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Abstract 

Although researchers have studied which factors influence 
the behavior of traditional search algorithms, currently not 
much is known about how domain properties influence the 
performance of real-time search algorithms. In this paper we 
demonstrate, both theoretically and experimentally, that Eule- 
rian state spaces (a superset of undirected state spaces) are very 
easy for some existing real-time search algorithms to solve: 
even real-time search algorithms that can be intractable, in 
general, are efficient for Eulerian state spaces. Because tradi- 
tional real-time search testbeds (such as the eight puzzle and 
gridworlds) are Eulerian, they cannot be used to distinguish 
between efficient and inefficient real-time search algorithms. 
It follows that one has to use non-Eulerian domains to demon- 
strate the general superiority of a given algorithm. To this 
end, we present two classes of hard-to-search state spaces 
and demonstrate the performance of various real-time search 
algorithms on them. 

Introduction 
Real-time heuristic search algorithms interleave search with 
action execution by limiting the amount of deliberation per- 
formed between actions. (Korf 1990) and (Korf 1993) 
demonstrated the power of real-time search algorithms, 
which often outperform more traditional search techniques. 
Empirical results for real-time search algorithms have typi- 
cally been reported for domains such as 
e sliding tile puzzles (such as the g-puzzle) (Korf 1987; 

1988; 1990; Russell & Wefald 199 1; Knight 1993; Korf 
1993; Ishida 1995) and 

e gridworlds (Korf 1990; Ishida & Korf 199 1; Ishida 1992; 
Pemberton & Korf 1992; Pirzadeh & Snyder 1990; Thrun 
1992; Matsubara & Ishida 1994; Stentz 1995; Ishida 1995). 

Such test domains permit comparisons between search al- 
gorithms. It is therefore important that the performance of 
real-time search algorithms in test domains be representative 
of their performance in the domains of interest: test domains 
should either reflect the properties of the domains that one 
is interested in or, at least, be representative of a wide range 
of domains. To this end, one has to understand how proper- 
ties of state spaces affect the performance of real-time search 
algorithms. 

Although researchers have studied which factors influence 
the performance of traditional search algorithms, such as A*, 

*This research is sponsored in part by the Wright Laboratory, 
Aeronautical Systems Center, Air Force Materiel Command, USAF, 
and the Advanced Research Projects Agency (ARPA) under grant 
number F33615-93-1-1330. 

(Pearl 1985), not much is known about real-time search al- 
gorithms. We investigate two classes of state spaces: a state 
space is considered easy to search (Type 1) if no real-time 
search algorithm has a significant performance advantage 
over other (reasonable) algorithms, otherwise the state space 
is hard to search (Type 2). Our analysis of several unin- 
formed real-time search algorithms with minimal lookahead 
that solve suboptimal search problems shows that Eulerian 
state spaces (each state has an equal number of actions that 
leave and enter the state) are all Type 1 - even real-time 
search algorithms that are inefficient, in general, can per- 
form well in Eulerian state spaces. Since sliding tile puz- 
zles and gridworlds are typically Eulerian, these domains are 
not appropriate for demonstrating how well real-time search 
algorithms perform, in general (note that the Eulerian prop- 
erty has no effect on the performance of traditional search 
algorithms). To remedy this, we propose two classes of non- 
Eulerian testbeds (“reset” and “quicksand” state spaces) that 
are of Type 2 and, thus, hard to search. Our empirical results 
on these testbeds demonstrate that they clearly distinguish 
efficient and inefficient real-time search algorithms. 

eal-Time Search Algorit 
We use the following notation to describe state spaces for- 
mally: S denotes the finite set of states of the state space, 
G with 8 # G c S the non-empty set of goal states, and 
Ssturt E S the start state. A(s) is the finite set of actions that 
can be executed in s E S, and succ(s, a) denotes the successor 
state that results from the execution of LZ E A(s) in s E S. 
The size of the state space is rz := ISI, and the total number of 
state-action pairs (loosely called actions) is e := C,rES ]A(s)). 
gd(s) denotes the goal distance of s E S (measured in action 
executions). 

There exist state spaces in which all of our real-time search 
algorithms can get trapped in a part of the state space that 
does not contain a goal state. To exclude these state spaces, 
we assume that the state spaces are strongly connected. In 
this paper, for purposes of clarity, we also assume that e 5 /? 
(an extremely realistic assumption), since this allows us to 
state all complexity results in terms of n only. 

We study suboptimal search -the task that real-time search 
algorithms can perform very well. Suboptimal search means 
looking for any path (i.e., sequence of actions) from the start 
state to a goal state. In real-time search, the search time 
is (roughly) proportional to the length of the solution path. 
Thus, we use the path length to evaluate the performance of 
real-time search algorithms. When we refer to the complexity 
of a real-time search algorithm, we mean an upper bound on 

Search Control 279 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Initially, memory = 0 and V(s, u) = 0 Theoretical Analysis The real-time search algorithm starts in state sSrcm. 
for all s E Sand a E A(s). 

1 s .= the current state. . . 

2. Ifs E G, then stop successfully. 

3. Choose an (I from A(s) possibly using memory and V(s, a’) for u’ E A(s). 

4. Update memory and V(s, a) possibly using memory, V(s, u), and V(.succ(.s, (I), (I’) 
for u’ E A(succ(s, a)). 

5. Execute action u, i.e. change the current state to succ(s, a) 

6. Go to 1. 

Figure 1: Skeleton of the studied algorithms 

the total number of actions that it executes until it reaches a 
goal state, in big-0 notation. This bound must hold for all 
possible topologies of state spaces of a given size, start and 
goal states, and tie breaking rules among indistinguishable 
actions. 

To make meaningful comparisons, we study algorithms 
that make similar assumptions and restrict our attention to 
uninformed real-time search algorithms with minimal looka- 
head and greedy action selection.’ Such algorithms maintain 
information in the form of integer values, V(s, a), which are 
associated with every state-action pair (s, a). An additional 
integer value is maintained across action executions in the 
variable memory. The semantics of these values depend on 
the specific real-time search algorithm used, but all values 
are zero-initialized, reflecting that the algorithms are initially 
uninformed. At no point in time can these values contain 
much information, since the algorithms must be able to de- 
cide quickly which actions to execute, and their decisions 
are based on these values. This requirement prevents the 
algorithms, for example, from encoding significant portions 
of the state space in these values. 

The algorithms that we consider all fit the skeleton shown 
in Figure 1. They consist of a termination checking step 
(line 2), an action selection step (line 3), a value update step 
(line 4), and an action execution step (line 5). First, they 
check whether they have already reached a goal state and 
thus can terminate successfully (line 2). If not, they decide 
on the action to execute next (line 3). For this decision, they 
can consult the value stored in their memory and the values 
V(s, a) associated with the actions in their current state s. 
Then, they update the value of this action and their memory, 
possibly also using the values associated with the actions in 
their new state (line 4). Finally, they execute the selected 
action (line 5) and iterate this procedure (line 6). 

‘A note of caution: While this restriction is convenient for 
studying properties of state spaces, it would be unfair to compare 
real-time search algorithms with each other solely on the basis of 
our study, since some algorithms are better in incorporating initial 
knowledge of the state space or allowing for larger lookaheads. We 
relax some of these assumptions in the penultimate section of the 
paper, where we discuss real-time search algorithms with larger 
lookaheads. 

We first study the complexity of real-time search algorithms 
over all state spaces. In this case, one can freely choose the 
state space that maximizes the number of action executions 
of a given real-time search algorithm from all state spaces 
with the same number of states. Later, we restrict the pos- 
sible choices and study the search complexity over a subset 
of all state spaces. In both cases, we are interested in the 
complexity of efficient and inefficient real-time search algo- 
rithms. The smaller the difference in the two complexities, 
the stronger the indication that search problems in such do- 
mains are of Type 1. (All proofs can be found in (Koenig & 
Simmons 1996b).) 

General State Spaces 
In this section, we introduce a particular search algorithm 
(min-LRTA*) and compare its complexity in general state 
spaces to the most efficient and less efficient real-time search 
algorithms. 

LRTA*-Type Search Korf’s Learning Real-Time A* 
(LRTA*) algorithm (Korf 1990) is probably the most popu- 
lar real-time search algorithm (Ishida 1995; Knight 1993; 
Koenig & Simmons 1995). The version we use here is 
closely related to Q-learning, a widely-used reinforcement 
learning method, see (Koenig & Simmons 1996a). We call it 
LRTA* with minimalistic lookahead (min-LRTA*), because 
the search horizon of its action selection step is even smaller 
than that of LRTA* with lookahead one. (We analyze Korf’s 
original version of LRTA* with lookahead one in the section 
on “Larger Lookaheads.“) 

The following table presents the action selection step 
(line 3) and value update step (line 4) of min-LRTA*. We 
use two operators with the following semantics: Given a set 
X, one-ofX returns one element of X according to an arbi- 
trary rule. arg minxExf (x) returns the set {x E X : f(x) = 
mind (IO). 

Min-LRTA* 
line 3 u := one-of arg min,, EA(s~ V(s, u’) 
line 4 W, (11 := 1 + mh,l E~(Aurr(s,N)f V(succ(.s, u), u’) 

The action selection step selects the state-action pair 
with the smallest value. The value update step re- 
places V(s,a) with the more accurate lookahead value 
1 + miwEA(.succ(s,u)) v(~~cc(h ah a’>. 

Min-LRTA* always reaches a goal state with a finite num- 
ber of action executions. The followinp comnlexitv result 
was proved in (Koenig & Simmons 1996ua). 

Theorem 1 Min-LRTA* has a tight complexity of O(n3) ac- 
tion executions. 

Efficient Search Algorithms No real-time search algo- 
rithm that fits our framework (Figure 1) can distinguish be- 
tween actions that have not been executed, since it does not 
look at the successor states of its current state when choos- 
ing actions (and initially all actions have the same value). 
This implies the following lower bound on their complexity, 
which follows from a result in (Koenig & Simmons 1996a). 
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start state goal state 

Figure 2: A reset state space 

start state goal state 

Figure 3: A quicksand state space 

Theorem 2 The complexity of every real-time search algo- 
rithm that fits our real-time search skeleton is at least O(n”) 
action executions. 

Thus, no real-time search algorithm can beat min-LRTA*, 
since none can have a complexity smaller than O(n3). 

Au Inefficient Search Algorithm Particularly bad search 
algorithms are ones that do not remember were they have 
already searched. Random walks are examples of such search 
algorithms. We can easily derive a real-time search algorithm 
that shares many properties with random walks, but has finite 
complexity - basically, by “removing the randomness” from 
random walks. 

Edge Counting 
line 3 u := one-of arg rnirq EA(s) V(s, a) 
line 4 V(s, a) := 1 + V(s, u) 

Random walks execute all actions in a state equally often 
in the long run. The action selection step of edge counting 
always chooses the action that has been executed the least 
number of times. This achieves the same result as random 

state of the robot 

e possible SUCCESSOR state 

Figure 4: Racetrack domain 

e 

back to the start state (in general, the problem occurs if 
the “reset” actions are beyond the search horizon of the 
algorithm). For the reset state space in Figure 2, edge 
counting executes 3 x 2n-2 - 2 actions before it reaches 
the goal state (for n 2 2) if ties are broken in favor of 
successor states with smaller numbers. 

Quicksand State Spaces: In every state of a quicksand 
state space, there are more actions that move the agent 
away from the goal than move it towards it. Quicksand 
state spaces differ from reset state spaces in the effort that 
is necessary to recover from mistakes: It is possible to 
recover in only one step in quicksand state spaces. Nev- 
ertheless, quicksand state spaces can be hard to search. 
For the quicksand state space in Figure 3, edge counting 
executes 2n+’ - 3n - 1 actions before it reaches the goal 
state (for n 2 1) if ties are broken in favor of successor 
states with smaller numbers. 

Undirected and Eulerian State Spaces 
In this section, we consider the complexity of real-time search 
algorithms in both undirected and Eulerian state spaces and 
show that they are all of Type 1.2 

walks, but in a deterministic way. One particular tie breaking 

a maze (Sutherland 1969). To the best of our knowledge, 
however, its relationship to random walks has never been 

rule, for example, is to execute all actions in turn. Shannon 

pointed out, nor has its complexity been analyzed. 

used this algorithm as early as in the late 1940’s to implement 
an exploration behavior for an electronic mouse that searched 

In (Koenig & Simmons 1996b), we prove that edge count- 
ing always reaches a goal state with a finite number of action 
executions, but its complexity can be exponential in the size 
of the state space. 

Theorem 3 The complexity of edge counting is at least ex- 
ponential in n. 

To demonstrate this, we present two classes of state spaces 
for which edge counting needs a number of action executions 
in the worst case that is exponential in n. These are Type 2 
spaces since, by Theorem -1, in these domains min-LRTA* 
needs only a polynomial number of action executions. 

Since an undirected edge is equivalent to one incoming and 

Definition 1 A state space is Eulerian ifS IA(s)/ = 1 {(s’, a’) : 

one outgoing edge, all undirected state spaces are Eulerian. 
Many domains typically used to test AI search algorithms 

s’ E S A a’ E A(s’) A succ(s’ , a’) = s} 1 for all s E S, i.e. there 

are undirected (and thus Eulerian). Examples include sliding 
tile puzzles and gridworlds, where space is discretized into 

are as many actions that leave a state as there are actions 

squares and movement is restricted to immediately adjacent 
squares. There also exist domains that are Eulerian, but not 

that enter the (same) state. 

undirected, for example racetrack domains (Gardner 1973). 
They correspond to gridworlds, but are a bit more realistic 
robot navigation domains (Figure 4). A state of the state 
space is characterized not only by the X-Y square that the 
robot occupies, but also by its speed in both the X and Y 

o Reset State Spaces: A reset state space is one in which 
all states (but the start state) have an action that leads 

*Eulerian state spaces correspond to directed Euler(ian) graphs 
as defined by the Swiss mathematician Leonhard Euler when he 
considered whether the seven Kiinigsberg bridges could be traversed 
without recrossing any of them (Newman 1953). 
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this pati of the state space is totally connected 
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goal state 

Figure 5: An undirected state space 

directions. Actions correspond to adjusting both X and Y 
speed components by -1, 0, or 1 (within bounds). Given 
an action (speed change) the successor state is determined 
by computing the new speed components and determining 
the location of the robot by adding each speed component to 
its corresponding location component. Racetrack domains 
are Eulerian except around obstacles or at boundaries. In 
particular, an obstacle free racetrack domain on a torus is truly 
Eulerian. Race track domains have been used as testbeds 
for real-time search algorithms by (Barto, Bradtke, & Singh 
1995). 

We now show that Eulerian state spaces are easier to search 
with real-time search algorithms than state spaces in general, 
but undirected state spaces do not simplify the search any 
further. 

LRTA*-‘Ijpe Search The complexity of min-LRTA* does 
not decrease in undirected or Eulerian state spaces. 

Theorem 4 Min-LRTA* has a tight complexity of O(n”) ac- 
tion executions in undirected or Eulerian state spaces. 

Figure 5 shows an example of an undirected (and thus 
Eulerian) state space for which min-LRTA* needs at least 
O(n3) action executions in the worst case in order to reach 
the goal state - it executes (n” + 6n2 - 3n - 4)/ 16 actions 
before it reaches the goal state (for n 2 1 with n mod 4 = 1) 
if ties are broken in favor of successor states with smaller 
numbers (Koenig & Simmons 1992). 

An Efficient Search AIgorithm For Eulerian state spaces, 
real-time search algorithms do exist with lower complexity. 
One example, called BETA” (“Building a Eulerian Tour” Al- 
gorithm), informally acts as follows: “Take unexplored edges 
whenever possible. If all actions in the current state have been 
executed at least once, retrace the closed walk of unexplored 
edges just completed, stopping at nodes that have unexplored 
edges, and apply this algorithm recursively from each such 
node.” This algorithm is similar to depth-first search, with 
the following difference: Since chronological backtracking 
is not always possible in directed graphs, BETA repeats its 

“The exact origin of the algorithm is unclear. (Deng & Papadim- 
itriou 1990) and (Korach, Kutten, & Moran 1990) stated it explicitly 
as a search algorithm, but it has been used earlier as part of proofs 
about Eulerian tours (Hierholzer 1873). 

first actions when it gets stuck instead of backtracking its 
latest actions. 

BETA fits our real-time search skeleton if we interpret 
each integer value V(s, a) as a triple: the first component of 
the triple (the “cycle number”) corresponds to the level of re- 
cursion. The second component counts the number of times 
the action has already been executed, and the third compo- 
nent remembers when the action was executed first (using 
a counter that is incremented after every action execution). 
The variable memory is also treated as a triple: its first two 
components remember the first two components of the previ- 
ously executed action and its third component is the counter. 
AI1 values are initialized to (O,O, 0). 

line 3 

line 4 

BETA always reaches a goal state with a finite number 
of action executions and, moreover, executes every action at 
most twice. The following theorem follows. 

Theorem 5 BETA has a tight complexity of O(n2) uction 
executions in undirected or Eulerian state spaces. 

BETA 
u := one-of arg min,,jEx V(s, u’)[3] 
where X = arg max,,! E ,, V(.r, u’)[ I ] 

and Y = arg mm,,/ Eh(,j V(.s, u’)[2] 
if V(s.a)[2] = 0 then 

V(s,a)[3] := memory[3]+1 
if memory[2]= 1 then 

V(s,a)[ I ] := memory[ I] 
else then 

V(s,a)[l] := memory[ I]+1 
V(s.a)[2] := V(s,a)[2] + I 
memory[ I] := V(s,n)[ I ] 
memory[2] := V(s,a)[2] 
memory[3] := memory[3]+ I 

Furthermore, no real-time search algorithm that fits our real- 
time search skeleton can do better in Eulerian or undirected 
state spaces in the worst case (Koenig & Smirnov 1996). 

An Inefficient Search Algorithm Although edge- 
counting is exponential, in general, its worst-case complexity 
decreases in undirected and Eulerian state spaces. 

Theorem 6 Edge counting has a tight complexit)? of O(n’) 
uction executions in undirected or Eulerian state spaces. 

To be precise: We can prove that the complexity of edge 
counting is tight at e x &sturA - gd(.~.v,u,)2 action executions 
in undirected or Eulerian state spaces. Figure 5 shows an 
example of an undirected (and thus Euleri an) state space for 
which edge counting needs at least O(2) action executions 
in the worst case in order to reach the goal state - it executes 
e x g4s.s,urr) - g4s.sl,rJ2 = (n” +n2 - 5n + 3)/8 actions before 
it reaches the goal state (for odd n 2 1) if ties are broken in 
favor of succeSsor states with smaller numbers. 

Edge counting can have a better worst-case performance 
for a given search problem than min-LRTA*. An example is 
shown in Figure 6. Min-LRTA* executes n* - 3n + 4 actions 
in this undirected state space before it reaches the goal state 
(for n 2 3) if ties are broken in favor of successor states 
with smaller numbers except for the first action execution in 
which the tie is broken in the opposite way. On the other 
hand, we have shown that edge counting is guaranteed not 
to need more than e x gd(s.PtU,-f) - gd(s,,U,-&2 = 4n - 8 action 
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Figure 7: Diagram of worst-case performance results 

executions in order to reach a goal state, which beats min- 
LRTA* for n > 4. 

Summary When comparing the complexity of min-LRTA* 
with the complexities of efficient and inefficient real-time 
search algorithms, we derived the following results (Fig- 
ure 7). In general, no real-time search algorithm can beat 
the complexity of min-LRTA*, which is a small polynomial 
in n. In contrast, the deterministic real-time search algo- 
rithm (edge counting) that we derived from random walks 
has a complexity that is at least exponential in n. The pic- 
ture changes in Eulerian state spaces. The complexity of 
edge counting decreases dramatically and equals the com- 
plexity of min-LRTA*, which remains unchanged (it even 
beats min-LRTA* in certain specific domains). In addition, 
there exists a dedicated real-time search algorithm for Eule- 
rian state spaces (BETA) that has a smaller complexity. All 
complexities remain the same in undirected state spaces, a 
subset of Eulerian state spaces. 

Experimental Analysis 
Although the theoretical analyses provide worst-case per- 
formance guarantees, they do not necessarily reflect av- 
erage case performance. To show that the average-case 
performance follows a similar trend, we ran trials in two 
blocksworld domains, in which the start state consists of a 
set of x indistinguishable blocks on a table, and the goal state 
has all the blocks stacked on top of one another on a platform 
(Figure 8). Domain 1 has four operators: “pickup block from 
table,” “ put block on stack, ” “pickup block from stack,” and 
“put block on table.” A block picked up from the table is 
always followed by a “put on stack,” and a block picked up 
from the stack is always subsequently placed on the table. 
Domain 1 is Eulerian (Figure 9). Domain 2 has the same 
two pickup operators and the same “put block on stack” op- 
erator, but the “put block on table” operator (which always 

Figure 8: A simple blocksworld problem 

start state 
slack we = 0 slack suze = 1 stack size = 2 

Figure 9: Domain 1 

goal state 
stack me = x 

start state 

stack size = 0 stack SIZB = 1 stack size = 2 

Figure 10: Domain 2 

goal stale 

slack swe = x 

follows a “pickup block from stack” operator) knocks down 
the whole stack onto the table. Domain 2 is a reset state space 
(Figure 10). 

The experiments show that the relationship of the average- 
case performances are similar to those in the worst case. 
Figure 11 shows how many actions the real-time search al- 
gorithms execute in the two blocksworld domains. Note that 
the search algorithms are uninformed - in particular, they 
initially have no knowledge that putting blocks on the stack 
is the best way to achieve the goal state. The horizontal axis 
shows the size of the state space (measured by the number of 
blocks) and the vertical axis measures the number of actions 
executed until a goal state is reached from the start state. We 
averaged this over 5000 runs with randomly broken ties. 

Every algorithm does better in Domain 1 than in Domain 2. 
Edge counting quickly becomes intractable in Domain 2. 
With 50 blocks, for example, edge counting needs about 
1.7 x 10’” (estimated) action executions, on average, in or- 
der to reach the goal state and thus performs about 250 bil- 
lion times worse than min-LRTA*. On the other hand, all 
algorithms do quite well in Domain 1. With 50 blocks, for 
example, min-LRTA* performs 2.2 times worse than BETA 
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Node Counting 
line 3 u := one-of arg min,, Enc,,J V(.succ(s, u’)) 
line 4 V(s) := 1 + V(s) 

Korf’s original LRTA* algorithm with lookahead one (l- 
step LRTA*) is similar to node-counting in that it looks at the 
successor states of its current state when choosing actions, 
but it has a different value update step (line 4). 

0 5 10 15 20 25 30 
number of blocks 

35 40 45 50 

Figure 11: Performance results (blocksworld problem) 

and edge counting performs only 8.7 times worse. Thus, the 
interval spanned by the average-case complexity of efficient 
and inefficient real-time search algorithms is much smaller 
in Domain 1 than in Domain 2. This difference is to be 
expected, since Domain 1 is Eulerian (and thus of Type I), 
whereas Domain 2 resembles a reset state space of Type 2. 

If we change the start state in both domains so that all but 
four blocks are already stacked initially, then both domains 
become easier to solve. However, the performance relation- 
ships in Domain 2 remain similar, whereas the performance 
relationships in Domain 1 change dramatically. With 50 
blocks, for example, min-LRTA* now performs 1.3 times 
worse than BETA, but edge counting performs 3.8 times 
better than BETA. Thus, for this search problem in a Eule- 
rian state space, edge-counting (a real-time search algorithm 
that can be intractable) outperforms min-LRTA* (a real-time 
search algorithm that is always efficient). 

Larger Lookaheads 
Some of our results also transfer to real-time search algo- 
rithms with larger lookaheads. In the following, we discuss 
ndde counting, a variant of edge counting, and the original 
l-step LRTA* algorithm, a variant of min-LRTA*. Both al- 
gorithms have been used in the literature and have a larger 
lookahead than their relatives. 

Node counting differs from edge counting in that it looks 
at the successor states of its current state when choosing 
actions. 

Node Counting 
line 3 u := one-of arg min,! EA(V) (,,, EA(Jur?,(, u,)) WU~~(.~, a’), u”) 
line 4 V(s, a) := I + V(s, (1) 

The action selection step always executes the action that 
leads to the successor state that has been visited the least 
number of times. Note that, in an actual implementation, 
one would maintain only one value V(s) for each state s with 
w = CuEA V(s, a). initially, V(s) = 0 for all s E S. 

I -Step LRTA* 
line 3 u := one-of arg min,,l Encyj V(.wcc(s, u’)) 
line 4 V(s) := I + v(sUcc(s, (1)) 

Korf showed that l-step LRTA* always reaches a goal state 
with a finite number of action executions. (Koenig & Sim- 
mons 1995) showed that its complexity is tight at n* - n and 
remains tight at 0(n*) for undirected or Eulerian state spaces. 

We can show that node counting is similar to edge count- 
ing in that there are state spaces for which its complexity is 
at least exponential in n. In particular, in our blocksworld 
domains, the appearance of the intermediate “pickup” oper- 
ators makes it so that a l-step lookahead is insufficient to 
avoid the reset traps. Furthermore, in these domains node 
counting and edge counting behave identically: they are ef- 
ficient in Domain 1, but are both exponential in Domain 2, if 
ties are broken appropriately. Although we are not aware of 
any complexity analysis for node counting in undirected or 
Eulerian state spaces, variations of node counting have been 
used independently in (Pirzadeh & Snyder 1990) and (Thrun 
1992) for exploring unknown gridworlds, in both cases with 
great success. Our experiments confirm these results. In one 
experiment, we compared node counting and 1 -step LRTA* 
on an empty gridworld of size 50 times 50. We averaged 
their run-times (measured in action executions needed to get 
from the start state to the upper left square) over 25000 runs 
with randomly broken ties. The same 25000 randomly se- 
lected start states were used in both cases. Node counting 
needed, on average, 2874 action executions to reach the goal 
state, compared to 2830 action executions needed by l-step 
LRTA*. Out of the 25000 runs, node counting outperformed 
1 -step LRTA* 12345 times, was beaten 12621 times, and 
tied 34 times. Nearly similar results were obtained in exper- 
iments with the eight-puzzle - the average performance of 
both algorithms was nearly identical, and each beat the other 
about the same number of times. 

Thus, l-step LRTA* and node counting were almost 
equally efficient on both gridworlds and sliding tile puzzles, 
but reset and quicksand state spaces are able to differentiate 
between them. Similar reset and quicksand state spaces can 
also be constructed for real-time search algorithms with even 
larger look-aheads. 

Conclusion 
This paper presented properties of state spaces that make 
them easy, or hard, to search with real-time search algo- 
rithms. The goal was to separate the inherent complexity of 
a given search problem from the performance of individual 
real-time search algorithms. Our approach was to compare 
several uninformed real-time search algorithms with mini- 
mal lookahead that solve suboptimal search problems - all 
algorithms had previously been used by different researchers 
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in different contexts. More precisely, we compared ver- Knight, K. 1993. Are many reactive agents better than a few 
sions of LRTA* to efficient real-time search algorithms (such deliberative ones? In Proceedings of the IJCAI, 432-437. 
as BETA) and - equally importantly - inefficient real-time Koenig, S., and Simmons, R. 1992. Complexity analysis of 
search algorithms (such as edge counting). We demonstrated, real-time reinforcement learning applied to finding shortest paths 
both theoretically and experimentally, that the performance in deterministic domains. Technical Report CMU-CS-93-106, 
characteristics of the studied real-time search algorithms can School of Computer Science, Carnegie Mellon University. 

differ significantly in Eulerian and non-Eulerian state spaces Koenig, S., and Simmons, R. 1995. Real-time search in non- 
(real-time search algorithms differ in this respect from tradi- deterministic domains. In Proceedings of the IJCAI, 1660-l 667. 
tional search algorithms such as A*), We have shown that Koenig, S., and Simmons, R. 1996a. The effect of representation 
real-time search algorithms that can be intractable in non- and knowledge on goal-directed exploration with reinforcement 
Eulerian state spaces (such as edge counting) have a small learning algorithms. Machine Learning Journal 22:227-250. 
complexity in Eulerian and undirected state spaces. This re- Koenig, S., and Simmons, R. 1996b. The influence of do- 
sult helps explain why the reported performance of real-time main properties on the performance of real-time search algorithms. 
search algorithms have been so good: They tended to be Technical Report CMU-CS-96- 115, School of Computer Science, 

tested in Eulerian (usually undirected) domains. Carnegie Mellon University. 

Many state spaces, however, are not undirected or Eule- 
rian. One way to avoid uncritical generalizations of perfor- 
mance figures for real-time search algorithms by non-experts 
is to report experimental results not only for Eulerian state 
spaces (such as sliding tile puzzles and gridworlds), but also 
for non-Eulerian state spaces. In particular, one has to use 
non-Eulerian state spaces to show the superiority of aparticu- 
lar real-time search algorithm across a wide range ofdomains. 
To this end, we presented two classes of hard-to-search state 
spaces (“reset” and “quicksand” state spaces) that do not suf- 
fer from (all of) the problems of the standard test domains. 
Minor variations of these state spaces are also applicable in 
distinguishing real-time search algorithms that have larger 
lookahead. We therefore suggest that variations of these two 
state spaces be included in test suites for real-time search 
algorithms. 
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