
Forward Estimation for Game-Tree Search *

Weixiong Zhang
Information Sciences Institute and
Department of Computer Science
University of Southern California

4676 Admiralty Way
Marina de1 Rey, CA 90292, USA

Email: zhang@isi.edu

Abstract

It is known that bounds on the minimax values of
nodes in a game tree can be used to reduce the compu-
tational complexity of minimax search for two-player
games. We describe a very simple method to esti-
mate bounds on the minimax values of interior nodes
of a game tree, and use the bounds to improve min-
imax search. The new algorithm, called forward es-
timation, does not require additional domain knowl-
edge other than a static node evaluation function, and
has small constant overhead per node expansion. We
also propose a variation of forward estimation, which
provides a tradeoff between computational complexity
and decision quality. Our experimental results show
that forward estimation outperforms alpha-beta prun-
ing on random game trees and the game of Othello.

1. Introduction
A game between two players, MIN and MAX, can
be represented by a tree with MIN nodes followed by
MAX nodes, and vice versa. It is usually infeasible to
search to the end of a game and then make a move,
due to the size of the game tree and the time limit on
each move.

The prevailing idea to overcome this difficulty is full-
width, fixed-depth Minimax, which takes the nodes at
a fixed depth as terminal nodes and backs up their
static evaluations to the root by minimax rules. In
spite of the pathology of deep search on some game
trees (Beal 1980; Nau 1982), searching deeper usually
strengthens a play in practice. For example, there is
almost a linear correlation between the search depth
and the rating of a chess program, and each addi-
tional ply adds about 200 rating points to the playing
strength (Hsu et al. 1990).

Algorithms that compute exact minimax value in-
clude alpha-beta pruning (Knuth & Moore 1975),
SSS* (Stockman 1979)) Scout (Pearl 1984)) and as-
piration alpha-beta (Kaindl, Shams, & Horacek 1991).
These algorithms all reduce the computational com-
plexity or effective branching factor of full-width, fixed-

*This research was partially supported by NFS Grant,
IRI-9119825, and by ARPA Contract, MDA972-94-2-0010.

240 Constraint Satisfaction

depth Minimax. For example, on a random tree
with branching factor b, the effective branching factor
of alpha-beta pruning is roughly b”.747 (Pearl 1984).
Because of their simplicity and efficiency, full-width,
fixed-depth Minimax algorithms, especially alpha-beta
pruning and aspiration alpha-beta, are the dominating
algorithms in practice.

In contrast, selective search methods selectively ex-
plore some promising avenues deeper than a fixed
depth. A recent study (Smith & Nau 1994) suggests
that selective search (called forward pruning in (Smith
& Nau 1994)) may possibly be useful on games when
there is a high correlation among the values of sib-
ling nodes in the game tree. Many selective algo-
rithms (Berliner 1979; McAllester 1988; Rivest 1987;
Russell & Wefald 1989), h owever, are difficult to ap-
ply or have large overhead. Two selective search algo-
rithms that have been used or tested on real games are
singular extension (Anantharaman, Campbell, & Hsu
1990) and best-first minimax search (Korf & Chicker-
ing to appear). In order to be effective, these two algo-
rithms run alpha-beta pruning first to some depth and
then extend some lines of play further if they seem to
have more or direct impact on the outcome. Research
on selective search was inspired by long standing ob-
servation that heuristic information on interior nodes
of a game tree can improve the efficiency of minimax
search.

A heuristic node evaluation can either be a single
value measuring the merit of a node, or a bound on the
minimax value of a node. Among these two kinds of
evaluation functions, the interval-valued function has
attracted a great deal of attention. Beliner (Berliner
1979) first proposed to use an interval-valued evalua-
tion and developed the B* algorithm. Ibaraki (Ibaraki
1986) and Pijls and Bruin (Pijls & de Bruin Dee
1992) considered how to improve alpha-beta pruning
and SSS* algorithms with interval-valued evaluations.
However, these algorithms have not been used in prac-
tice, because of large overhead or lack of appropriate
interval-valued functions that can be computed effi-
ciently. Aspiration alpha-beta is a simple algorithm
using interval-valued evaluations. It first estimates a

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

bound on the minimax value of a game tree, which is
called the aspiration window. It then runs alpha-beta
pruning using the aspiration window as an alpha-beta
bound. One method to derive an aspiration window
is iterative-deepening (Korf 1985): searching a tree in
successively deeper and deeper iterations, and using
information from the previous iteration to estimate an
aspiration window for the current iteration. However,
if the minimax value of the tree is not within the aspi-
ration window, the tree needs to be re-searched with a
modified aspiration window.

We present a very simple method to estimate a
bound on the minimax value of a node in a game
tree without additional domain knowledge other than
a static node evaluation function. Specifically, this
method estimates the minimal and maximal possible
values of the minimax value of a node. This estima-
tion can be applied not only to the root node, but also
to the interior nodes of a game tree. We then introduce
this estimation method into alpha-beta pruning. The
new algorithm, called forward estimation, has only a
small constant overhead per node expansion.

In order to explain the idea more clearly, we first
present forward estimation on a random tree in which
edges have costs and a node cost is computed as the
sum of the edge costs on the path from the root to the
node (Section 2). Due to space limit, we assume that
the reader is familiar with Minimax search and alpha-
beta pruning (Pearl 1984). Our experimental results
show that the effective branching factor of forward es-
timation is smaller than that of alpha-beta pruning
with perfect node ordering on random trees. We then
discuss how to apply the new algorithm when there is
no information on edge costs (Section 3). We further
discuss how to extend the search horizon by searching
more selectively using forward estimation (Section 4).
Our experimental results show that forward estimation
outperforms alpha-beta pruning on games on random
trees and the game of Othello (Section 5). Finally, our
conclusions appear in Section 6.

2. Forward estimation
To obtain the minimax value of a node in a game tree
without search is generally infeasible. Rather than di-
rectly estimating the minimax value of a node, our idea
is to estimate the minimal and maximal possible val-
ues of the minimax value. The idea is based on the
following tree model. An incremental random tree, or
random tree for short, is a tree with depth d, finite
random branching factor with mean b, and finite run-
dom edge costs. The root has cost 0, and the cost of
a node is the sum of the edge costs from the root to
that node. One important feature of random trees is
that they naturally introduce a correlation among the
costs of the nodes that share common edges on the
path from the root to them. One advantage of using
random trees is that they are easily reproducible (Korf,
Pemberton, & Zhang 1994). Random trees have been

used as an analytical model and testbed for both two-
agent search (Fuller, Gaschnig, & Gillogly 1973; Korf
& Chickering to appear; Nau 1982) and single-agent
search (Karp & Pearl 1983; Korf, Pemberton, & Zhang
1994; McDiarmid & Provan 1991; Zhang & Korf 1992;
1993; 1995).

Consider a subtree with depth d and root cost c. If
the minimal and maximal edge costs are 1 and u, then
the minimax value of the subtree must be in the range
of [c+I*d,c+u*dj.

How can we use the estimated bound on a minimax
value in alpha-beta pruning? Alpha-beta pruning uses
two bounds, Q and p, to search the subtree of a fixed
depth under a node. The CY bound is the maximum of
the current minimax values of all MAX node ancestors
of the node, and the /? bound is the minimum of the
current minimax values of all MIN node ancestors of
the node. Search of a MIN node and its subtree can be
abandoned if its current minimax value, obtained af-
ter searching some of its children, is less than or equal
to o. This is simply because a MIN node can only
reduce its minimax value, but its MAX node ances-
tors always want to increase their minimax values, so
that the MAX player can always choose another line
of play that leads to a better outcome for MAX. This
is alpha pruning. Likewise, searching a MAX node can
be abandoned if its current minimax value is greater
than or equal to /?. This is beta pruning.

For a subtree with a MIN root node, if the maximal
possible value c+u*d is less than or equal to its current
alpha bound Q, then searching this subtree does not
affect the minimax value, and thus it does not need
to be searched. This is because the minimax value
will not exceed c + u * d which is not greater than Q.
Similarly, for a subtree with a MAX root node, if the
minimal possible value c + I * d is greater than or equal
to its current beta bound p, then this subtree does not
need to be searched either. In other words, a subtree
can be abandoned if

1
c+u*d<a; if a MIN root node
c+l*d>P; if a MAX root node (1)

where c is the cost of the root node of the subtree,
d is the depth of the subtree, and u and 1 are the
minimal and maximal edge costs. We call alpha-beta
pruning plus the new pruning conditions in (1) forward
estimation.

At this point, one question we have to answer is
how much can we gain from forward estimation? To
answer the question, we first experimentally exam-
ined forward estimation on random trees. We chose
edge costs independently and uniformly from integers
{ -215 + 1, -215 + 2, . a . , 215} in order to generate game
trees impartial to the MIN and MAX players. Fig. 1
shows our results on uniform trees, averaged over 1000
random trials. The horizontal axis is the tree depth,
and the vertical axis the number of nodes generated,
in a logarithmic scale. We used the total number of

Game-Tree Search 241

edge costs from -
{ -16383,16384} I I I I I I I 1 II

2 4 6 8 10 12 14 16
tree depth

Figure 1: Forward estimation vs. alpha-beta pruning
on random game trees.

node generations as a complexity measure, because the
overhead of forward estimation is a small, negligible
constant for each node generated. We compared for-
ward estimation (FE) to alpha-beta pruning (AB). We
also plotted the number of nodes generated by alpha-
beta pruning with perfect node ordering (LB) (Knuth
& Moore 1975) for comparison.

From Fig. 1, we can simply conclude that forward
estimation reduces the effective branching factor of
alpha- beta pruning. This reduced effective branching
factor is even smaller than that of alpha-beta prun-
ing with perfect node ordering. Therefore, forward
estimation searches deeper with the same amount of
computation as alpha-beta pruning, or runs faster than
alpha-beta pruning on a fixed-depth tree. For instance,
with one million node generations, alpha-beta pruning
cannot reach depth 10 on a uniform tree with branch-
ing factor 10 on average, while
search to depth 11 on average.

forward estimation can

3. Learning edge costs
One may argue that the edges in a search tree do not
have costs. The assumption that edges have costs is
not a real restriction. With a static node evaluation
function, we can compute edge costs. The cost of an
edge is the difference between the cost of a child node
and the cost of its parent which are connected by the
edge.

In practice, there are three methods to obtain edge
costs and to compute their minimal and maximal val-
ues. The first is to analyze the static evaluation func-
tion and further derive bounds on the minimal and
maximal edge costs. r This method requires domain
knowledge. The second is to learn the minimal and
maximal edge costs by sampling a few game trees. We
call this method off-line learning. The third method is

‘This was suggested by Rich Korf.

242 Constraint Satisfaction

to learn the minimal and maximal edge costs on-line or
by sampling during the search. Learning the minimal
and maximal edge costs can be simply done by keeping
track of the minimum and maximum of all edge costs
that have been encountered during a search. Let 1’ and
u’ be the learned minimal and maximal edge costs. We
can use I’ and u’ in the conditions of (1). Unfortu-
nately, this may affect decision quality. If the exact
minimal and maximal edge costs, 1 and u, are known
a priori, it is guaranteed that forward estimation pro-
duces exactly the same minimax value as alpha-beta
pruning. Since the learned I’ is usually greater than
I and u’ is usually less than u, the conditions in (1)
are easier to satisfy. Consequently, the node that has
the true minimax value may be pruned, and a different
minimax value may be obtained.

To understand how sensitive the decision quality is
to the on-line and off-line learning schemes, we tested
them on random trees. We used trees of many differ-
ent depths, with uniform and random branching fac-
tors. Our experiments were done as follows. On a tree
with depth d, we first searched to the end using alpha-
beta pruning, and recorded the first move at the root
that alpha-beta pruning would take. Call this move
move. We then searched the tree to different depths
up to d, using forward estimation with exact edge-cost
bounds, assuming that they were known, and forward
estimation with learned edge-cost bounds. We then
compared their first moves at the root to move. We
generated 1000 random trees, and computed the per-
centage of times that they made the same first moves
as a full depth alpha-beta pruning. The decision qual-
ities of forward estimation with the exact bounds and
learned bounds are the same most of the time, and for-
ward estimation with learned bounds generates a few
nodes less than forward estimation using exact bounds.

The main reason that forward estimation is not very
sensitive to learned bounds on random trees may be
that edge costs are independently chosen from a com-
mon distribution. In addition, forward estimation only
uses the conservative minimal and maximal edge costs
so that the additional pruning power introduced is
limited. Furthermore, at the beginning of the search
with the on-line learning scheme, although the learned
edge-cost bounds are not very accurate, the alpha-beta
bound is large enough such that the chance to satisfy
the conditions in (1) may be small.

4. Forward estimation as selective
search

Alpha-beta pruning is still not very efficient, in terms
of number of node generations, because it finds the
exuct minimax value of a node. It spends a lot of
computation to find the leaf node that has the exact
minimax value among the leaf nodes whose costs are
close to the exact minimax value. On an incremen-
tal tree, it is most likely that the values of leaf nodes
are congregated, meaning that the cost of a leaf node

and the costs of its siblings or even the costs of the
children of its grandparent are not too different from
each other, because they share many common edges
on their paths to the root. This suggests that some
subtrees have more impact on the decision at the root,
and thus they deserve more computation.

Forward estimation can be viewed as a selective
search algorithm, since it may prune a node before
searching it. Can we further improve its pruning
power? In conditions (l), we used the maximal possi-
ble increment, u * d, and the maximal possible decre-
ment, I * d, of the costs of leaf nodes relative to the
root cost of a subtree, which were very conservative.
Instead of using the maximal and minimal edge costs,
we may use the most likely increment, u”, and the
most likely decrement, 1”, of edge costs. These two
quantities can also be learned by the learning schemes
discussed in Section 3. Therefore, conditions (1) be-
come

{

c-j-u”*d 5 a; if a MIN root node
c + I” * d > /3; if a MAX root node (2)

where c is the cost of the root node of a subtree, and
d is the depth of the subtree.

One “quick and dirty” way to estimate u” and I” is
to introduce a parameter S E [0, 11. We can simply use
U ‘I = u * S and I” = I * S in conditions (2). Then (2)
becomes

{
c + (u * 6) * d 5 a; if a MIN root node
c + (I * 6) * d 2 p; if a MAX root node (3)

where c is the cost of the root node of a subtree, d
is the depth of the subtree, and u and 1 are the min-
imal and maximal edge costs. Conditions in (3) are
satisfied when those in (1) are satisfied, since S 5 1.
The first pruning condition of (3) can be explained as
follows. If the maximal possible minimax value of a
MIN node is close enough to its cy bound from above,
it is then unlikely that the exact minimax value will be
greater than cy. Similarly, the second condition can be
explained as follows. If the minimal possible minimax
value of a MAX node is close enough to /3 from below, it
is unlikely that the exact minimax value will be smaller
than p. With a smaller S, we can prune more nodes
and search deeper with the same amount of computa-
tion. However, by introducing S, we also run the risk
of making a wrong move. There is a tradeoff between
making a decision based on the exact minimax value
from a particular depth and that based on a near exact
minimax value from a deeper depth. This tradeoff can
be tuned by parameter S.

Fig. 2 shows our experimental results on random
trees with depth 10, random branching factor of mean
5, and edge costs from {-215 + 1, -215 + 2,. . . , 215}.
In the experiments, the on-line learning method and
pruning conditions of (3) were used. The horizontal
axis of Fig. 2 is the total number of node generations,
in a logarithmic scale, and the vertical axis the decision

random trees with
b=S, d=lO, and
edge costs from
(-16383, 16384) _

10 102 ld IO4
number of nodes generated

Figure 2: Forward estimation as selective search.

quality in terms of percentage of times that a search
makes the same first moves as full-depth Minimax. The
results are averaged over 1000 trials. The curve labeled
AB is for alpha-beta pruning, and the curves labeled
FE-1.0, FE-0.8, FE-0.6, FE-0.4, and FE-O.2
correspond to forward estimation with S = 1.0, S = 0.8,
S = 0.6, S = 0.4, and 6 = 0.2, respectively.

Fig. 2 indicates that forward estimation with 6 =
1 expands fewer nodes than alpha-beta pruning and
makes optimal decisions when searching to the end of
the tree. However, forward estimation with S < 1 may
not make optimal decisions because of the decision er-
ror introduced by S, as predicted. Furthermore, when
S is too small, for instance 5 = 0.2 in Fig. 2, the sav-
ing in computation for a deep search cannot pay off
the loss in decision quality. For random trees with
uniformly distributed edge costs, a median S, such as
S = 0.5, will be a good choice. Of course, the value of
S depends upon problem domains.

5. Playing games
To better understand forward estimation, we played it
against alpha-beta pruning on random trees and the
game of Othello.

We adopt the game playing rules suggested in (Korf
& Chickering to appear): Every game is played twice,
with each player alternately playing MAX. A play of
the game consists of a sequence of alternating moves
by each player until a leaf node is reached. The static
value of this leaf is the outcome of the game. The win-
ner of a pair of games is the player that played MAX
when the larger outcome was obtained. If the out-
come is the same in the two games, the pair of games
is declared a tie. A tournament consisted of a num-
ber of pairs of games. We played forward estimation
against alpha-beta pruning, with each algorithm ini-
tially searching to depth one. Whichever algorithm
generated the fewest total nodes in the last tourna-

Game-Tree Search 243

horizon incremented by one in the (a) Random games ment had its search
next tournament.

5.1. Random game trees
On random trees, a tournament consisted of 100 pairs
of random games. These trees have random branching
factors with different mean, and edge costs uniformly
and independently chosen from {-215 + 1, -215 +
2,***, 215}. We used the on-line learning scheme to ob-
tain the minimal and maximal edge costs, and pruning
conditions of (3). Fig. 3(a) shows the results on ran-
dom trees with mean branching factor 5. The horizon-
tal axis is the lookahead depth of alpha-beta pruning.
The vertical axis is the rate that forward estimation
wins over alpha-beta pruning, as a percentage. We in-
cluded the results when 6 = 1.0 and S = 0.5. Forward
estimation with S = 1.0 (curve FE-l.0 in Fig. 3(a))
can search only one level deeper and generates more
nodes than alpha-beta pruning. For forward estima-
tion with S = 0.5, we report two results. One is when
forward estimation searches deeper but generates more
nodes than alpha-beta pruning the first time, as shown
by curve FE-0.5(MORE) in Fig. 3(a). The other is
when forward estimation searches to a depth one level
shallower than the depth at which forward estima-
tion generates more nodes than alpha-beta pruning,
as shown by curve FE-0.5(LESS). Forward estimation
with 6 = 0.5 searches to the same depth as alpha-beta
but with less node generations than alpha-beta when
the alpha-beta search horizon is less than or equal to 3.
Since S introduces decision errors, forward estimation
loses to or does not win with a large margin over alpha-
beta pruning when both algorithms search to the same
depth. However, forward estimation can search one
level deeper with less node generations than alpha-beta
when the alpha-beta search horizon is greater than 3.
Fig. 3(a) indicates that forward estimation is superior
to alpha-beta in deep search.

5.2. The game of Othello
In the experiments on the game of Othello, we used a
static evaluation function from the software Bill, which
won the first place in the 1989 North American Com-
puter Othello Championship (Lee & Mahajan 1990).

We used both on-line and off-line learning schemes
to obtain the minimal and maximal edge costs. The
on-line scheme did not perform adequately and needs
further investigation. We conjecture that this is mostly
due to the locality feature of on-line learning, plus the
correlations among node costs.

We sampled 10 games in the off-line learning scheme.
The maximal and minimal edge costs learned were u =
2993448 and I = -2680916, and the most likely edge-
cost increment and decrement were around u’ = 59869
and I’ = -53618. We used these two sets of edge costs,
along with pruning conditions of (1) and (2), in a tour-
nament consisted of 244 pairs of games that were gen-
erated by making all possible first four moves. When

.oo

90

80

70

60

2 4 6 8 10
alpha-beta search horizon

(b) The game of OthePlo . ,

--
12345678

alpha-beta search horizon

Figure 3: Forward estimation plays against alpha-beta
pruning.

the maximal and minimal edge costs and conditions
(1) were used, forward estimation played almost the
same as alpha-beta pruning. The reason is that these -
minimal and maximal learned edge costs were extreme
values that rarely occur.

Fig. 3(b) shows the results when the most likely
edge-cost increment and decrement plus conditions (2)
were used. The horizontal axis is the lookahead de$th
of alpha-beta pruning, and the vertical axis is the win-
ning rate of forward estimation, as a percentage. The
complexity measure for the game of Othello is the av-
eragk CPU time per game on a Sun Spare 10 machine.
We report two sets of experimental results. One is
when forward estimation searches deeper but generates
more nodes than alpha-beta pruning the first time, as
shown by the dashed curve MORE in Fig. 3(b), and the
other when forward estimation searches-to a depth one
level shallower than the depth at which forwardkstima-
tion generates more nodes than alpha-beta pruning, as
shown by the solid curve LESS in Fig. 3(b). Forward
estimation searches to the same depth as alpha-beta

244 Constraint Satisfaction

pruning with fewer node generations when the alpha-
beta lookahead depth is less than three, but can reach
three levels deeper than alpha-beta pruning when the
alpha-beta lookahead depth is eight. In Fig. 3(b), a
number next to a data point is the ratio of the average
CPU time per game using forward estimation to that
of alpha-beta pruning. Fig. 3(b) shows that forward
estimation outperforms alpha-beta pruning with less
computation when the alpha-beta lookahead depth is
greater than two.

6. Conclusions
We presented a very simple method to estimate a
bound of the minimax value of a node in a game
tree without additional domain knowledge other than
a static node evaluation function. We introduced this
estimation method into alpha-beta pruning and devel-
oped a new algorithm called forward estimation. For-
ward estimation has only a small constant overhead
per node expansion. We also proposed a variation of
the original algorithm, which provides a tradeoff be-
tween computational complexity and decision quality.
Finally, we tested forward estimation on games on ran-
dom trees and the game of Othello. The experimen-
tal results show that forward estimation outperforms
alpha-beta pruning on both of these games.

Acknowledgements
The author is grateful to David Chickering for the code
for the game of Othello, to Sheila Coyazo for editorial
help, to Kai-Fu Lee for the static evaluation function
of Bill, to Ramesh Patil for comments on a draft, and
to Armand Prieditis for discussions. Special thanks to
Rich Korf for encouragement, discussions, comments,
and his game-playing code on random trees and the
game of Othello.

References
Anantharaman, T.; Campbell, M.; and Hsu, F.-H.
1990. Singular extensions: Adding selectivity to
brute-force searching. Artificial Intelligence 43:99-
109.
Beal, D. 1980. An analysis of minimax. In Advances
in Computer Chess. Edinburgh: Edinburgh Univer-
sity Press.
Berliner, H. 1979. The B* tree search algorithm:
A best-first proof procedure. Artificial Intelligence
12:23-40.
Fuller, S.; Gaschnig, J.; and Gillogly, J. 1973. Analy-
sis of the alpha-beta pruning algorithm. Technical re-
port, Carnegie-Mellon University, Computer Science
Department, Pittsburgh, PA.
Hsu, F.-H.; Anantharaman, T.; Campbell, M.; and
Nowatzyk, A. 1990. A grandmaster chess machine.
Scientific American 263:44-50.

Ibaraki, T. 1986. Generalization of alpha-beta and
SSS* search problems. Artificial Intelligence 29:73-
117.
Kaindl, H.; Shams, R.; and Horacek, H. 1991. Min-
imax search algorithms with and without aspiration
windows. IEEE Trans. Pattern Analysis and Machine
Intelligence 13~1225-1235.
Karp, R., and Pearl, J. 1983. Searching for an op-
timal path in a tree with random costs. Artificial
Intelligence 21:99-117.
Knuth, D., and Moore, R. 1975. An analysis of alpha-
beta pruning. Artificial Intelligence 6:293-326.
Korf, R., and Chickering, D. to appear. Best-first
minimax search. Artificial Intelligence.
Korf, R.; Pemberton, J.; and Zhang, W. 1994. In-
cremental random search trees. In Working Notes of
AAAI 1994 Workshop on Experimental Evaluation of
Reasoning and Search Methods.
Korf, R. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27:97-109.
Lee, K.-F., and Mahajan, S. 1990. The development
of a world-class Othello program. Artificial Intelli-
gence 43:21-36.
McAllester, D. 1988. Conspiracy numbers for min-
max search. Artificial Intelligence 35:287-310.
McDiarmid, C., and Provan, G. 1991. An expected-
cost analysis of backtracking and non-backtracking
algorithms. In Proc. IJCAI-91, 172-177.
Nau, D. 1982. An investigation of the causes of
pathology in games. Artificial Intelligence 19:257-
278.
Pearl, J. 1984. Heuristics. Reading, MA: Addison-
Wesley.
Pijls, W., and de Bruin, A. Dec. 1992. Searching
informed game trees. In Proceedings of the 3’d Intern.
Symp. on Algorithms and Computation, 332-341.
Rivest, R. 1987. Game tree searching by min/max
approximation. Artificial Intelligence 34177-96.
Russell, S., and Wefald, E. 1989. On optimal game-
tree search using rational meta-reasoning. In Proc.
IJCA I-89, 334-340.
Smith, S., and Nau, D. 1994. An analysis of forward
pruning. In Proc. AAAI-94, 1386-1391.
Stockman, G. 1979. A minimax algorithm better than
alpha-beta. Artificial Intelligence 12:179-196.
Zhang, W., and Korf, R. 1992. An average-case analy-
sis of branch-and-bound with applications: Summary
of results. In Proc. AAAI-92, 545-550.
Zhang, W., and Korf, R. 1993. Depth-first vs. best-
first search: New results. In Proc. AAAI-93, 769-775.
Zhang, W., and Korf, R. 1995. Performance of
linear-space search algorithms. Artificial Intelligence
791241-292.

Game-Tree Search 245

