idea 
is to estimate the minimal and maximal possible val- 
ues of the minimax value. The idea is based on the 
following tree model. An incremental random tree, or 
random tree for short, is a tree with depth d, finite 
random branching factor with mean b, and finite run- 
dom edge costs. The root has cost 0, and the cost of 
a node is the sum of the edge costs from the root to 
that node. One important feature of random trees is 
that they naturally introduce a correlation among the 
costs of the nodes that share common edges on the 
path from the root to them. One advantage of using 
random trees is that they are easily reproducible (Korf, 
Pemberton, & Zhang 1994). Random trees have been 

used as an analytical model and testbed for both two- 
agent search (Fuller, Gaschnig, & Gillogly 1973; Korf 
& Chickering to appear; Nau 1982) and single-agent 
search (Karp & Pearl 1983; Korf, Pemberton, & Zhang 
1994; McDiarmid & Provan 1991; Zhang & Korf 1992; 
1993; 1995). 

Consider a subtree with depth d and root cost c. If 
the minimal and maximal edge costs are 1 and u, then 
the minimax value of the subtree must be in the range 
of [c+I*d,c+u*dj. 

How can we use the estimated bound on a minimax 
value in alpha-beta pruning? Alpha-beta pruning uses 
two bounds, Q and p, to search the subtree of a fixed 
depth under a node. The CY bound is the maximum of 
the current minimax values of all MAX node ancestors 
of the node, and the /? bound is the minimum of the 
current minimax values of all MIN node ancestors of 
the node. Search of a MIN node and its subtree can be 
abandoned if its current minimax value, obtained af- 
ter searching some of its children, is less than or equal 
to o. This is simply because a MIN node can only 
reduce its minimax value, but its MAX node ances- 
tors always want to increase their minimax values, so 
that the MAX player can always choose another line 
of play that leads to a better outcome for MAX. This 
is alpha pruning. Likewise, searching a MAX node can 
be abandoned if its current minimax value is greater 
than or equal to /?. This is beta pruning. 

For a subtree with a MIN root node, if the maximal 
possible value c+u*d is less than or equal to its current 
alpha bound Q, then searching this subtree does not 
affect the minimax value, and thus it does not need 
to be searched. This is because the minimax value 
will not exceed c + u * d which is not greater than Q. 
Similarly, for a subtree with a MAX root node, if the 
minimal possible value c + I * d is greater than or equal 
to its current beta bound p, then this subtree does not 
need to be searched either. In other words, a subtree 
can be abandoned if 

1 
c+u*d<a; if a MIN root node 
c+l*d>P; if a MAX root node (1) 

where c is the cost of the root node of the subtree, 
d is the depth of the subtree, and u and 1 are the 
minimal and maximal edge costs. We call alpha-beta 
pruning plus the new pruning conditions in (1) forward 
estimation. 

At this point, one question we have to answer is 
how much can we gain from forward estimation? To 
answer the question, we first experimentally exam- 
ined forward estimation on random trees. We chose 
edge costs independently and uniformly from integers 
{ -215 + 1, -215 + 2, . a . , 215} in order to generate game 
trees impartial to the MIN and MAX players. Fig. 1 
shows our results on uniform trees, averaged over 1000 
random trials. The horizontal axis is the tree depth, 
and the vertical axis the number of nodes generated, 
in a logarithmic scale. We used the total number of 
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Figure 1: Forward estimation vs. alpha-beta pruning 
on random game trees. 

node generations as a complexity measure, because the 
overhead of forward estimation is a small, negligible 
constant for each node generated. We compared for- 
ward estimation (FE) to alpha-beta pruning (AB). We 
also plotted the number of nodes generated by alpha- 
beta pruning with perfect node ordering (LB) (Knuth 
& Moore 1975) for comparison. 

From Fig. 1, we can simply conclude that forward 
estimation reduces the effective branching factor of 
alpha- beta pruning. This reduced effective branching 
factor is even smaller than that of alpha-beta prun- 
ing with perfect node ordering. Therefore, forward 
estimation searches deeper with the same amount of 
computation as alpha-beta pruning, or runs faster than 
alpha-beta pruning on a fixed-depth tree. For instance, 
with one million node generations, alpha-beta pruning 
cannot reach depth 10 on a uniform tree with branch- 
ing factor 10 on average, while 
search to depth 11 on average. 

forward estimation can 

3. Learning edge costs 
One may argue that the edges in a search tree do not 
have costs. The assumption that edges have costs is 
not a real restriction. With a static node evaluation 
function, we can compute edge costs. The cost of an 
edge is the difference between the cost of a child node 
and the cost of its parent which are connected by the 
edge. 

In practice, there are three methods to obtain edge 
costs and to compute their minimal and maximal val- 
ues. The first is to analyze the static evaluation func- 
tion and further derive bounds on the minimal and 
maximal edge costs. r This method requires domain 
knowledge. The second is to learn the minimal and 
maximal edge costs by sampling a few game trees. We 
call this method off-line learning. The third method is 
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to learn the minimal and maximal edge costs on-line or 
by sampling during the search. Learning the minimal 
and maximal edge costs can be simply done by keeping 
track of the minimum and maximum of all edge costs 
that have been encountered during a search. Let 1’ and 
u’ be the learned minimal and maximal edge costs. We 
can use I’ and u’ in the conditions of (1). Unfortu- 
nately, this may affect decision quality. If the exact 
minimal and maximal edge costs, 1 and u, are known 
a priori, it is guaranteed that forward estimation pro- 
duces exactly the same minimax value as alpha-beta 
pruning. Since the learned I’ is usually greater than 
I and u’ is usually less than u, the conditions in (1) 
are easier to satisfy. Consequently, the node that has 
the true minimax value may be pruned, and a different 
minimax value may be obtained. 

To understand how sensitive the decision quality is 
to the on-line and off-line learning schemes, we tested 
them on random trees. We used trees of many differ- 
ent depths, with uniform and random branching fac- 
tors. Our experiments were done as follows. On a tree 
with depth d, we first searched to the end using alpha- 
beta pruning, and recorded the first move at the root 
that alpha-beta pruning would take. Call this move 
move. We then searched the tree to different depths 
up to d, using forward estimation with exact edge-cost 
bounds, assuming that they were known, and forward 
estimation with learned edge-cost bounds. We then 
compared their first moves at the root to move. We 
generated 1000 random trees, and computed the per- 
centage of times that they made the same first moves 
as a full depth alpha-beta pruning. The decision qual- 
ities of forward estimation with the exact bounds and 
learned bounds are the same most of the time, and for- 
ward estimation with learned bounds generates a few 
nodes less than forward estimation using exact bounds. 

The main reason that forward estimation is not very 
sensitive to learned bounds on random trees may be 
that edge costs are independently chosen from a com- 
mon distribution. In addition, forward estimation only 
uses the conservative minimal and maximal edge costs 
so that the additional pruning power introduced is 
limited. Furthermore, at the beginning of the search 
with the on-line learning scheme, although the learned 
edge-cost bounds are not very accurate, the alpha-beta 
bound is large enough such that the chance to satisfy 
the conditions in (1) may be small. 

4. Forward estimation as selective 
search 

Alpha-beta pruning is still not very efficient, in terms 
of number of node generations, because it finds the 
exuct minimax value of a node. It spends a lot of 
computation to find the leaf node that has the exact 
minimax value among the leaf nodes whose costs are 
close to the exact minimax value. On an incremen- 
tal tree, it is most likely that the values of leaf nodes 
are congregated, meaning that the cost of a leaf node 



and the costs of its siblings or even the costs of the 
children of its grandparent are not too different from 
each other, because they share many common edges 
on their paths to the root. This suggests that some 
subtrees have more impact on the decision at the root, 
and thus they deserve more computation. 

Forward estimation can be viewed as a selective 
search algorithm, since it may prune a node before 
searching it. Can we further improve its pruning 
power? In conditions (l), we used the maximal possi- 
ble increment, u * d, and the maximal possible decre- 
ment, I * d, of the costs of leaf nodes relative to the 
root cost of a subtree, which were very conservative. 
Instead of using the maximal and minimal edge costs, 
we may use the most likely increment, u”, and the 
most likely decrement, 1”, of edge costs. These two 
quantities can also be learned by the learning schemes 
discussed in Section 3. Therefore, conditions (1) be- 
come 

{ 

c-j-u”*d 5 a; if a MIN root node 
c + I” * d > /3; if a MAX root node (2) 

where c is the cost of the root node of a subtree, and 
d is the depth of the subtree. 

One “quick and dirty” way to estimate u” and I” is 
to introduce a parameter S E [0, 11. We can simply use 
U ‘I = u * S and I” = I * S in conditions (2). Then (2) 
becomes 

{ 
c + (u * 6) * d 5 a; if a MIN root node 
c + (I * 6) * d 2 p; if a MAX root node (3) 

where c is the cost of the root node of a subtree, d 
is the depth of the subtree, and u and 1 are the min- 
imal and maximal edge costs. Conditions in (3) are 
satisfied when those in (1) are satisfied, since S 5 1. 
The first pruning condition of (3) can be explained as 
follows. If the maximal possible minimax value of a 
MIN node is close enough to its cy bound from above, 
it is then unlikely that the exact minimax value will be 
greater than cy. Similarly, the second condition can be 
explained as follows. If the minimal possible minimax 
value of a MAX node is close enough to /3 from below, it 
is unlikely that the exact minimax value will be smaller 
than p. With a smaller S, we can prune more nodes 
and search deeper with the same amount of computa- 
tion. However, by introducing S, we also run the risk 
of making a wrong move. There is a tradeoff between 
making a decision based on the exact minimax value 
from a particular depth and that based on a near exact 
minimax value from a deeper depth. This tradeoff can 
be tuned by parameter S. 

Fig. 2 shows our experimental results on random 
trees with depth 10, random branching factor of mean 
5, and edge costs from {-215 + 1, -215 + 2,. . . , 215}. 
In the experiments, the on-line learning method and 
pruning conditions of (3) were used. The horizontal 
axis of Fig. 2 is the total number of node generations, 
in a logarithmic scale, and the vertical axis the decision 

random trees with 
b=S, d=lO, and 
edge costs from 
(-16383, 16384) _ 

10 102 ld IO4 
number of nodes generated 

Figure 2: Forward estimation as selective search. 

quality in terms of percentage of times that a search 
makes the same first moves as full-depth Minimax. The 
results are averaged over 1000 trials. The curve labeled 
AB is for alpha-beta pruning, and the curves labeled 
FE-1.0, FE-0.8, FE-0.6, FE-0.4, and FE-O.2 
correspond to forward estimation with S = 1.0, S = 0.8, 
S = 0.6, S = 0.4, and 6 = 0.2, respectively. 

Fig. 2 indicates that forward estimation with 6 = 
1 expands fewer nodes than alpha-beta pruning and 
makes optimal decisions when searching to the end of 
the tree. However, forward estimation with S < 1 may 
not make optimal decisions because of the decision er- 
ror introduced by S, as predicted. Furthermore, when 
S is too small, for instance 5 = 0.2 in Fig. 2, the sav- 
ing in computation for a deep search cannot pay off 
the loss in decision quality. For random trees with 
uniformly distributed edge costs, a median S, such as 
S = 0.5, will be a good choice. Of course, the value of 
S depends upon problem domains. 

5. Playing games 
To better understand forward estimation, we played it 
against alpha-beta pruning on random trees and the 
game of Othello. 

We adopt the game playing rules suggested in (Korf 
& Chickering to appear): Every game is played twice, 
with each player alternately playing MAX. A play of 
the game consists of a sequence of alternating moves 
by each player until a leaf node is reached. The static 
value of this leaf is the outcome of the game. The win- 
ner of a pair of games is the player that played MAX 
when the larger outcome was obtained. If the out- 
come is the same in the two games, the pair of games 
is declared a tie. A tournament consisted of a num- 
ber of pairs of games. We played forward estimation 
against alpha-beta pruning, with each algorithm ini- 
tially searching to depth one. Whichever algorithm 
generated the fewest total nodes in the last tourna- 
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horizon incremented by one in the (a) Random games ment had its search 
next tournament. 

5.1. Random game trees 
On random trees, a tournament consisted of 100 pairs 
of random games. These trees have random branching 
factors with different mean, and edge costs uniformly 
and independently chosen from {-215 + 1, -215 + 
2,***, 215}. We used the on-line learning scheme to ob- 
tain the minimal and maximal edge costs, and pruning 
conditions of (3). Fig. 3(a) shows the results on ran- 
dom trees with mean branching factor 5. The horizon- 
tal axis is the lookahead depth of alpha-beta pruning. 
The vertical axis is the rate that forward estimation 
wins over alpha-beta pruning, as a percentage. We in- 
cluded the results when 6 = 1.0 and S = 0.5. Forward 
estimation with S = 1.0 (curve FE-l.0 in Fig. 3(a)) 
can search only one level deeper and generates more 
nodes than alpha-beta pruning. For forward estima- 
tion with S = 0.5, we report two results. One is when 
forward estimation searches deeper but generates more 
nodes than alpha-beta pruning the first time, as shown 
by curve FE-0.5(MORE) in Fig. 3(a). The other is 
when forward estimation searches to a depth one level 
shallower than the depth at which forward estima- 
tion generates more nodes than alpha-beta pruning, 
as shown by curve FE-0.5(LESS). Forward estimation 
with 6 = 0.5 searches to the same depth as alpha-beta 
but with less node generations than alpha-beta when 
the alpha-beta search horizon is less than or equal to 3. 
Since S introduces decision errors, forward estimation 
loses to or does not win with a large margin over alpha- 
beta pruning when both algorithms search to the same 
depth. However, forward estimation can search one 
level deeper with less node generations than alpha-beta 
when the alpha-beta search horizon is greater than 3. 
Fig. 3(a) indicates that forward estimation is superior 
to alpha-beta in deep search. 

5.2. The game of Othello 
In the experiments on the game of Othello, we used a 
static evaluation function from the software Bill, which 
won the first place in the 1989 North American Com- 
puter Othello Championship (Lee & Mahajan 1990). 

We used both on-line and off-line learning schemes 
to obtain the minimal and maximal edge costs. The 
on-line scheme did not perform adequately and needs 
further investigation. We conjecture that this is mostly 
due to the locality feature of on-line learning, plus the 
correlations among node costs. 

We sampled 10 games in the off-line learning scheme. 
The maximal and minimal edge costs learned were u = 
2993448 and I = -2680916, and the most likely edge- 
cost increment and decrement were around u’ = 59869 
and I’ = -53618. We used these two sets of edge costs, 
along with pruning conditions of (1) and (2), in a tour- 
nament consisted of 244 pairs of games that were gen- 
erated by making all possible first four moves. When 
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alpha-beta search horizon 

(b) The game of OthePlo . , 

-- 
12345678 

alpha-beta search horizon 

Figure 3: Forward estimation plays against alpha-beta 
pruning. 

the maximal and minimal edge costs and conditions 
(1) were used, forward estimation played almost the 
same as alpha-beta pruning. The reason is that these - 
minimal and maximal learned edge costs were extreme 
values that rarely occur. 

Fig. 3(b) shows the results when the most likely 
edge-cost increment and decrement plus conditions (2) 
were used. The horizontal axis is the lookahead de$th 
of alpha-beta pruning, and the vertical axis is the win- 
ning rate of forward estimation, as a percentage. The 
complexity measure for the game of Othello is the av- 
eragk CPU time per game on a Sun Spare 10 machine. 
We report two sets of experimental results. One is 
when forward estimation searches deeper but generates 
more nodes than alpha-beta pruning the first time, as 
shown by the dashed curve MORE in Fig. 3(b), and the 
other when forward estimation searches-to a depth one 
level shallower than the depth at which forwardkstima- 
tion generates more nodes than alpha-beta pruning, as 
shown by the solid curve LESS in Fig. 3(b). Forward 
estimation searches to the same depth as alpha-beta 
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pruning with fewer node generations when the alpha- 
beta lookahead depth is less than three, but can reach 
three levels deeper than alpha-beta pruning when the 
alpha-beta lookahead depth is eight. In Fig. 3(b), a 
number next to a data point is the ratio of the average 
CPU time per game using forward estimation to that 
of alpha-beta pruning. Fig. 3(b) shows that forward 
estimation outperforms alpha-beta pruning with less 
computation when the alpha-beta lookahead depth is 
greater than two. 

6. Conclusions 
We presented a very simple method to estimate a 
bound of the minimax value of a node in a game 
tree without additional domain knowledge other than 
a static node evaluation function. We introduced this 
estimation method into alpha-beta pruning and devel- 
oped a new algorithm called forward estimation. For- 
ward estimation has only a small constant overhead 
per node expansion. We also proposed a variation of 
the original algorithm, which provides a tradeoff be- 
tween computational complexity and decision quality. 
Finally, we tested forward estimation on games on ran- 
dom trees and the game of Othello. The experimen- 
tal results show that forward estimation outperforms 
alpha-beta pruning on both of these games. 
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