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Abstract 

This paper presents a search technique for scheduling 
problems, called Heuristic-Biased Stochastic Sampling 
(HBSS). The underlying assumption behind the HBSS 
approach is that strictly adhering to a search heuris- 
tic often does not yield the best solution and, there- 
fore, exploration off the heuristic path can prove fruit- 
ful. Within the HBSS approach, the balance between 
heuristic adherence and exploration can be controlled 
according to the confidence one has in the heuristic. 
By varying this balance, encoded as a bias function, 
the HBSS approach encompasses a family of search al- 
gorithms of which greedy search and completely ran- 
dom search are extreme members. We present empir- 
ical results from an application of HBSS to the real- 
world problem of observation scheduling. These re- 
sults show that with the proper bias function, it can 
be easy to outperform greedy search. 

Introducing HBSS 

This paper presents a search technique, called 
Heuristic-Biased Stochastic Sampling (HBSS), that 
was designed to solve scheduling problems and other 
constrained optimizat8ion problems. The motivating 
idea behind the HBSS approach is, briefly, that heuris- 
tics encode advice which is generally useful, but should 
be taken with “a grain of salt”. Deriving heuristics that 
are both accurate and computationally inexpensive is 
a difficult endeavor for most problems. This is espe- 
cially true when not just any solution is acceptable and 
the heuristic is further required to find a high quality 
solution. Furthermore, the larger the class of problem 
instances, the more difficult it is for a search heuris- 
tic to perform consistently well for each instance. The 
performance quality of search techniques (e.g., greedy 
search) can be too dependent on the accuracy of the 
search heuristic employed. The underlying assumption 
behind the HBSS approach is that strictly adhering to 
a search heuristic often does not yield the best solution 
and, therefore, that exploration off the heuristic path 
can prove fruitful. Within HBSS, the balance between 
heuristic adherence and exploration can be controlled 
according to the confidence one has in the heuristic. By 
varying this balance, the HBSS approach encompasses 

a family of search algorithms of which greedy search 
and completely random search are extreme members. 

Heuristic-biased stochastic sampling can be viewed 
as a generalization of iterative sampling (Langley 1992; 
Minton, Bresina, & Drummond 1994). Iterative sam- 
pling operates in a refinement search space formulated 
as a n-ary tree in which each internal node corresponds 
to a partial solution, and the leaf nodes either corre- 
spond to a complete solution or a failure. A solution 
is generated by starting at the root node and incre- 
mentally selecting a trajectory in the tree by making a 
random choice at each decision point. For search trees 
which do not have finite depth, a depth bound is used. 
This process is repeated some number of times, always 
restarting from the root node. No memory is kept 
of the trajectories selected on past iterations; i.e., the 
search space is sampled with replacement and, hence, 
the technique is nonsystematic (redundant). 

The overall control structure of HBSS is the same 
as for iterative sampling; the difference lies in how a 
choice is made at each decision point. In contrast to 
iterative sampling’s random exploration of the search 
tree, HBSS makes use of a given search heuristic to 
focus its exploration. The degree of this “heuristic fo- 
cusing” is determined by a given bias function. The 
selection of the bias function typically reflects the con- 
fidence one has in the heuristic’s accuracy - the higher 
the confidence, the stronger the bias. When employing 
a weaker bias, there is a greater degree of exploration, 
yielding a greater variety in the solutions found; in con- 
trast, when employing a stronger bias, fewer unique 
solutions are produced. 

The HBSS algorit,hm is given in Figures 1 & 2; the 
HBSS routine invokes the HBSS-search routine to per- 
form a sampling iteration resulting in either a failure or 
a solution. At each decision point within HBSS-search, 
the alternative choices are sorted according to the given 
heuristic, and each alternative is assigned a rank based 
on this sort. We assume that ranks are positive inte- 
gers; i.e., the top rank is 1. The bias function is then 
used to assign a non-negative weight to each choice 
based on its rank. These weights are then normal- 
ized by dividing each one by the sum of the weights. 
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HBSS(N, objective, state0, heuristic, 
bias, bound) 

for j = 1 to N ( 
result := 

HBSS-search(0, state0, heuristic, 
bias, bound) 

unless result = failure ( 
score := objective(result) 
when score is better than best-score ( 

best-score : = score 
best-solution := result 3 

3 
3 

return (best-solution, best-score) 
end 

HBSS-search(depth, state, heuristic, 
bias, bound) 

if solved? (state) 
then c return solution(state) ) 
else-if state is a leaf or depth > bound 
then ( return failure ) 
else C 

for each child of state ( 
score [child] : = heuristic(child) 3 

sort child nodes based on scores 
total-weight := 0 
for each child ( 

rank[child] := sort position 
weight [child] := bias(rank[child]) 
total-weight := 

total-weight + weight [child] ) 

Figure 1: Heuristic-biased stochastic sampling alg. for each child of state < 
probability [child] : = 

weight [child] / total-weight 3 

The normalized weight for an alternative represents 
its probability of being selected; an alternative is se- 
lected according to these probabilities by a weighted 
random process. On each iteration, the current best 
schedule and best score are determined. When HBSS 
is employed in schedule generation, the best schedule 
and best score are initialized based on the results of 
a greedy search. However, this initialization step is 
omitted from Figure 1 because it is not used in the 
experiments reported in order to better compare the 
performance of the different, bias functions. 

I 

child := ieighted random selection 
based on probability 

depth := depth f 1 
HBSS-search(depth, child, heuristic, 

bias, bound) 
J 

end 

Figure 2: HBSS subroutine that performs one iteration 

Observation Scheduling Problem 
The HBSS algorithm can perform iterative sampling 

by defining the bias function to give equal weight to 
each alternative, for example, {bias(r) = 1 ), where 
Y is the rank. At the other extreme, the following 
bias function causes the algorithm to perform greedy 
search: (bias(l) = 1; for 1” > 1, bias(r) = 0). The 
following are example points in the bias spectrum. 

e logarithmic: bias(r) = log-‘(r + 1) 

* linear: bias(r) = l/r 

0 polynomial(n): bias(r) = T+ 

0 exponential: bias(r) = e- 

Figure 3 shows an example of how six bias functions as- 
sign selection probabilities, where “poly(n)” is a poly- 
nomial of degree n; the random bias (as in iterative 
sampling) is also shown. In the example, we assume 
that there are thirty alternatives to select, among; the 
figure lists the selection probabilities for the top five 
ranked choices and the probability of selecting one of 
the remaining 25 choices. This example shows that the 
4th degree polynomial is the strongest bias function, in 
the sense that it follows the heuristic’s recommenda- 
tion more often than the other bias functions. In terms 
of bias strength, the exponential function is between 
the 2nd and 3rd degree polynomials. 

Before describing the experiments, we first briefly de- 
scribe the observation scheduling problem; for further 
details see Bresina, et al. (1994) and Drummond, et 
al. (1995). Th e input to the scheduler is a set of obser- 
vation requests submitted by one or more astronomers 
(for details on the request specification language, see 
Boyd, et al., 1993). Each observation request speci- 
fies an observation program as well as constraints and 
preferences regarding when it, can be executed. An ob- 
servation program is a sequence of telescope movement 
and instrument commands. 

A program is enabled on a given night if all of its 
constraints are satisfied. The primary constraint is 
that each request can be executed only within a spe- 
cific time interval. On a given night, the observation 
program can only be executed during the intersection 
of the program’s interval and that night’s interval of 
darkness. Enablement is also affected by the moon - 
each program includes a constraint regarding whether 
the moon must be up, down, or either. Furthermore, 
even those programs that are enabled when the moon 
is up cannot be executed when its observation targets 
are too close to the moon. We refer to the time interval 
(for a given night) during which a program can begin 
execution as its enablement interval. 

An example of a preference is the relative priority 
that an astronomer assigns to each observation request. 
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Figure 3: Table showing, for each bias function (and random), the selection probabilities assigned to the top five 
ranked choices and the probability of selecting one of the remaining 25 choices. 
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Figure 4: Shape and expected schedule quality of search tree. 

On many nights, not all of the possible requests can 
be executed; these relative priorities help determine 
which subset to execute on a given night. Each obser- 
vation program typically takes around five minutes to 
execute, and between 60 and 140 programs can be exe- 
cuted during a night. We refer to a night as overloaded 
if the sum of each enabled observation program’s dura- 
tion is greater than the night’s duration; if the enabled 
duration sum is less than the night’s duration, then we 
refer to the night as underloaded. 

The scheduler’s task is to find a sequence of obser- 
vation programs that achieves a good score according 
to a given objective function. The primary objective 
is to execute as many of the programs as possible. A 
schedule is penalized for those enabled programs that 
are missed (not in the schedule); the penalty is greater 
for higher priority programs. The secondary objectives 
are to maximize data quality by minimizing airmass 
and to minimize telescope slewing. In the experiments 
reported here, the objective function used to evalu- 
ate schedules is defined as: 100 x missed penalty 
+ 10 x average airmass + average slew. The 
weights are set such that the airmass attribute only 
distinguishes between schedules which have the same 
missed penalty score, and the slew attribute only dis- 
tinguishes between schedules which are equivalent with 
respect to the other two attributes. The highest prior- 
ity is 1 and the lowest priority is 10; the missed penalty 
score is c[ll - priority(0)12, where the summation is 

depth p: 84.85 CT: 1.35 
size PI 2.9 x 10131 g: 5.7 x lo132 

min: 3.4 x 10”’ max: 1.7 x lOId 

Figure 5: Depth and size of search tree. 

over the missed observation programs, 0. The other 
two attribute scores are computed from the local hour 
angle of the observations; their definitions are not im- 
portant for this paper. For this objective function, 
lower scores are better. 

The search space is formulated as a chronologically 
organized tree where the root, node of t,he tree contains 
the world model state at dusk. The alternative arcs 
out of a given node represent the enabled observation 
programs. An arc connectsing two nodes represents the 
simulated execution of the observation program, which 
(mainly) consists of incrementing the clock time by the 
estimated mean duration of the program. No observa- 
tions can be done after dawn, so the search tree has 
finite depth. Note that each node corresponds to a 
unique feasible schedule prefix and, hence, each leaf 
node corresponds to a unique feasible complete sched- 
ule; there are no failure nodes. 

HBSS Experiments 

In this section, we illustrate the heuristic-biased 
stochastic sampling approach by presenting a compar- 
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Figure 6: Quality Density Functions for logarithmic bias and linear bias. 

ative analysis of six bias functions: logarithmic, lin- 
ear, exponential, and polynomial of degree 2, 3, and 
4. The nature of a scheduling problem in this domain 
depends on the observation programs and on the par- 
ticular night (expressed as Julian Date, or JD). Our 
analysis is based on the (roughly) 150 observation pro- 
grams that, for the past several years, have been ex- 
ecuting on an automatic telescope at Fairborn Obser- 
vatory (see Henry 1995). These observation programs 
are grouped into four priority classes with priorities of 
4, 5, 9, and 10. The analysis is based on the problem 
instance corresponding to Julian Date 2449930, which 
is July 31, 1995. On JD 2449930 the moon is down 
most of the night so the fainter stars can be observed; 
this tends to overload telescope. During this night, 99 
of the programs are enabled, with a duration sum of 
554.67 minutes. There are 505.19 minutes of observa- 
tion time, resulting in 49.48 minutes of overloading. 

Before comparing the impact of the different 
bias functions, we first statistically characterize the 
scheduling problem. The shape and size statistics for 
JD 2449930 are given in Figures 4 and 5. Note that the 
number of enabled programs (i.e., average branching 
factor) remains high all night, indicating overloading. 
These statistics are based on 1000 trials of iterative 
sampling and the size estimates were computed using 
the method of Knuth (1975). With a search size of 
0(10131), iterative sampling has a minuscule chance 
of finding a schedule better than the greedy solution. 
The schedules have approximately equal length, as in- 
dicated by the low standard deviation (~7) of the depth, 
and the branching factor within each depth is nearly 
constant, as indicated by the error bars representing 
the 97% confidence interval.’ These two results im- 
ply that the possible schedules will be sampled almost 
uniformly by the iterative sampling process. 

1 Except for the rightmost points, the error bars are too 
small to distinguish in the figure; the larger error at the 
deepest points is mainly the result of a reduced sample size 
because of schedule length variance. 

0 5000 10000 15000 20000 25000 
Score Intervals 

Also included in Figure 4 is the Quality Density 
Function (QDF) (Bresina, Drummond, & Swanson 
1995) for the search tree. A QDF is a statistical esti- 
mate of the expected density of schedules within differ- 
ent quality ranges and is based on the objective func- 
tion scores obtained via iterative sampling. Recall that 
for the objective function (defined in the previous sec- 
tion), smaller scores indicate better schedules. To con- 
struct the QDF, 1000 randomly generated schedules 
were scored by the objective function and the scores 
were then quantized into 100 intervals of equal size. In 
the QDF (F g i ure 4), an impulse line at the midpoint 
of each interval indicates the number of schedules that 
scored within that interval. The mean of the scores is 
18841.17 and the standard deviation is 3896.61. The 
QDF gives an indication of expected schedule qual- 
ity under uninformed sampling and, hence, serves as a 
baseline against which informed sampling with differ- 
ent bias functions can be compared. 

We next define the search heuristic. The heuristic is 
employed to help determine which enabled observation 
program to select at each decision point; the program 
with the lowest heuristic score is the most preferred. 
The heuristic is a multi-attribute function based on a 
set of observation selection rules (Boyd et al. 1993) 
used as a dispatch policy in automatic telescope con- 
trollers. There are four dispatch rules which are ap- 
plied in this sequence, and each rule only breaks ties 
that remain from the application of preceding rules; 
the last rule is used to arbitrarily break any remain- 
ing ties. Our heuristic function has three attributes, 
corresponding to the first three dispatch rules, and is 
defined as: WI x priority +wz x run count +ws x 
enablement time, where run count is the number of 
times the program occurs in the current schedule prefix 
and enablement time is the time currently remaining 
in the program’s enablement interval. 

For the experiments reported here, the attribute 
weights used in the search heuristic are: wr = 0.4, 
w2 = 0.4, wa = 0.3. These attribute weights were the 

274 Constraint Satisfaction 



Polynomial(3) Biased Sampling 
I # I I I 8 

5000 - 

0’ _ 1. dbo 6;ld 8iO. A 0' 
ii0 

I - -- .L -...- L -_- _ 4 
0 200 1000 0 400 600 800 1000 

Sample Sample 

Polynomial(4) Biased Sampling Exponential Biased Sampling 
I I , I I I , I I I t I 

5000 - 5000 - 
. . ..-w.. w . . . . . 00.01D.. .eeae. . *m. a 

4000 - 4000 - 

O'- .J OL _ -,.--..-._1 
0 2;o 460 6;O *ii0 1000 0 2;)o 4;)o 6100 800 1000 

Sample Sample 

Figure 7: Scores obtained by HBSS with different bias functions. 

result of performance tuning by a colleague; what is im- The scores for the three polynomial bias functions 
portant to note about t,hese weights is that they make and the exponential bias function tend to cluster in 
the heuristic behave like the dispatch rules, due to the only a few score intervals; hence, instead of plotting 
ranges of values for the different attributes. In fact, for their QDFs, in Figure 7 each sample’s score is plot- 
JD 2449930, greedy search with these weights and the ted. The two primary clusters (in Figure 7) result from 
dispatch policy generate identical schedules that have whether or not the heuristic was followed on the first 
an objective score of 4220.35. scheduling decision; this is further explained below. 

We next report the results of the first part of the 
comparative analysis of the six bias functions. For 
each bias function, using the same heuristic function, 
1000 iterations of the HBSS-search algorithm (Figure 
2) were performed. Each resulting schedule was scored 
by the objective function (defined in the previous sec- 
tion). Figure 6 shows the quality density functions for 
logarithmic and linear bias functions. Compared to 
the random QDF in Figure 4, these plots show that as 
bias strength is increased, two changes tend to occur 
in the QDFs: the expected quality mass shifts left to 
a range of better scores close to the greedy score and 
this mass becomes less dispersed. However, this does 
not mean that the stronger the bias is, the better. A 
stronger bias tends to produce solutions more similar 
to the greedy search solution; hence, in order to signif- 
icantly outperform greedy search, the right degree of 
exploration must be used. 

The second part of the comparative analysis eval- 
uates the performance of HBSS in terms of the best 
schedule’s score after a given number of samples. For 
each of the six bias functions, we collected data re- 
garding the best score after a sample size of 1, 5, 10, 
15, and 20. Given a bias function and a sample size, 
a trial consisted of running HBSS and collecting the 
best objective score. For each pair of bias and sample 
size, 100 trials were run and the mean value of the best 
scores was computed.2 

Figure 8 shows a plot of the mean values for the six 
bias functions; the score obtained by greedy search is 
plotted as a reference line. As can be seen in Figure 8, 
it does not take many samples to find a better sched- 

2Note that the number of times HBSS-searchis invoked 
by HBSS is 100 x sample size. However, regardless of sam- 
ple size, the mean value is based on 100 scores; although, 
sample size does affect the standard deviation. 
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Figure 8: Mean value (averaged over 100 trials) of best 
score after a given number of samples (1, 5, 10, 15, & 
20) for five bias functions, plus the greedy score. 

ule than found by greedy search - except when the day, the average best lo-sample score was computed by 
bias is very weak (e.g., logarithmic). The figure also 
shows that the exponential and 2nd degree polynomial 

running 100 trials (of 10 samples each). The results, 
shown in Figure 9, indicate that even with only 10 

bias functions outperform the two weaker and the two samples, usually some improvement can be made, and 
stronger bias functions. occasionally a substantial improvement can be made. 

Why is it so easy to outdo greedy search, as well as 
the dispatch rules, on this problem? The dispatch rules 
have been employed by telescope controllers for more 
than six years with overall good performance. How- 
ever, for the scheduling problem of JD 2449930, there 
is one scheduling decision where the normally good dis- 
patch policy does not yield the best choice. This de- 
cision has a significant impact on schedule quality; it 
is what differentiates between the two score clusters 
shown in the plots of Figure 7. 

Related Research 

We now discuss research related to our work with 
heuristic-biased stochastic sampling. As an illustration 
of the generality of the HBSS algorithm, we explain 
how the related search techniques can be expressed 
within the HBSS framework. 

On JD 2449930, there is a priority 5 observation pro- 
gram that can only start execution during the first five 
minutes of the night (after then, it sinks below the hori- 
zon). The search heuristic and the dispatch rules do 
not select this program to execute first because there 
is also a priority 4 program enabled at the beginning of 
the night. Since that program takes over six minutes 
to execute, the lower priority program can not be exe- 
cuted afterwards. However, the enablement interval of 
the higher priority program is over an hour long; hence, 
its execution can be postponed. When HBSS follows 
the heuristic on the first selection, the schedules found 
score in the higher (worse) score cluster; whereas those 
schedules that begin with the second ranked program 
instead, score in the lower score cluster (Figure 7). Al- 
though it is generally a good idea to prefer higher pri- 
ority programs to execute, this is an example of where 
it is not the best choice and where deviation from the 
heuristic can improve schedule quality. 

The experiments reported above focus on a single 
day; to lend support to the claim that HBSS is gener- 
ally useful in this domain, we measured the improve- 
ment over greedy search achievable with 10 samples of 
HBSS using the exponential bias over 50 days. For each 

In Harvey’s dissertation on nonsystematic backtrack 
search (Harvey 1995, section 4.8.1), he briefly men- 
tions some stochastic sampling experiments in a more 
restricted context than considered here. The experi- 
ments involve satisfiability problems formulated as bi- 
nary search trees. The bias is specified as a constant 
representing the probability of following the heuristic 
choice; hence, a bias of 0.5 yields an iterative sam- 
pling search and a bias of 1.0 yields a greedy search. 
In terms of the HBSS formalism, this is expressed as: 
{bias( 1) = c ; bias(2) = 1 - c}, where c is the user- 
selected constant. Counter to his initial intuitions, 
Harvey found that these two extremes performed bet- 
ter than an intermediate bias of 0.875. However, when 
he added “bounded backtracking”, then the interme- 
diate bias outperformed the two extremes. The expla- 
nation of these two contrasting results was suggested 
as a topic for further investigation. In his dissertation, 
Harvey also presents limited discrepancy search, which 
systematically enumerates paths in a (binary) search 
tree, such that the paths are ordered by the number of 
times the heuristic choice was not followed. The first 
algorithm that performed this type of exploration was 
left-first search (Basin & Walsh 1993), which was used 
to find minimal difference unifications. 

Related to heuristic-biased stochastic sampling is the 
class of local search algorithms, especially those that 
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Figure 9: Mean value (averaged over 100 trials) of best 
score after 10 samples, with exponential bias, com- 
pared to greedy search. 
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use stochastic search moves. Local search approaches 
are formulated as repair (or modification) search; that 
is, the search space is formulated with nodes represent- 
ing complete solutions3 and edges representing small 
local solution modifications (i.e., neighboring solutions 
are similar). Search (typically) starts from a randomly 
generated solution; at each node, one of the neighbor- 
ing solutions is selected. This process continues until 
some stopping condition is satisfied. Often this local 
search process is repeated with new random starting 
solutions and the best solution is returned. 

A given evaluation function is used to score the 
neighboring solutions; conventionally, lower scores rep- 
resent better solutions. If all neighbors are worse than 
the current solution, then the search is at a local min- 
imum, which is only rarely the global minimum. One 
approach is to simply restart the search from a new 
randomly generated solution whenever a local mini- 
mum is reached. Ot,her approaches involve the intro- 
duction of randomness or noise int(o neighbor selection 
in order to escape local minima. Stochastic local search 
is a growing area of research and we mention only some 
example algorithms to convey the relationship between 
this algorithm class and the HBSS technique. 

Though HBSS was not designed to operate in a re- 
pair search space, the algorithm (Figures 1 & 2) can 
still be applied with only minor modification. For a lo- 
cal search context, the depth bound in HBSS performs 
the function of the stopping condition. In refinement 
search, the initial state (stateo) is the same for each 
iteration of HBSS; however, in repair search, it would 
correspond to a new randomly generated solution. The 
comparison of a neighbor and the current solution is 
often a key aspect of local search. One way to incor- 
porate t,his comparison into HBSS is to include, as a 
parameter to the bias function, the rank of the current 
solution with respect to its neighbors. 

Within local search, an analog to iterative sampling 
is random walk and both the min-conflicts local search 
strategy (Minton et al. 1990) and GSAT (Selman, 
Levesque, & Mitchell 1992) can be viewed as analogs 
to greedy search (with random restarts). 

GSAT simply ignores local minima - it always se- 
lects the neighbor with the lowest score (even if greater 
than the current score) and restarts after a given max- 
imum number of moves. Selman and colleagues have 
developed various extensions to the basic GSAT algo- 
rithm, some which combine aspecks of random walk 
and GSAT’s greedy search, e.g., mixed random walk 
strategy (Selman & Kautz 1993). This strategy can 
be expressed within HBSS as: {bias(l) = 1 - p ; for 
T > 1, bias(r) = p/(n - l)}, where p is a user-specified 
constant and n is the number of choices.4 

“In some cases, infeasible solutions (i.e., ones that vi- 
olate constraints) are also included, e.g., as in the min- 
conflicts strategy of (Minton et al. 1990). 

4GSAT solves satisfiability problems, and this encoding 
assumes that only those neighbors that modify a variable 

In simulated annealing (Kirkpatrick, Gelatt, & Vec- 
chi 1983) noise is introduced as follows. A random 
neighbor is repeatedly chosen until one is selected (ac- 
cepted) by the following decision process. Let AQ be a 
measure of the quality difference between the neighbor 
solution and the current solution; hence, if AQ > 0, 
then the neighbor solution is worse. If AQ 5 0, then 
select the neighbor; otherwise, with a probability of 
e-*Qlr, select it anyway. T is the temperature param- 
eter, which can be held constant, but more typically, 
starts out high and is reduced according to some “cool- 
ing schedule”. To produce simulated annealing within 
the HBSS framework, the bias function needs the rank 
of the current solution (as discussed above). Let T, 
be the current solution’s rank (w.r.t. to its neighbors) 
and define the bias as follows. {bias(r,,r) = 1.0, if 
T 5 TV ; bias(rC, r) = e(rc--r)lT, if r > rC}. 

Though quite different in operation from HBSS, the 
Bayesian Problem Solver (Hansson & Mayer 1989) 
shares the underlying assumption that there is uncer- 
tainty in the search heuristic. Within the BPS ap- 
proach, heuristic search is viewed as inference from 
uncertain evidence. Heuristic uncertainty is explic- 
itly modeled based on results of previous search and a 
Bayesian inference procedure is used to control search. 

Concluding Remarks 

In this paper, we introduced the Heuristic-Biased 
Stochastic Sampling approach for constrained opti- 
mization problems and, to illustrate its application, we 
presented a comparative analysis of six different bias 
functions using the real-world problem of observation 
scheduling. As with most advice, the key is know- 
ing when to follow it and when to make an exception. 
The HBSS approach addresses this issue by performing 
“informed stochastic sampling”. The HBSS algorithm 
encompasses a wide spectrum of search techniques 
that incorporate some mixture of heuristic search and 
stochastic sampling. 

The reported experiments showed that, for the ex- 
ample problem instance, HBSS was able to outperform 
greedy search within a small number of samples. Of the 
six bias functions examined, the best performers were 
the exponential and the 2nd degree polynomial; the two 
weaker bias functions (logarithmic and linear) veered 
too far from the heuristic’s advice and the two stronger 
bias functions heeded the advice too often. The exper- 
iments reported here are only a beginning; other em- 
pirical investigations have been carried out and more 
are planned for the future. We have collected data on 
depth-sensitive bias functions, e.g., one that uses an 
exponential bias until some depth cutoff and then uses 
a greedy bias to complete the search; but further work 
is required in this area. We have performed some ex- 
periments with other attribute weights in the heuristic, 

in an unsatisfied clause are considered for selection. If this 
restriction is dropped, then the algorithm becomes a mixed 
random noise strategy (Selman, Kautz, & Cohen 1994). 
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and intend to further investigate the relationship be- 
tween heuristic accuracy and bias strength with regard 
to HBSS performance. 

We are currently implementing a refinement of the 
HBSS algorithm that takes into consideration the dis- 
criminatory power of the given search heuristic. In- 
stead of assigning a unique rank to each alternative 
choice, the alternatives are grouped into equivalence 
classes and all members of a class are assigned the 
same rank. An example of this approach is to spec- 
ify a heuristic discrimination threshold and to assign 
the top rank to all alternatives that score within the 
threshold of the best score; this process would then 
be repeated using the best score of the remaining al- 
ternatives. We are investigating this as well as other 
methods for deriving the equivalence classes. 

Although heuristic-biased stochastic sampling does 
not obviate the knowledge engineering task of devis- 
ing a good search heuristic, it does reduce the negative 
impact of the heuristic’s inaccuracies and allows the 
domain expert’s confidence in that heuristic to be ex- 
pressed and used in the search. When constructing a 
search heuristic, one tries to achieve the proper balance 
between heuristic accuracy and the cost of evaluating 
the heuristic; the HBSS approach adds another param- 
eter to this cost-benefit equation. It can be more cost- 
effective to use a heuristic that is less accurate, but 
less expensive to evaluate, as long as the extra compu- 
tation time spent sampling is less than the time saved 
in heuristic evaluation. When constructing a search 
heuristic for a varied problem class, one is sometimes 
forced to choose the option of performing very well on 
some of the problems at the expense of performing very 
poorly on others or to choose the option of mediocre 
performance on all the problems. In such cases, the 
HBSS approach can offer a better option than either 
choice; with the proper degree of exploration, high 
quality performance can be achieved on many more 
problems with a fixed heuristic and bias function. An- 
other interesting avenue for future research is adaptive 
bias functions. That is, during the sampling process, a 
current estimate of heuristic accuracy is computed and 
used to automatically adjust the strength of the bias. 
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