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Abstract 
The 3-satisfiability problem (3SAT) has had a central role in 
the study of complexity. It was recently found that 3SAT 
instances transition sharply from satisfiable to nonsatisfiable 
as the ratio of clauses to variables increases. Because this 
phase transition is so sharp, the ratio - an order parameter - 
can be used to predict satisfiability. This paper describes a 
second order parameter for 3SAT. Like the classical order 
parameter, it can be computed in linear time, but it analyzes 
the structure of the problem instance more deeply. We 
present an analytical method for using this new order 
parameter in conjunction with the classical one to enhance 
satisfiability prediction accuracy. The assumptions of the 
method are verified by rigorous statistical testing. The 
method significantly increases the satisfiability prediction 
accuracy over using the classical order parameter alone. 
Hardness - i.e. how long it takes to determine satisfiability - 
results for one complete and one incomplete algorithm from 
the literature are also presented as a function of the two 
order parameters. The importance of new order parameters 
lies in the fact that they refine the locating of satisfiable vs. 
nonsatisfiable and hard vs. easy formulas in the space of all 
problem instances by adding a new dimension in the 
analysis. l 

1 Introduction 
The 3-satisfiability problem (3SAT) is the decision 
problem of whether a satisfying truth assignment exists for 
variables in a 3CNF formula. A 3CNF formula is a 
conjunct of clauses that are disjuncts of three literals. A 
literal is a negated or non-negated variable. The formula is 
satisfiable (SAT), if the variables can be assigned Boolean 
values so that at least one literal in each clause is true. For 
example, the formula (xl v x2 v -x3) A (xl v x3 v x4) A 
(-xl v -x2 v -x4) is satisfiable by the truth assignment xl 
= true, x2 = true, x3 = true, x4 = false - among others. We 
will call the number of variables v and the number of 
clauses c. In the formula above, v = 4 and c = 3. 

The importance of 3SAT lies in the fact that it is 
structurally simple, yet IVP-complete, i.e. any problem in 
NP can be reduced to 3SAT in polynomial time. A decision 
algorithm for 3SAT can therefore (in theory) be used to 
solve any problem in NP, and the complexity of solving an 
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arbitrary problem in NP is at most a polynomial factor 
greater than the complexity of the algorithm for 3SAT. 
Every exact algorithm for 3SAT requires exponential time 
in general, unless P = NP. Nevertheless, most 3SAT 
instances can be solved quickly, because the hard instances 
- i.e. those that require a long time to determine 
satisfiability - are rare (Mitchell et al, 1992; Crawford and 
Auton, 1993). Given a problem instance, it would be useful 
to know how long determining its satisfiability will take. 
This is especially important because even with problem 
instances of the same size, the running time of a 
satisfiability determining algorithm can vary several orders 
of magnitude (Crawford and Auton, 1993). This paper 
presents a method to combine a new order parameter with a 
classical one to estimate hardness. If the problem instance 
is predicted to be hard, the user may wish to avoid running 
the satisfiability determining algorithm, and use a 
satisfiability probability estimate instead. We present a 
statistically backed analytical method that uses the two 
order parameters to estimate this probability. 

In Section 2 we review the classical order 
parameter for 3SAT along with central results related to it. 
Section 3 presents the new order parameter and empirical 
data about its mean and variance. In Section 4 we describe 
an analytical method for predicting satisfiability based on 
the two order parameters. We also present statistical 
evidence that supports the validity of the assumptions that 
underlie this method. Section 5 compares the accuracy of 
the new satisfiability estimation method to one that only 
uses the classical order parameter. In Section 6 we analyze 
the effect of the new order parameter on hardness. We do 
this with respect to one complete algorithm - i.e. one that is 
guaranteed to halt and return the right answer - and one 
incomplete algorithm from the literature. Section 7 
concludes and presents future applications and research 
directions. 

2 The cllassical order parameter p 
Cheeseman et al. (199 1) and Mitchell et al. (1992) present 
the p = c/v order parameter as a hardness estimator for 
3SAT. Usually, the formulas with low p are satisfiable, but 
the ones with high p are not. On average the hard instances 
occur in the critical region (p = 4.3), where the instances 
undergo a phase transition from satisfiable to 
nonsatisfiable. Crawford and Auton (1993) empirically 
refine the location of this phase transition by the 
observation that 50% of the formulas are satisfiable on the 
line c = 4.24~ + 6.2 1. As the number of variables increases, 
the phase transition becomes more pronounced, and the 
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satisfiability becomes sharper. This hardness peak has been 
mostly studied for variants of the complete Davis-Putnam 
algorithm (Davis and Putnam, 1960; Mitchell et al, 1992; 
Crawford and Auton, 1993; Yugami, 1995). 

We repeated some of these tests to determine the 
satisfiability probability as a function of p. We ran tests for 
v E (50, 100, 150}, p E (0.1, 0.2 ,..., 9.0). At each one of 
these 270 experiment points, we generated 500 3CNF 
formulas and determined their satisfiability with a complete 
algorithm similar to that of Crawford and Auton (1993). 
The results, displayed in Figure 1, agree with the literature. 

50 variables 100 variables I50 variables 

jr\,, , ,jj”-y>~~, ,;1--, , ‘ I 

O,l,,$ I,,, 01,541618” 0311.561.. et. ,kU e.m 
Figure 1. Satisjiability probability as a function of the p- 

SAT 
parameter: p cm 

Throughout this paper, we use formulas that we 
generated by the standard method (Mitchell et al, 1992) for 
constructing hard 3SAT instances: for every clause, pick 
three variables randomly disallowing duplicates, and then 
negate each variable independently with probability 0.5. 
We use the same set of instances in all experiments, except 
in Section 5, where we use a separate test set to evaluate 
our satisfiability prediction method. 

3 The new order parameter A 

In our search for new 3SAT order parameters we examined 
a set of intuitively plausible predictors that were 
computable in linear time. During exploratory data 
analysis, just one of these turned out to predict 
satisfiability. We call this one A, and define it as follows. 

A= Cl POSX - negx I’ 

where posx is the number of positive (non-negated) 
occurrences of variable x, and negx is the number of 
negated occurrences of variable x in a formula. Given a 
3SAT problem instance, the value of A can be computed in 
O(c + v) time. 

The intuition behind A is that if the difference of 
positive and negative occurrences is large, assigning the 
variable the value with more occurrences satisfies a large 
number of clauses. On the other hand, if the numbers of 
positive and negative occurrences are close to each other, 
assigning the variable one of the values leaves a large 
number of clauses that will have to be satisfied in the future 
using a reduced number of variables. 

Figure 2 illustrates the fact that satisfiable 
formulas tend to have a larger A than nonsatisfiable ones at 
a given value of p. This difference is statistically 
significant. For example, in the regions 4 5 p I 5 in Figure 

2, all of the sample means for satisfiable formulas are 
greater than those for nonsatisfiable ones. Let us look at 
any one of the three panes in Figure 2. Assuming that the 
true means are equal, there would be a 0.5 chance of each 
sample mean for satisfiable formulas being greater than 
that for nonsatisfiable ones. So the chance of that 
happening at all eleven points (4.0, 4.1,...,5.0) is 

l/2” < 0.0005. Therefore, the difference is statistically 
significant even at the 0.0005 level in those regions. 
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Figure 2. Mean A as a function of fl The upper curve is.for 

satisfiable formulas ( p SAT ) and the lower is for nonsatis~able 

ones ( p NoN ). The high variability at the ends qf the curves is he 

to noise caused by the small number offormulas with extreme p 
1 yalnes for their class (i.e. SA T or NON). 

For a given p, SAT the difference p -,U NON 

becomes smaller as the number of variables increases. One 
might conclude that A’s discriminatory power drops as the 
number of variables increases, because this difference 
becomes insignificant. However, as Figure 3 shows, the 
variance of A for satisfiable formulas (Var[ASAT]) and the 
variance of A for nonsatisfiable formulas (Var[ANoN]) 
decrease drastically with increasing v. Therefore, the 
difference remains significant, and A’s discriminatory 
power remains intact. 

260 Constraint Satisfaction 



Satisfiable formulas 

025 

Nonsatisfiable formulas Thus c2 = l-pSAT(p). We use the normal 

0.25 j-1 approximation - that we statistically validate in Appendix 

A-for f:(A) and for f,“?(A): 

fy(A> = n(A,pSAT, Var[AsAT]) = n(A,pSAT,P/v), 

f,$%) = n(A,pNoN,Var[ANoN]) = n(A,pNoN$Jv) 

0.2 

0.15 

0.1 

0.05 

0 

Figure 3. Variance of A as a function of p. The top line is a 
-egression line for the 50 variable case, the middle line is for 100 

variables and the bottom line is for 150. 

The empirical regression line of the variance for 
the satisfiable formulas with 50 variables is Var[A] = 0.020 
p + 0.0019; r2 = 0.95. For 100 variables it is Var[A] = 
0.010 p + 0.00026; r2 = 0.97, and for 150 variables it is 
Var[A] = 0.0068 p + 0.00057; r2 = 0.97. For the 
nonsatisfiable formulas with 50 variables the regression 
line is Var[A] = 0.025 p - 0.019; r2 = 0.93. For 100 
variables it is Var[A] = 0.010 p + 0.0026; r2 = 0.88, and for 
150 variables it is Var[A] = 0.0076 p - 0.0018; r2 = 0.90. 
Based on these observations, we use the following formula 
for approximation for both satisfiable and nonsatisfiable 
formulas: 

Var[A SAT] = Var[ANoN] = p / v. 

4 Predicting satisfiability with p and A 

This section develops a new satisfiability prediction 
method based on g and A. The method relies on the 

assumption that A 
SAT 

and ANoN are roughly normally 
distributed at a given v and p. These assumptions are 
verified via rigorous statistical testing in Appendix A. Here 
we present the new method for predicting satisfiability. Let 
n(x, CL, 02) be a normal probability density function (pdf) 
with mean ~1 and variance 02. Let the pdf corresponding to 
A at a certain v and a certain p be fb,,p(A) for satisfiable 

and nonsatisfiable formulas combined. Similarly, let the 

pdf for satisfiable formulas be fy”pp’(A) , and le 

for nonsatisfiable formulas be ftyy (A) . Now 

the pdf 

where cl +c2 = 1, cl 2 0, and c2 2 0. Another constraint 
on cl is based on the p estimator (Fig. 1.): 

Now, the satisfiability probability 

P$%> = ~,f;~‘@) _ c,fv$?A) 
f,,(A) - c,f,y(A) + c,f,y’(A) = 
psAT(P> - f,s;“,7W 

~~~*(&f,~(A)+[1 -pSAT@)l. f,;‘(A) = 

Figure 5 shows the contours of this satisfiability probability 

based on the empirical PSAT and p NoN of Figure 2. The 
use of A refines satisfiability probability prediction 
compared to the use of p alone, which would imply vertical 
contours, i.e. A would be assumed to have no effect. The 
gain of using A is largest in the phase transition region. The 

contours are irregular due to the use of empirical PSAT and 

P NoN. This is especially apparent in the edge regions of 
the 50 variable case due to small sample sizes of satisfiable 
formulas for p > 5, and nonsatisfiable formulas for p < 4. 
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Figure 5. Satisfiability probability contours pbyPT (A) . 
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5 Evaluation of satisfiability prediction 
We compared the prediction accuracy of p alone to that of 
p and A together using a test set consisting of 100 formulas 
at each p E (0.1, 0.2 ,..., 9.0) for each v E { 50, 100, 150). 
These formulas were generated separately from the ones 
that we used to collect statistics for the prediction methods, 
but with the same algorithm. We determined the true 
satisfiability (1 or 0) of each formula using a complete 
algorithm. The satisfiability prediction error metric was the 
average absolute value of the difference of the satisfiability 

prediction ( psAT@) or psAT(A) ) and the true 4 
satisfiability. The prediction error of both predictors was 
largest in the phase transition region of p. At some point in 

this region the psAT(p) p re actor has a prediction error of d’ 
0.5, i.e. it is no more accurate than random guessing. The 

new predictor p, p sAT(A) had statistically significantly 1 
smaller prediction errors than the classical predictor 

pSAT (p) , and the advantage of p,sPPT (A) over p SAT cP> 
was largest in the hard region, Fig. 6. When measured at 

the worst p, the prediction error of p,yDT(A) was 0.424 for 

v = 50 (c = 220), 0.407 for v = 100 (c = 430), and 0.453 for 

v = 150 (c = 645). The corresponding errors for psAT(p> 
were 0.500, 0.494 and 0.496. 

Mean error, v=50 Mean error, v= 100 Mean error, v= 150 

Figure 6. Prediction error of the two predictors. The higher mrve 

isfor PSAT@> and the lowerfor pz(A). 

To make sure that the advantage of using the A 
estimator does not diminish with increasing numbers of 
variables, we ran tests for 200 and 250 variables at the 
hardest - as suggested by Crawford and Auton’s (1993) 
formula c = 4.24~ + 6.21 - region of p. The prediction 

errors for p,yPT(A) were 0.4 17 (v = 200, c = 854) and 

0.413 (v = 2;0, c = 1066). The corresponding errors for 

pSAT (p) were 0.494 and 0.474. These results lead us to 
conclude that the advantage of using the A estimator does 
not diminish as the number of variables increases. 

6 Relationships between A and hardness 
The average hardness of formulas is highest in the phase 
transition region of p (Cheeseman et al., 1991). This led us 
to test whether the A parameter also impacts hardness. At 
each v E (50, 100, 150) and each p E {O.l, 0.2, . . . . 9,O) we 

divided the formulas into 5 equal size buckets according to 
A. We did this division for each of the following 
experiments separately. The average hardness of the 
formulas in each bucket gave one data point for Figures 7- 
10. 

First, we analyzed the effect of A on the number of 
steps required by a complete algorithm that uses the two 
primary heuristics of Crawford and Auton (1993). To begin 
with, we divided the 500 formulas into two categories: 
satisfiable and nonsatisfiable ones. On average, satisfiable 
formulas become harder as p increases - as expected from 
the literature (Mitchell et al., 1992). This is because with 
more clauses - i.e. constraints - more of the variable 
assignments are nonsatisfiable and thus more backtracking 
is required. The contours are slanted to the right implying 
that, on average, satisfiable formulas become easier as A 
increases, Fig. 7. Due to reasons that were discussed in 
Section 3, increasing A promotes satisfiability. A larger 
number of variable assignments will be satisfiable and thus 
less backtracking is required. 

Figure 8 shows that, on average, nonsatisfiable 
clauses become harder as p decreases, as expected 
(Mitchell et al., 1992). With fewer constraints, early 
pruning of branches becomes more difficult and the search 
proceeds to deep levels. Because no variable assignments 
satisfy the formula, deep backtracking occurs leading to 
large time costs. On average, the nonsatisfiable low-p 
formulas are harder than the formulas in the phase 
transition region. Yet, these formulas are so rare that the 
average hardness over satisfiable and nonsatisfiable 
formulas together is highest in the phase transition region. 

The contours are tilted to the right implying that, 
on average, nonsatisfiable formulas become harder as A 
increases. This can be explained by the size of the search 
trees when the algorithm branches i>n an arbitrary variable 
x. For low A, x occurs evenly @nsx c- negx), and there are 
two subtrees with roughly equal numbers of unsatisfied 
clauses: moderately deep backtracking is required. For high 
A, x occurs unevenly. For the more frequent value of x, the 
remaining subtree has very few unsatisfied clauses 
(constraints) and will require deep backtracking. For the 
less frequent value of x, the remaining subtree will have 
very many unsatisfied clauses and a contradiction will be 
found with shallow backtracking. Because no variable 
assignments satisfy the formula, both trees will have to be 
explored in either case. Time is exponential in search 
depth; hence the time cost incurred by deep backtracking in 
one subtree offsets any time saved by shallow backtracking 
in the other subtree. Therefore, search time tends to be 
higher with high A. 

When the satisfiable and nonsatisfiable formulas 
are merged, the average hardness is highest around the 
threshold p = 4.3 as expected, Fig. 9. The contours have a 
slight tilt to the right implying that below the threshold, on 
average, formulas become easier as A increases, and above 
the threshold, formulas become harder as A increases. 
These results are intuitive, because the characteristics of 
satisfiable formulas prevail for low p where they are 
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dominant, and for high p, the characteristics of 
nonsatisfiable formulas prevail. 

The above results are specific to our complete 
algorithm. In order to get an indication of whether the 
results hold in general, we also analyzed hardness using the 
BREAKOUT (Morris 1993) satisfiability determining 
algorithm. BREAKOUT is incomplete, i.e. if the formula is 
not satisfiable, the algorithm never halts, but if the formula 
is satisfiable, the algorithm may halt, proving satisfiability, 
or it might not halt. BREAKOUT was run on the satisfiable 
formulas, and its number of steps was recorded. If it had 
not found a solution by 20,000 steps, the run was aborted 
and 20,000 was recorded as the required number of steps. 
As expected, the average hardness of satisfiable formulas 
increases as p increases, Fig. 10. This is because fewer 
variable assignments satisfy the formula and thus more 
search is needed. As with the complete algorithm, on 
average, problem instances become easier as A increases 
for a given j3, because more variable assignments satisfy 
the formula and thus less search is required. 

7 Conclusions and future research 
We presented a new order parameter, A, for 3SAT. Like the 
classical order parameter, it can be computed in Iinear time, 
and it can be used to predict satisfiability and hardness. To 
estimate the satisfiability probabiIity, we modeled the 
distribution of A for satisfiable formulas, and the 
distribution of A for nonsatisfiable formulas, with normal 
distributions. Based on these models we derived an 
analytical formula for the satisfiability probability. The 
new estimator is significantly more accurate than the 
classical estimator that uses p alone. The difference is 
greatest in the phase transition region of p. 

For both a complete and an incomplete algorithm, 
on average, satisfiabIe formulas become easier as A 
increases. On the other hand, for the complete algorithm, 
nonsatisfiable formulas become harder as A increases. The 
incomplete algorithm never halts on nonsatisfiable 
formulas. For satisfiable and nonsatisfiable formulas 
combined, average hardness using the complete algorithm 
decreases with increasing A under the threshold of p, and 
increases with increasing A above the threshold of p. 

The results provide a deeper understanding of 
3SAT, but they also have other uses. If a satisfiability result 
is required under real-time constraints, giving the estimate 
generated in linear time may be more appropriate than 
trying to run a satisfiability determining algorithm. Using 
linear time estimates and running complete satisfiability 
determining algorithms are two ends of a spectrum. A 
continuum of algorithms can be developed such that 
allowing more time enhances satisfiability prediction 
accuracy: the rigid distinction between order-parameter- 
based prediction and satisfiability determining algorithms 
is somewhat artificial. 

The satisfiability estimate can also be used as a 
mandatory setup phase for an anytime algorithm for 
determining satisfiability (Sandholm and Lesser, 1994b). 

The new order parameter can be used to parameterize the 
performance profile of such an algorithm. 

The hardness analysis of this paper can be used to 
predict the termination time of a satisfiability determining 
algorithm. The distribution (parameterized by v, p and A) 
of termination time of each alternative algorithm can also 
be used in algorithm selection. Furthermore, order 
parameters can be used in search heuristics - for example 
in variable and value ordering, in pruning branches that are 
unlikely to contain a solution, and to trade solution quality 
off against computational complexity (Zhang and 
Pemberton, 1994). 

Our satisfiability and hardness prediction methods 
are based on a statistical analysis of 3SAT instances from a 
specific hard instance distribution. Therefore, they are not 
necessarily accurate for instances from a different 
distribution - e.g. reduced from a different problem. To use 
the methods with a different instance distribution, the 
statistical data for calibrating the methods should be 
collected from instances from the corresponding 
distribution. Nevertheless, prediction with p and A may be 
more robust against variations in the instance distribution 
than prediction with p alone because the combined method 
performs a deeper analysis with an added orthogonal 
perspective. 

The BREAKOUT algorithm is not necessarily 
efficient for hard 3SAT instance distributions, although 
Morris (1993) shows very promising results for easier 
distributions. For the studied problem instances, it was 
usually slower than a complete algorithm similar to that of 
Crawford and Auton (1993). Also, it often failed to find a 
truth assignment for a satisfiable formula, especially in the 
hard region. In the future, it would be interesting to study 
the hardness of other incomplete satisfiability determining 
algorithms such as GSAT (Selman et al., 1992) or its newer 
variants (Gent and Walsh, 1993; Selman and Kautz, 1993; 
Cha and Iwama, 1995) as a function of A. 

The analytical formula for the satisfiability 
probability based on the mentioned problem instance 
features (v, p, and A) and possibly other such features is an 
interesting open problem. It seems difficult: even the 
formula that only accounts for v and p is unknown 
(Williams and Hogg, 1993; Yugami, 1995). 
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Appendix A. Verifying the normality of AsAT and ANoN 

In this appendix we use a rigorous standard statistical test 
to show that the assumptions regarding the normality of A 
for satisfiable and nonsatisfiable formulas separately, for a 
given value of v and p, are valid. These assumptions were 
used in Section 4 to derive the analytical estimator for the 
satisfiability probability. We statistically verify the 
assumptions using the previously presented set of 3SAT 
instances. At each experiment point - combination of v and 
P- we divide the 500 formulas into satisfiable and 
nonsatisfiable ones. This orovides one (nossiblv emotv) set 

‘L ’ I” 
of ASAT’ 

hON 
s and one of A ‘s at each experiment point. 

Let us call the corresponding cumulative distributions 

Ffy(A) and Fvyr(A). 
At each point (v, g), the null hypothesis is that the 

distribution of A 
SAT 

and that of A 
NON 

are normal with 

the same mean and variance as those of A 
SAT 

and ANoN . 

Let us call the normal distributions nrpT(A) and 

nvNF(A) , and their cumulative distributions NySApT(A) 

and N:‘(A). N ex we discuss the testing of the null t 
hypothesis for satisfiable formulas. For nonsatisfiable ones 
it is analogous. To statistically test whether we can reject 
the null hypothesis, we use the following procedure at each 

point (v, p). We generate 300 samples of n$iT(A) via 

Monte Carlo simulation, with each sample having as many 
A-values as there were satisfiable formulas at that point (v, 
p). Let us call the cumulative distribution of each such 

sample ALIT (A)i , i E { 1, 2 ,..., 300). For each such 

sample, we compute how much it deviates from the actual 

N$‘( A) by using the Kolmogorov-Smirnoff metric 

(D’igostino and Stephens, 1986): 

ei =maxiVvp 
A I ‘fT(A)- fiT(A)+ 

This provides a sampling distribution of size 300. Next we 
calculate the proportion of these 300 ei’s that exceed the 
actual deviation 

This proportion is the confidence level (p-value) at which 
we could reject the null hypothesis. In other words, if the 
actual deviation were greater than almost all of the 
deviations in the sampling distribution, we could 

confidently reject the null hypothesis that the A SAT1s came 
from a normal distribution. Figure 4 shows these p-values. 
They vary greatly, but especially in the phase transition 
region of p they are large enough to justify not rejecting the 

null hypothesis that the A 
SAT 

‘s and ANoN’s are from 
normal distributions. 

50 variables 100 variables 150 variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . 
Figure 4. The figures show the p-values for the null hypothesis 
that the sample (one dot) is from a normal distribution with the 

mean and variance of the sample. The top row denotes satisfiable 
formulas; the bottom row nonsatisfiable ones. 
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50 variables 
Appendix B. Hardness figures 
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Figure 7. Contours of the steps required to determine satisfiability using a complete algorithm. Results are for satisfiable clauses. The gray 
lines represent the envelope in which the mean A‘s within each bucket at each v fall. 
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Figure 8. Contours of the steps required to determine satisfability using a complete algorithm. Results are for nonsatisfiable clauses. 
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Figure 9. Contours of the steps required to determine satisftability using a complete algorithm. Results are for all clauses (satisfiable and 
nonsatisfiable). 
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Figure 10. Contours of the steps required to determine satisfiability with the incomplete BREAKOUT algorithm. Results are for satisfiable 
clauses: the algorithm never halts on nonsatisfiable ones. 
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