
eusistic- ling

John L. Bresina

Recom Technologies
IC Division, Mail Stop: 269-2
NASA Ames Research Center

Moffett Field, CA 94035-1000 USA
E-mail: bresina@ptolemy.arc.nasa.gov

URL: http: // ic-www.arc.nasa.gov/ic/projects/xfr/

Abstract

This paper presents a search technique for scheduling
problems, called Heuristic-Biased Stochastic Sampling
(HBSS). The underlying assumption behind the HBSS
approach is that strictly adhering to a search heuris-
tic often does not yield the best solution and, there-
fore, exploration off the heuristic path can prove fruit-
ful. Within the HBSS approach, the balance between
heuristic adherence and exploration can be controlled
according to the confidence one has in the heuristic.
By varying this balance, encoded as a bias function,
the HBSS approach encompasses a family of search al-
gorithms of which greedy search and completely ran-
dom search are extreme members. We present empir-
ical results from an application of HBSS to the real-
world problem of observation scheduling. These re-
sults show that with the proper bias function, it can
be easy to outperform greedy search.

Introducing HBSS

This paper presents a search technique, called
Heuristic-Biased Stochastic Sampling (HBSS), that
was designed to solve scheduling problems and other
constrained optimizat8ion problems. The motivating
idea behind the HBSS approach is, briefly, that heuris-
tics encode advice which is generally useful, but should
be taken with “a grain of salt”. Deriving heuristics that
are both accurate and computationally inexpensive is
a difficult endeavor for most problems. This is espe-
cially true when not just any solution is acceptable and
the heuristic is further required to find a high quality
solution. Furthermore, the larger the class of problem
instances, the more difficult it is for a search heuris-
tic to perform consistently well for each instance. The
performance quality of search techniques (e.g., greedy
search) can be too dependent on the accuracy of the
search heuristic employed. The underlying assumption
behind the HBSS approach is that strictly adhering to
a search heuristic often does not yield the best solution
and, therefore, that exploration off the heuristic path
can prove fruitful. Within HBSS, the balance between
heuristic adherence and exploration can be controlled
according to the confidence one has in the heuristic. By
varying this balance, the HBSS approach encompasses

a family of search algorithms of which greedy search
and completely random search are extreme members.

Heuristic-biased stochastic sampling can be viewed
as a generalization of iterative sampling (Langley 1992;
Minton, Bresina, & Drummond 1994). Iterative sam-
pling operates in a refinement search space formulated
as a n-ary tree in which each internal node corresponds
to a partial solution, and the leaf nodes either corre-
spond to a complete solution or a failure. A solution
is generated by starting at the root node and incre-
mentally selecting a trajectory in the tree by making a
random choice at each decision point. For search trees
which do not have finite depth, a depth bound is used.
This process is repeated some number of times, always
restarting from the root node. No memory is kept
of the trajectories selected on past iterations; i.e., the
search space is sampled with replacement and, hence,
the technique is nonsystematic (redundant).

The overall control structure of HBSS is the same
as for iterative sampling; the difference lies in how a
choice is made at each decision point. In contrast to
iterative sampling’s random exploration of the search
tree, HBSS makes use of a given search heuristic to
focus its exploration. The degree of this “heuristic fo-
cusing” is determined by a given bias function. The
selection of the bias function typically reflects the con-
fidence one has in the heuristic’s accuracy - the higher
the confidence, the stronger the bias. When employing
a weaker bias, there is a greater degree of exploration,
yielding a greater variety in the solutions found; in con-
trast, when employing a stronger bias, fewer unique
solutions are produced.

The HBSS algorit,hm is given in Figures 1 & 2; the
HBSS routine invokes the HBSS-search routine to per-
form a sampling iteration resulting in either a failure or
a solution. At each decision point within HBSS-search,
the alternative choices are sorted according to the given
heuristic, and each alternative is assigned a rank based
on this sort. We assume that ranks are positive inte-
gers; i.e., the top rank is 1. The bias function is then
used to assign a non-negative weight to each choice
based on its rank. These weights are then normal-
ized by dividing each one by the sum of the weights.

Search Control 271

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

HBSS(N, objective, state0, heuristic,
bias, bound)

for j = 1 to N (
result :=

HBSS-search(0, state0, heuristic,
bias, bound)

unless result = failure (
score := objective(result)
when score is better than best-score (

best-score : = score
best-solution := result 3

3
3

return (best-solution, best-score)
end

HBSS-search(depth, state, heuristic,
bias, bound)

if solved? (state)
then c return solution(state))
else-if state is a leaf or depth > bound
then (return failure)
else C

for each child of state (
score [child] : = heuristic(child) 3

sort child nodes based on scores
total-weight := 0
for each child (

rank[child] := sort position
weight [child] := bias(rank[child])
total-weight :=

total-weight + weight [child])

Figure 1: Heuristic-biased stochastic sampling alg. for each child of state <
probability [child] : =

weight [child] / total-weight 3

The normalized weight for an alternative represents
its probability of being selected; an alternative is se-
lected according to these probabilities by a weighted
random process. On each iteration, the current best
schedule and best score are determined. When HBSS
is employed in schedule generation, the best schedule
and best score are initialized based on the results of
a greedy search. However, this initialization step is
omitted from Figure 1 because it is not used in the
experiments reported in order to better compare the
performance of the different, bias functions.

I

child := ieighted random selection
based on probability

depth := depth f 1
HBSS-search(depth, child, heuristic,

bias, bound)
J

end

Figure 2: HBSS subroutine that performs one iteration

Observation Scheduling Problem
The HBSS algorithm can perform iterative sampling

by defining the bias function to give equal weight to
each alternative, for example, {bias(r) = 1), where
Y is the rank. At the other extreme, the following
bias function causes the algorithm to perform greedy
search: (bias(l) = 1; for 1” > 1, bias(r) = 0). The
following are example points in the bias spectrum.

e logarithmic: bias(r) = log-‘(r + 1)

* linear: bias(r) = l/r

0 polynomial(n): bias(r) = T+

0 exponential: bias(r) = e-

Figure 3 shows an example of how six bias functions as-
sign selection probabilities, where “poly(n)” is a poly-
nomial of degree n; the random bias (as in iterative
sampling) is also shown. In the example, we assume
that there are thirty alternatives to select, among; the
figure lists the selection probabilities for the top five
ranked choices and the probability of selecting one of
the remaining 25 choices. This example shows that the
4th degree polynomial is the strongest bias function, in
the sense that it follows the heuristic’s recommenda-
tion more often than the other bias functions. In terms
of bias strength, the exponential function is between
the 2nd and 3rd degree polynomials.

Before describing the experiments, we first briefly de-
scribe the observation scheduling problem; for further
details see Bresina, et al. (1994) and Drummond, et
al. (1995). Th e input to the scheduler is a set of obser-
vation requests submitted by one or more astronomers
(for details on the request specification language, see
Boyd, et al., 1993). Each observation request speci-
fies an observation program as well as constraints and
preferences regarding when it, can be executed. An ob-
servation program is a sequence of telescope movement
and instrument commands.

A program is enabled on a given night if all of its
constraints are satisfied. The primary constraint is
that each request can be executed only within a spe-
cific time interval. On a given night, the observation
program can only be executed during the intersection
of the program’s interval and that night’s interval of
darkness. Enablement is also affected by the moon -
each program includes a constraint regarding whether
the moon must be up, down, or either. Furthermore,
even those programs that are enabled when the moon
is up cannot be executed when its observation targets
are too close to the moon. We refer to the time interval
(for a given night) during which a program can begin
execution as its enablement interval.

An example of a preference is the relative priority
that an astronomer assigns to each observation request.

272 Constraint Satisfaction

Figure 3: Table showing, for each bias function (and random), the selection probabilities assigned to the top five
ranked choices and the probability of selecting one of the remaining 25 choices.

Search Tree Shape Random Sampling QDF
r I I I I -I 100 r t t I I I -

97% Confidence -

0 20 40 60 80 100 0 5000 10000 15000 20000 25000
Depth Score Intervals

Figure 4: Shape and expected schedule quality of search tree.

On many nights, not all of the possible requests can
be executed; these relative priorities help determine
which subset to execute on a given night. Each obser-
vation program typically takes around five minutes to
execute, and between 60 and 140 programs can be exe-
cuted during a night. We refer to a night as overloaded
if the sum of each enabled observation program’s dura-
tion is greater than the night’s duration; if the enabled
duration sum is less than the night’s duration, then we
refer to the night as underloaded.

The scheduler’s task is to find a sequence of obser-
vation programs that achieves a good score according
to a given objective function. The primary objective
is to execute as many of the programs as possible. A
schedule is penalized for those enabled programs that
are missed (not in the schedule); the penalty is greater
for higher priority programs. The secondary objectives
are to maximize data quality by minimizing airmass
and to minimize telescope slewing. In the experiments
reported here, the objective function used to evalu-
ate schedules is defined as: 100 x missed penalty
+ 10 x average airmass + average slew. The
weights are set such that the airmass attribute only
distinguishes between schedules which have the same
missed penalty score, and the slew attribute only dis-
tinguishes between schedules which are equivalent with
respect to the other two attributes. The highest prior-
ity is 1 and the lowest priority is 10; the missed penalty
score is c[ll - priority(0)12, where the summation is

depth p: 84.85 CT: 1.35
size PI 2.9 x 10131 g: 5.7 x lo132

min: 3.4 x 10”’ max: 1.7 x lOId

Figure 5: Depth and size of search tree.

over the missed observation programs, 0. The other
two attribute scores are computed from the local hour
angle of the observations; their definitions are not im-
portant for this paper. For this objective function,
lower scores are better.

The search space is formulated as a chronologically
organized tree where the root, node of t,he tree contains
the world model state at dusk. The alternative arcs
out of a given node represent the enabled observation
programs. An arc connectsing two nodes represents the
simulated execution of the observation program, which
(mainly) consists of incrementing the clock time by the
estimated mean duration of the program. No observa-
tions can be done after dawn, so the search tree has
finite depth. Note that each node corresponds to a
unique feasible schedule prefix and, hence, each leaf
node corresponds to a unique feasible complete sched-
ule; there are no failure nodes.

HBSS Experiments

In this section, we illustrate the heuristic-biased
stochastic sampling approach by presenting a compar-

Search Control 273

Logarithmic Biased Sampling QDF Linear Biased Sampling QDF
100r I I I I I - lOOr I 1 8 I I -

0 10000 15000
Score Intervals

25000

Figure 6: Quality Density Functions for logarithmic bias and linear bias.

ative analysis of six bias functions: logarithmic, lin-
ear, exponential, and polynomial of degree 2, 3, and
4. The nature of a scheduling problem in this domain
depends on the observation programs and on the par-
ticular night (expressed as Julian Date, or JD). Our
analysis is based on the (roughly) 150 observation pro-
grams that, for the past several years, have been ex-
ecuting on an automatic telescope at Fairborn Obser-
vatory (see Henry 1995). These observation programs
are grouped into four priority classes with priorities of
4, 5, 9, and 10. The analysis is based on the problem
instance corresponding to Julian Date 2449930, which
is July 31, 1995. On JD 2449930 the moon is down
most of the night so the fainter stars can be observed;
this tends to overload telescope. During this night, 99
of the programs are enabled, with a duration sum of
554.67 minutes. There are 505.19 minutes of observa-
tion time, resulting in 49.48 minutes of overloading.

Before comparing the impact of the different
bias functions, we first statistically characterize the
scheduling problem. The shape and size statistics for
JD 2449930 are given in Figures 4 and 5. Note that the
number of enabled programs (i.e., average branching
factor) remains high all night, indicating overloading.
These statistics are based on 1000 trials of iterative
sampling and the size estimates were computed using
the method of Knuth (1975). With a search size of
0(10131), iterative sampling has a minuscule chance
of finding a schedule better than the greedy solution.
The schedules have approximately equal length, as in-
dicated by the low standard deviation (~7) of the depth,
and the branching factor within each depth is nearly
constant, as indicated by the error bars representing
the 97% confidence interval.’ These two results im-
ply that the possible schedules will be sampled almost
uniformly by the iterative sampling process.

1 Except for the rightmost points, the error bars are too
small to distinguish in the figure; the larger error at the
deepest points is mainly the result of a reduced sample size
because of schedule length variance.

0 5000 10000 15000 20000 25000
Score Intervals

Also included in Figure 4 is the Quality Density
Function (QDF) (Bresina, Drummond, & Swanson
1995) for the search tree. A QDF is a statistical esti-
mate of the expected density of schedules within differ-
ent quality ranges and is based on the objective func-
tion scores obtained via iterative sampling. Recall that
for the objective function (defined in the previous sec-
tion), smaller scores indicate better schedules. To con-
struct the QDF, 1000 randomly generated schedules
were scored by the objective function and the scores
were then quantized into 100 intervals of equal size. In
the QDF (F g i ure 4), an impulse line at the midpoint
of each interval indicates the number of schedules that
scored within that interval. The mean of the scores is
18841.17 and the standard deviation is 3896.61. The
QDF gives an indication of expected schedule qual-
ity under uninformed sampling and, hence, serves as a
baseline against which informed sampling with differ-
ent bias functions can be compared.

We next define the search heuristic. The heuristic is
employed to help determine which enabled observation
program to select at each decision point; the program
with the lowest heuristic score is the most preferred.
The heuristic is a multi-attribute function based on a
set of observation selection rules (Boyd et al. 1993)
used as a dispatch policy in automatic telescope con-
trollers. There are four dispatch rules which are ap-
plied in this sequence, and each rule only breaks ties
that remain from the application of preceding rules;
the last rule is used to arbitrarily break any remain-
ing ties. Our heuristic function has three attributes,
corresponding to the first three dispatch rules, and is
defined as: WI x priority +wz x run count +ws x
enablement time, where run count is the number of
times the program occurs in the current schedule prefix
and enablement time is the time currently remaining
in the program’s enablement interval.

For the experiments reported here, the attribute
weights used in the search heuristic are: wr = 0.4,
w2 = 0.4, wa = 0.3. These attribute weights were the

274 Constraint Satisfaction

Polynomial(3) Biased Sampling
I # I I I 8

5000 -

0’ _ 1. dbo 6;ld 8iO. A 0'
ii0

I - -- .L -...- L -_- _ 4
0 200 1000 0 400 600 800 1000

Sample Sample

Polynomial(4) Biased Sampling Exponential Biased Sampling
I I , I I I , I I I t I

5000 - 5000 -
. . ..-w.. w 00.01D.. .eeae. . *m. a

4000 - 4000 -

O'- .J OL _ -,.--..-._1
0 2;o 460 6;O *ii0 1000 0 2;)o 4;)o 6100 800 1000

Sample Sample

Figure 7: Scores obtained by HBSS with different bias functions.

result of performance tuning by a colleague; what is im- The scores for the three polynomial bias functions
portant to note about t,hese weights is that they make and the exponential bias function tend to cluster in
the heuristic behave like the dispatch rules, due to the only a few score intervals; hence, instead of plotting
ranges of values for the different attributes. In fact, for their QDFs, in Figure 7 each sample’s score is plot-
JD 2449930, greedy search with these weights and the ted. The two primary clusters (in Figure 7) result from
dispatch policy generate identical schedules that have whether or not the heuristic was followed on the first
an objective score of 4220.35. scheduling decision; this is further explained below.

We next report the results of the first part of the
comparative analysis of the six bias functions. For
each bias function, using the same heuristic function,
1000 iterations of the HBSS-search algorithm (Figure
2) were performed. Each resulting schedule was scored
by the objective function (defined in the previous sec-
tion). Figure 6 shows the quality density functions for
logarithmic and linear bias functions. Compared to
the random QDF in Figure 4, these plots show that as
bias strength is increased, two changes tend to occur
in the QDFs: the expected quality mass shifts left to
a range of better scores close to the greedy score and
this mass becomes less dispersed. However, this does
not mean that the stronger the bias is, the better. A
stronger bias tends to produce solutions more similar
to the greedy search solution; hence, in order to signif-
icantly outperform greedy search, the right degree of
exploration must be used.

The second part of the comparative analysis eval-
uates the performance of HBSS in terms of the best
schedule’s score after a given number of samples. For
each of the six bias functions, we collected data re-
garding the best score after a sample size of 1, 5, 10,
15, and 20. Given a bias function and a sample size,
a trial consisted of running HBSS and collecting the
best objective score. For each pair of bias and sample
size, 100 trials were run and the mean value of the best
scores was computed.2

Figure 8 shows a plot of the mean values for the six
bias functions; the score obtained by greedy search is
plotted as a reference line. As can be seen in Figure 8,
it does not take many samples to find a better sched-

2Note that the number of times HBSS-searchis invoked
by HBSS is 100 x sample size. However, regardless of sam-
ple size, the mean value is based on 100 scores; although,
sample size does affect the standard deviation.

Search Control 275

3500 -
Lokithmic 2 -

0 i.. ^. 1.. _._.._ L. _ . . L _ I_ -

0 5 10 15 20
Number of Samples

Figure 8: Mean value (averaged over 100 trials) of best
score after a given number of samples (1, 5, 10, 15, &
20) for five bias functions, plus the greedy score.

ule than found by greedy search - except when the day, the average best lo-sample score was computed by
bias is very weak (e.g., logarithmic). The figure also
shows that the exponential and 2nd degree polynomial

running 100 trials (of 10 samples each). The results,
shown in Figure 9, indicate that even with only 10

bias functions outperform the two weaker and the two samples, usually some improvement can be made, and
stronger bias functions. occasionally a substantial improvement can be made.

Why is it so easy to outdo greedy search, as well as
the dispatch rules, on this problem? The dispatch rules
have been employed by telescope controllers for more
than six years with overall good performance. How-
ever, for the scheduling problem of JD 2449930, there
is one scheduling decision where the normally good dis-
patch policy does not yield the best choice. This de-
cision has a significant impact on schedule quality; it
is what differentiates between the two score clusters
shown in the plots of Figure 7.

Related Research

We now discuss research related to our work with
heuristic-biased stochastic sampling. As an illustration
of the generality of the HBSS algorithm, we explain
how the related search techniques can be expressed
within the HBSS framework.

On JD 2449930, there is a priority 5 observation pro-
gram that can only start execution during the first five
minutes of the night (after then, it sinks below the hori-
zon). The search heuristic and the dispatch rules do
not select this program to execute first because there
is also a priority 4 program enabled at the beginning of
the night. Since that program takes over six minutes
to execute, the lower priority program can not be exe-
cuted afterwards. However, the enablement interval of
the higher priority program is over an hour long; hence,
its execution can be postponed. When HBSS follows
the heuristic on the first selection, the schedules found
score in the higher (worse) score cluster; whereas those
schedules that begin with the second ranked program
instead, score in the lower score cluster (Figure 7). Al-
though it is generally a good idea to prefer higher pri-
ority programs to execute, this is an example of where
it is not the best choice and where deviation from the
heuristic can improve schedule quality.

The experiments reported above focus on a single
day; to lend support to the claim that HBSS is gener-
ally useful in this domain, we measured the improve-
ment over greedy search achievable with 10 samples of
HBSS using the exponential bias over 50 days. For each

In Harvey’s dissertation on nonsystematic backtrack
search (Harvey 1995, section 4.8.1), he briefly men-
tions some stochastic sampling experiments in a more
restricted context than considered here. The experi-
ments involve satisfiability problems formulated as bi-
nary search trees. The bias is specified as a constant
representing the probability of following the heuristic
choice; hence, a bias of 0.5 yields an iterative sam-
pling search and a bias of 1.0 yields a greedy search.
In terms of the HBSS formalism, this is expressed as:
{bias(1) = c ; bias(2) = 1 - c}, where c is the user-
selected constant. Counter to his initial intuitions,
Harvey found that these two extremes performed bet-
ter than an intermediate bias of 0.875. However, when
he added “bounded backtracking”, then the interme-
diate bias outperformed the two extremes. The expla-
nation of these two contrasting results was suggested
as a topic for further investigation. In his dissertation,
Harvey also presents limited discrepancy search, which
systematically enumerates paths in a (binary) search
tree, such that the paths are ordered by the number of
times the heuristic choice was not followed. The first
algorithm that performed this type of exploration was
left-first search (Basin & Walsh 1993), which was used
to find minimal difference unifications.

Related to heuristic-biased stochastic sampling is the
class of local search algorithms, especially those that

2 3000 -
ii

G 2500 -
8
2n 2000 -
8
z
i3

1500 -

!i 9 1000 -

p
11 _I

49420 49430
JD

ll-- rl- L-L-.

49440 49650

Figure 9: Mean value (averaged over 100 trials) of best
score after 10 samples, with exponential bias, com-
pared to greedy search.

276 Constraint Sktisfaction

use stochastic search moves. Local search approaches
are formulated as repair (or modification) search; that
is, the search space is formulated with nodes represent-
ing complete solutions3 and edges representing small
local solution modifications (i.e., neighboring solutions
are similar). Search (typically) starts from a randomly
generated solution; at each node, one of the neighbor-
ing solutions is selected. This process continues until
some stopping condition is satisfied. Often this local
search process is repeated with new random starting
solutions and the best solution is returned.

A given evaluation function is used to score the
neighboring solutions; conventionally, lower scores rep-
resent better solutions. If all neighbors are worse than
the current solution, then the search is at a local min-
imum, which is only rarely the global minimum. One
approach is to simply restart the search from a new
randomly generated solution whenever a local mini-
mum is reached. Ot,her approaches involve the intro-
duction of randomness or noise int(o neighbor selection
in order to escape local minima. Stochastic local search
is a growing area of research and we mention only some
example algorithms to convey the relationship between
this algorithm class and the HBSS technique.

Though HBSS was not designed to operate in a re-
pair search space, the algorithm (Figures 1 & 2) can
still be applied with only minor modification. For a lo-
cal search context, the depth bound in HBSS performs
the function of the stopping condition. In refinement
search, the initial state (stateo) is the same for each
iteration of HBSS; however, in repair search, it would
correspond to a new randomly generated solution. The
comparison of a neighbor and the current solution is
often a key aspect of local search. One way to incor-
porate t,his comparison into HBSS is to include, as a
parameter to the bias function, the rank of the current
solution with respect to its neighbors.

Within local search, an analog to iterative sampling
is random walk and both the min-conflicts local search
strategy (Minton et al. 1990) and GSAT (Selman,
Levesque, & Mitchell 1992) can be viewed as analogs
to greedy search (with random restarts).

GSAT simply ignores local minima - it always se-
lects the neighbor with the lowest score (even if greater
than the current score) and restarts after a given max-
imum number of moves. Selman and colleagues have
developed various extensions to the basic GSAT algo-
rithm, some which combine aspecks of random walk
and GSAT’s greedy search, e.g., mixed random walk
strategy (Selman & Kautz 1993). This strategy can
be expressed within HBSS as: {bias(l) = 1 - p ; for
T > 1, bias(r) = p/(n - l)}, where p is a user-specified
constant and n is the number of choices.4

“In some cases, infeasible solutions (i.e., ones that vi-
olate constraints) are also included, e.g., as in the min-
conflicts strategy of (Minton et al. 1990).

4GSAT solves satisfiability problems, and this encoding
assumes that only those neighbors that modify a variable

In simulated annealing (Kirkpatrick, Gelatt, & Vec-
chi 1983) noise is introduced as follows. A random
neighbor is repeatedly chosen until one is selected (ac-
cepted) by the following decision process. Let AQ be a
measure of the quality difference between the neighbor
solution and the current solution; hence, if AQ > 0,
then the neighbor solution is worse. If AQ 5 0, then
select the neighbor; otherwise, with a probability of
e-*Qlr, select it anyway. T is the temperature param-
eter, which can be held constant, but more typically,
starts out high and is reduced according to some “cool-
ing schedule”. To produce simulated annealing within
the HBSS framework, the bias function needs the rank
of the current solution (as discussed above). Let T,
be the current solution’s rank (w.r.t. to its neighbors)
and define the bias as follows. {bias(r,,r) = 1.0, if
T 5 TV ; bias(rC, r) = e(rc--r)lT, if r > rC}.

Though quite different in operation from HBSS, the
Bayesian Problem Solver (Hansson & Mayer 1989)
shares the underlying assumption that there is uncer-
tainty in the search heuristic. Within the BPS ap-
proach, heuristic search is viewed as inference from
uncertain evidence. Heuristic uncertainty is explic-
itly modeled based on results of previous search and a
Bayesian inference procedure is used to control search.

Concluding Remarks

In this paper, we introduced the Heuristic-Biased
Stochastic Sampling approach for constrained opti-
mization problems and, to illustrate its application, we
presented a comparative analysis of six different bias
functions using the real-world problem of observation
scheduling. As with most advice, the key is know-
ing when to follow it and when to make an exception.
The HBSS approach addresses this issue by performing
“informed stochastic sampling”. The HBSS algorithm
encompasses a wide spectrum of search techniques
that incorporate some mixture of heuristic search and
stochastic sampling.

The reported experiments showed that, for the ex-
ample problem instance, HBSS was able to outperform
greedy search within a small number of samples. Of the
six bias functions examined, the best performers were
the exponential and the 2nd degree polynomial; the two
weaker bias functions (logarithmic and linear) veered
too far from the heuristic’s advice and the two stronger
bias functions heeded the advice too often. The exper-
iments reported here are only a beginning; other em-
pirical investigations have been carried out and more
are planned for the future. We have collected data on
depth-sensitive bias functions, e.g., one that uses an
exponential bias until some depth cutoff and then uses
a greedy bias to complete the search; but further work
is required in this area. We have performed some ex-
periments with other attribute weights in the heuristic,

in an unsatisfied clause are considered for selection. If this
restriction is dropped, then the algorithm becomes a mixed
random noise strategy (Selman, Kautz, & Cohen 1994).

Search Control 277

I

and intend to further investigate the relationship be-
tween heuristic accuracy and bias strength with regard
to HBSS performance.

We are currently implementing a refinement of the
HBSS algorithm that takes into consideration the dis-
criminatory power of the given search heuristic. In-
stead of assigning a unique rank to each alternative
choice, the alternatives are grouped into equivalence
classes and all members of a class are assigned the
same rank. An example of this approach is to spec-
ify a heuristic discrimination threshold and to assign
the top rank to all alternatives that score within the
threshold of the best score; this process would then
be repeated using the best score of the remaining al-
ternatives. We are investigating this as well as other
methods for deriving the equivalence classes.

Although heuristic-biased stochastic sampling does
not obviate the knowledge engineering task of devis-
ing a good search heuristic, it does reduce the negative
impact of the heuristic’s inaccuracies and allows the
domain expert’s confidence in that heuristic to be ex-
pressed and used in the search. When constructing a
search heuristic, one tries to achieve the proper balance
between heuristic accuracy and the cost of evaluating
the heuristic; the HBSS approach adds another param-
eter to this cost-benefit equation. It can be more cost-
effective to use a heuristic that is less accurate, but
less expensive to evaluate, as long as the extra compu-
tation time spent sampling is less than the time saved
in heuristic evaluation. When constructing a search
heuristic for a varied problem class, one is sometimes
forced to choose the option of performing very well on
some of the problems at the expense of performing very
poorly on others or to choose the option of mediocre
performance on all the problems. In such cases, the
HBSS approach can offer a better option than either
choice; with the proper degree of exploration, high
quality performance can be achieved on many more
problems with a fixed heuristic and bias function. An-
other interesting avenue for future research is adaptive
bias functions. That is, during the sampling process, a
current estimate of heuristic accuracy is computed and
used to automatically adjust the strength of the bias.

Acknowledgments: Thanks much to my observa-
tion scheduling colleagues: M. Drummond, K. Swan-
son, W. Edgington, E. Drascher, and G. Henry.
Thanks also to the readers of previous drafts: P.
Cheeseman, W. Edgington, L. Getoor, 0. Hansson, R.
Levinson, R. Morris, B. Pell, K. Swanson, and S. Wolfe.

References

Basin, D.A., & Walsh, T. 1993. Difference Unifica-
tion. Proc. of IJCAI, Chambery, France. Morgan
Kaufmann Publishers.

Boyd, L., Epand D., Bresina J., Drummond M.,
Swanson K., Crawford D., Genet D., Genet R., Henry
G., McCook G., Neely W., Schmidtke P., Smith D., &
Trublood M. 1993. Automatic Telescope Instruction
Set 1993. In I.A.P.P.P. Comm., No. 52. Oswalt (ed).

Bresina, J., Drummond, M., & Swanson, K. 1995.
Expected Solution Quality. Proc. of IJCAI, Montreal,
Canada. Morgan Kaufmann Publishers.

Bresina J., Drummond M., Swanson K., & Edgington
W. 1994. Automated Management and Scheduling of
Remote Automatic Telescopes. In Optical Astronomy
from the Earth and Moon, ASP Conference Series,
Vol. 55. D.M. Pyper & R.J. Angione (eds.).

Drummond, M., Bresina, J., Edgington, W., Swan-
son, K., Henry, G., & Drascher, E. 1995. Flexible
Scheduling of Automatic Telescopes over the Inter-
net. Robotic Telescopes: Current Capabilities, Present
Developments, and Future Prospects for Automated
Astronomy. G.W. Henry & J.A. Eaton (eds). Astro-
nomical Society of the Pacific, Provo, UT.

Hansson, 0. & Mayer, A. 1989. Heuristic search as
evidential reasoning. Proc. of the 5th Workshop on
Uncertainty in A.I., Windsor, Ontario.

Harvey, W.D. 1995. Nonsystematic backtrack search.
Ph.D. dissertation, Comp. Sci. Dept., Stanford Univ.

Henry, G.W., 1995. ATIS dispatch scheduling of
robotic telescopes. Robotic Telescopes: Current Capa-
bilities, Present Developments, and Future Prospects
for Automated Astronomy, ASP Conf. Ser. No. 79.
G.W. Henry & J.A. Eaton (eds).

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. 1983.
Optimization by simulated annealing. Science, 220.
Knuth, D.E. 1975. Estimating the Efficiency of Back-
track Programs. Mathematics of Computation, 29.
Langley, P. 1992. Systematic and Non-Systematic
Search. Proc. of AIPS, College Park, MD. Morgan
Kaufmann Publishers.

Minton S., Bresina J., & Drummond M. 1994. Total-
Order and Partial-Order Planning: A Comparative
Analysis. Journal of AI Research, 2. AI Access Foun-
dation & Morgan Kaufmann Publishers.

Minton, S., Johnston, M., Philips, A., & Laird, P.
1990. Solving large-scale constraint satisfaction and
scheduling problems using a heuristic repair method.
Proc. of AAAI, Boston. AAAI Press / MIT Press.

Selman, B., Levesque, H., & Mitchell, D. 1992. A new
method for solving hard satisfiability problems. Proc.
of AAAI, San Jose, CA. AAAI Press / MIT Press.

Selman, B. & Kautz, H. 1993. Domain-independent
extensions to GSAT: solving large structured satisfi-
ability problems. Proc. of IJCAI, Chambkry, France.
Morgan Kaufmann Publishers.

Selman, B., Kautz, H., & Cohen, B. 1994. Noise
strategies for improving local search. Proc. of AAAI,
Seattle, WA. AAAI Press / MIT Press.

278 Constraint Satisfaction

