
earc
eid G. Simmons

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 152 13-389 1
{ skoenig, reids } @cs.cmu.edu

Abstract

Although researchers have studied which factors influence
the behavior of traditional search algorithms, currently not
much is known about how domain properties influence the
performance of real-time search algorithms. In this paper we
demonstrate, both theoretically and experimentally, that Eule-
rian state spaces (a superset of undirected state spaces) are very
easy for some existing real-time search algorithms to solve:
even real-time search algorithms that can be intractable, in
general, are efficient for Eulerian state spaces. Because tradi-
tional real-time search testbeds (such as the eight puzzle and
gridworlds) are Eulerian, they cannot be used to distinguish
between efficient and inefficient real-time search algorithms.
It follows that one has to use non-Eulerian domains to demon-
strate the general superiority of a given algorithm. To this
end, we present two classes of hard-to-search state spaces
and demonstrate the performance of various real-time search
algorithms on them.

Introduction
Real-time heuristic search algorithms interleave search with
action execution by limiting the amount of deliberation per-
formed between actions. (Korf 1990) and (Korf 1993)
demonstrated the power of real-time search algorithms,
which often outperform more traditional search techniques.
Empirical results for real-time search algorithms have typi-
cally been reported for domains such as
e sliding tile puzzles (such as the g-puzzle) (Korf 1987;

1988; 1990; Russell & Wefald 199 1; Knight 1993; Korf
1993; Ishida 1995) and

e gridworlds (Korf 1990; Ishida & Korf 199 1; Ishida 1992;
Pemberton & Korf 1992; Pirzadeh & Snyder 1990; Thrun
1992; Matsubara & Ishida 1994; Stentz 1995; Ishida 1995).

Such test domains permit comparisons between search al-
gorithms. It is therefore important that the performance of
real-time search algorithms in test domains be representative
of their performance in the domains of interest: test domains
should either reflect the properties of the domains that one
is interested in or, at least, be representative of a wide range
of domains. To this end, one has to understand how proper-
ties of state spaces affect the performance of real-time search
algorithms.

Although researchers have studied which factors influence
the performance of traditional search algorithms, such as A*,

*This research is sponsored in part by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF,
and the Advanced Research Projects Agency (ARPA) under grant
number F33615-93-1-1330.

(Pearl 1985), not much is known about real-time search al-
gorithms. We investigate two classes of state spaces: a state
space is considered easy to search (Type 1) if no real-time
search algorithm has a significant performance advantage
over other (reasonable) algorithms, otherwise the state space
is hard to search (Type 2). Our analysis of several unin-
formed real-time search algorithms with minimal lookahead
that solve suboptimal search problems shows that Eulerian
state spaces (each state has an equal number of actions that
leave and enter the state) are all Type 1 - even real-time
search algorithms that are inefficient, in general, can per-
form well in Eulerian state spaces. Since sliding tile puz-
zles and gridworlds are typically Eulerian, these domains are
not appropriate for demonstrating how well real-time search
algorithms perform, in general (note that the Eulerian prop-
erty has no effect on the performance of traditional search
algorithms). To remedy this, we propose two classes of non-
Eulerian testbeds (“reset” and “quicksand” state spaces) that
are of Type 2 and, thus, hard to search. Our empirical results
on these testbeds demonstrate that they clearly distinguish
efficient and inefficient real-time search algorithms.

eal-Time Search Algorit
We use the following notation to describe state spaces for-
mally: S denotes the finite set of states of the state space,
G with 8 # G c S the non-empty set of goal states, and
Ssturt E S the start state. A(s) is the finite set of actions that
can be executed in s E S, and succ(s, a) denotes the successor
state that results from the execution of LZ E A(s) in s E S.
The size of the state space is rz := ISI, and the total number of
state-action pairs (loosely called actions) is e := C,rES]A(s)).
gd(s) denotes the goal distance of s E S (measured in action
executions).

There exist state spaces in which all of our real-time search
algorithms can get trapped in a part of the state space that
does not contain a goal state. To exclude these state spaces,
we assume that the state spaces are strongly connected. In
this paper, for purposes of clarity, we also assume that e 5 /?
(an extremely realistic assumption), since this allows us to
state all complexity results in terms of n only.

We study suboptimal search -the task that real-time search
algorithms can perform very well. Suboptimal search means
looking for any path (i.e., sequence of actions) from the start
state to a goal state. In real-time search, the search time
is (roughly) proportional to the length of the solution path.
Thus, we use the path length to evaluate the performance of
real-time search algorithms. When we refer to the complexity
of a real-time search algorithm, we mean an upper bound on

Search Control 279

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Initially, memory = 0 and V(s, u) = 0 Theoretical Analysis The real-time search algorithm starts in state sSrcm.
for all s E Sand a E A(s).

1 s .= the current state. . .

2. Ifs E G, then stop successfully.

3. Choose an (I from A(s) possibly using memory and V(s, a’) for u’ E A(s).

4. Update memory and V(s, a) possibly using memory, V(s, u), and V(.succ(.s, (I), (I’)
for u’ E A(succ(s, a)).

5. Execute action u, i.e. change the current state to succ(s, a)

6. Go to 1.

Figure 1: Skeleton of the studied algorithms

the total number of actions that it executes until it reaches a
goal state, in big-0 notation. This bound must hold for all
possible topologies of state spaces of a given size, start and
goal states, and tie breaking rules among indistinguishable
actions.

To make meaningful comparisons, we study algorithms
that make similar assumptions and restrict our attention to
uninformed real-time search algorithms with minimal looka-
head and greedy action selection.’ Such algorithms maintain
information in the form of integer values, V(s, a), which are
associated with every state-action pair (s, a). An additional
integer value is maintained across action executions in the
variable memory. The semantics of these values depend on
the specific real-time search algorithm used, but all values
are zero-initialized, reflecting that the algorithms are initially
uninformed. At no point in time can these values contain
much information, since the algorithms must be able to de-
cide quickly which actions to execute, and their decisions
are based on these values. This requirement prevents the
algorithms, for example, from encoding significant portions
of the state space in these values.

The algorithms that we consider all fit the skeleton shown
in Figure 1. They consist of a termination checking step
(line 2), an action selection step (line 3), a value update step
(line 4), and an action execution step (line 5). First, they
check whether they have already reached a goal state and
thus can terminate successfully (line 2). If not, they decide
on the action to execute next (line 3). For this decision, they
can consult the value stored in their memory and the values
V(s, a) associated with the actions in their current state s.
Then, they update the value of this action and their memory,
possibly also using the values associated with the actions in
their new state (line 4). Finally, they execute the selected
action (line 5) and iterate this procedure (line 6).

‘A note of caution: While this restriction is convenient for
studying properties of state spaces, it would be unfair to compare
real-time search algorithms with each other solely on the basis of
our study, since some algorithms are better in incorporating initial
knowledge of the state space or allowing for larger lookaheads. We
relax some of these assumptions in the penultimate section of the
paper, where we discuss real-time search algorithms with larger
lookaheads.

We first study the complexity of real-time search algorithms
over all state spaces. In this case, one can freely choose the
state space that maximizes the number of action executions
of a given real-time search algorithm from all state spaces
with the same number of states. Later, we restrict the pos-
sible choices and study the search complexity over a subset
of all state spaces. In both cases, we are interested in the
complexity of efficient and inefficient real-time search algo-
rithms. The smaller the difference in the two complexities,
the stronger the indication that search problems in such do-
mains are of Type 1. (All proofs can be found in (Koenig &
Simmons 1996b).)

General State Spaces
In this section, we introduce a particular search algorithm
(min-LRTA*) and compare its complexity in general state
spaces to the most efficient and less efficient real-time search
algorithms.

LRTA*-Type Search Korf’s Learning Real-Time A*
(LRTA*) algorithm (Korf 1990) is probably the most popu-
lar real-time search algorithm (Ishida 1995; Knight 1993;
Koenig & Simmons 1995). The version we use here is
closely related to Q-learning, a widely-used reinforcement
learning method, see (Koenig & Simmons 1996a). We call it
LRTA* with minimalistic lookahead (min-LRTA*), because
the search horizon of its action selection step is even smaller
than that of LRTA* with lookahead one. (We analyze Korf’s
original version of LRTA* with lookahead one in the section
on “Larger Lookaheads.“)

The following table presents the action selection step
(line 3) and value update step (line 4) of min-LRTA*. We
use two operators with the following semantics: Given a set
X, one-ofX returns one element of X according to an arbi-
trary rule. arg minxExf (x) returns the set {x E X : f(x) =
mind (IO).

Min-LRTA*
line 3 u := one-of arg min,, EA(s~ V(s, u’)
line 4 W, (11 := 1 + mh,l E~(Aurr(s,N)f V(succ(.s, u), u’)

The action selection step selects the state-action pair
with the smallest value. The value update step re-
places V(s,a) with the more accurate lookahead value
1 + miwEA(.succ(s,u)) v(~~cc(h ah a’>.

Min-LRTA* always reaches a goal state with a finite num-
ber of action executions. The followinp comnlexitv result
was proved in (Koenig & Simmons 1996ua).

Theorem 1 Min-LRTA* has a tight complexity of O(n3) ac-
tion executions.

Efficient Search Algorithms No real-time search algo-
rithm that fits our framework (Figure 1) can distinguish be-
tween actions that have not been executed, since it does not
look at the successor states of its current state when choos-
ing actions (and initially all actions have the same value).
This implies the following lower bound on their complexity,
which follows from a result in (Koenig & Simmons 1996a).

280 Constraint Satisfaction

start state goal state

Figure 2: A reset state space

start state goal state

Figure 3: A quicksand state space

Theorem 2 The complexity of every real-time search algo-
rithm that fits our real-time search skeleton is at least O(n”)
action executions.

Thus, no real-time search algorithm can beat min-LRTA*,
since none can have a complexity smaller than O(n3).

Au Inefficient Search Algorithm Particularly bad search
algorithms are ones that do not remember were they have
already searched. Random walks are examples of such search
algorithms. We can easily derive a real-time search algorithm
that shares many properties with random walks, but has finite
complexity - basically, by “removing the randomness” from
random walks.

Edge Counting
line 3 u := one-of arg rnirq EA(s) V(s, a)
line 4 V(s, a) := 1 + V(s, u)

Random walks execute all actions in a state equally often
in the long run. The action selection step of edge counting
always chooses the action that has been executed the least
number of times. This achieves the same result as random

state of the robot

e possible SUCCESSOR state

Figure 4: Racetrack domain

e

back to the start state (in general, the problem occurs if
the “reset” actions are beyond the search horizon of the
algorithm). For the reset state space in Figure 2, edge
counting executes 3 x 2n-2 - 2 actions before it reaches
the goal state (for n 2 2) if ties are broken in favor of
successor states with smaller numbers.

Quicksand State Spaces: In every state of a quicksand
state space, there are more actions that move the agent
away from the goal than move it towards it. Quicksand
state spaces differ from reset state spaces in the effort that
is necessary to recover from mistakes: It is possible to
recover in only one step in quicksand state spaces. Nev-
ertheless, quicksand state spaces can be hard to search.
For the quicksand state space in Figure 3, edge counting
executes 2n+’ - 3n - 1 actions before it reaches the goal
state (for n 2 1) if ties are broken in favor of successor
states with smaller numbers.

Undirected and Eulerian State Spaces
In this section, we consider the complexity of real-time search
algorithms in both undirected and Eulerian state spaces and
show that they are all of Type 1.2

walks, but in a deterministic way. One particular tie breaking

a maze (Sutherland 1969). To the best of our knowledge,
however, its relationship to random walks has never been

rule, for example, is to execute all actions in turn. Shannon

pointed out, nor has its complexity been analyzed.

used this algorithm as early as in the late 1940’s to implement
an exploration behavior for an electronic mouse that searched

In (Koenig & Simmons 1996b), we prove that edge count-
ing always reaches a goal state with a finite number of action
executions, but its complexity can be exponential in the size
of the state space.

Theorem 3 The complexity of edge counting is at least ex-
ponential in n.

To demonstrate this, we present two classes of state spaces
for which edge counting needs a number of action executions
in the worst case that is exponential in n. These are Type 2
spaces since, by Theorem -1, in these domains min-LRTA*
needs only a polynomial number of action executions.

Since an undirected edge is equivalent to one incoming and

Definition 1 A state space is Eulerian ifS IA(s)/ = 1 {(s’, a’) :

one outgoing edge, all undirected state spaces are Eulerian.
Many domains typically used to test AI search algorithms

s’ E S A a’ E A(s’) A succ(s’ , a’) = s} 1 for all s E S, i.e. there

are undirected (and thus Eulerian). Examples include sliding
tile puzzles and gridworlds, where space is discretized into

are as many actions that leave a state as there are actions

squares and movement is restricted to immediately adjacent
squares. There also exist domains that are Eulerian, but not

that enter the (same) state.

undirected, for example racetrack domains (Gardner 1973).
They correspond to gridworlds, but are a bit more realistic
robot navigation domains (Figure 4). A state of the state
space is characterized not only by the X-Y square that the
robot occupies, but also by its speed in both the X and Y

o Reset State Spaces: A reset state space is one in which
all states (but the start state) have an action that leads

*Eulerian state spaces correspond to directed Euler(ian) graphs
as defined by the Swiss mathematician Leonhard Euler when he
considered whether the seven Kiinigsberg bridges could be traversed
without recrossing any of them (Newman 1953).

Search Control 281

this pati of the state space is totally connected

I I

f)
0

n

goal state

Figure 5: An undirected state space

directions. Actions correspond to adjusting both X and Y
speed components by -1, 0, or 1 (within bounds). Given
an action (speed change) the successor state is determined
by computing the new speed components and determining
the location of the robot by adding each speed component to
its corresponding location component. Racetrack domains
are Eulerian except around obstacles or at boundaries. In
particular, an obstacle free racetrack domain on a torus is truly
Eulerian. Race track domains have been used as testbeds
for real-time search algorithms by (Barto, Bradtke, & Singh
1995).

We now show that Eulerian state spaces are easier to search
with real-time search algorithms than state spaces in general,
but undirected state spaces do not simplify the search any
further.

LRTA*-‘Ijpe Search The complexity of min-LRTA* does
not decrease in undirected or Eulerian state spaces.

Theorem 4 Min-LRTA* has a tight complexity of O(n”) ac-
tion executions in undirected or Eulerian state spaces.

Figure 5 shows an example of an undirected (and thus
Eulerian) state space for which min-LRTA* needs at least
O(n3) action executions in the worst case in order to reach
the goal state - it executes (n” + 6n2 - 3n - 4)/ 16 actions
before it reaches the goal state (for n 2 1 with n mod 4 = 1)
if ties are broken in favor of successor states with smaller
numbers (Koenig & Simmons 1992).

An Efficient Search AIgorithm For Eulerian state spaces,
real-time search algorithms do exist with lower complexity.
One example, called BETA” (“Building a Eulerian Tour” Al-
gorithm), informally acts as follows: “Take unexplored edges
whenever possible. If all actions in the current state have been
executed at least once, retrace the closed walk of unexplored
edges just completed, stopping at nodes that have unexplored
edges, and apply this algorithm recursively from each such
node.” This algorithm is similar to depth-first search, with
the following difference: Since chronological backtracking
is not always possible in directed graphs, BETA repeats its

“The exact origin of the algorithm is unclear. (Deng & Papadim-
itriou 1990) and (Korach, Kutten, & Moran 1990) stated it explicitly
as a search algorithm, but it has been used earlier as part of proofs
about Eulerian tours (Hierholzer 1873).

first actions when it gets stuck instead of backtracking its
latest actions.

BETA fits our real-time search skeleton if we interpret
each integer value V(s, a) as a triple: the first component of
the triple (the “cycle number”) corresponds to the level of re-
cursion. The second component counts the number of times
the action has already been executed, and the third compo-
nent remembers when the action was executed first (using
a counter that is incremented after every action execution).
The variable memory is also treated as a triple: its first two
components remember the first two components of the previ-
ously executed action and its third component is the counter.
AI1 values are initialized to (O,O, 0).

line 3

line 4

BETA always reaches a goal state with a finite number
of action executions and, moreover, executes every action at
most twice. The following theorem follows.

Theorem 5 BETA has a tight complexity of O(n2) uction
executions in undirected or Eulerian state spaces.

BETA
u := one-of arg min,,jEx V(s, u’)[3]
where X = arg max,,! E ,, V(.r, u’)[I]

and Y = arg mm,,/ Eh(,j V(.s, u’)[2]
if V(s.a)[2] = 0 then

V(s,a)[3] := memory[3]+1
if memory[2]= 1 then

V(s,a)[I] := memory[I]
else then

V(s,a)[l] := memory[I]+1
V(s.a)[2] := V(s,a)[2] + I
memory[I] := V(s,n)[I]
memory[2] := V(s,a)[2]
memory[3] := memory[3]+ I

Furthermore, no real-time search algorithm that fits our real-
time search skeleton can do better in Eulerian or undirected
state spaces in the worst case (Koenig & Smirnov 1996).

An Inefficient Search Algorithm Although edge-
counting is exponential, in general, its worst-case complexity
decreases in undirected and Eulerian state spaces.

Theorem 6 Edge counting has a tight complexit)? of O(n’)
uction executions in undirected or Eulerian state spaces.

To be precise: We can prove that the complexity of edge
counting is tight at e x &sturA - gd(.~.v,u,)2 action executions
in undirected or Eulerian state spaces. Figure 5 shows an
example of an undirected (and thus Euleri an) state space for
which edge counting needs at least O(2) action executions
in the worst case in order to reach the goal state - it executes
e x g4s.s,urr) - g4s.sl,rJ2 = (n” +n2 - 5n + 3)/8 actions before
it reaches the goal state (for odd n 2 1) if ties are broken in
favor of succeSsor states with smaller numbers.

Edge counting can have a better worst-case performance
for a given search problem than min-LRTA*. An example is
shown in Figure 6. Min-LRTA* executes n* - 3n + 4 actions
in this undirected state space before it reaches the goal state
(for n 2 3) if ties are broken in favor of successor states
with smaller numbers except for the first action execution in
which the tie is broken in the opposite way. On the other
hand, we have shown that edge counting is guaranteed not
to need more than e x gd(s.PtU,-f) - gd(s,,U,-&2 = 4n - 8 action

282 Constraint Satisfaction

o-o--o-
statt state

Figure 6: A linear state space

goal slate

difference I” corn lex1ty
of the studled e tp went
and ~nelfuent real-lime
search algorlihms over

all state spaces

in general: In Eulerian state spaces:
In undirected state spaces:

r rlWVCRTA’

BETA

mu-UlTA’ and
edge co”“t,ng

d!fference ,n corn
of the studled e lr

lexlty
,c,ent

and ~netf~c~ent real-time
search algonthms !n

Eulertan or undvacled
state spaces

L edge covntlng
t-

a, least exponenttal I” ”

Figure 7: Diagram of worst-case performance results

executions in order to reach a goal state, which beats min-
LRTA* for n > 4.

Summary When comparing the complexity of min-LRTA*
with the complexities of efficient and inefficient real-time
search algorithms, we derived the following results (Fig-
ure 7). In general, no real-time search algorithm can beat
the complexity of min-LRTA*, which is a small polynomial
in n. In contrast, the deterministic real-time search algo-
rithm (edge counting) that we derived from random walks
has a complexity that is at least exponential in n. The pic-
ture changes in Eulerian state spaces. The complexity of
edge counting decreases dramatically and equals the com-
plexity of min-LRTA*, which remains unchanged (it even
beats min-LRTA* in certain specific domains). In addition,
there exists a dedicated real-time search algorithm for Eule-
rian state spaces (BETA) that has a smaller complexity. All
complexities remain the same in undirected state spaces, a
subset of Eulerian state spaces.

Experimental Analysis
Although the theoretical analyses provide worst-case per-
formance guarantees, they do not necessarily reflect av-
erage case performance. To show that the average-case
performance follows a similar trend, we ran trials in two
blocksworld domains, in which the start state consists of a
set of x indistinguishable blocks on a table, and the goal state
has all the blocks stacked on top of one another on a platform
(Figure 8). Domain 1 has four operators: “pickup block from
table,” “ put block on stack, ” “pickup block from stack,” and
“put block on table.” A block picked up from the table is
always followed by a “put on stack,” and a block picked up
from the stack is always subsequently placed on the table.
Domain 1 is Eulerian (Figure 9). Domain 2 has the same
two pickup operators and the same “put block on stack” op-
erator, but the “put block on table” operator (which always

Figure 8: A simple blocksworld problem

start state
slack we = 0 slack suze = 1 stack size = 2

Figure 9: Domain 1

goal state
stack me = x

start state

stack size = 0 stack SIZB = 1 stack size = 2

Figure 10: Domain 2

goal stale

slack swe = x

follows a “pickup block from stack” operator) knocks down
the whole stack onto the table. Domain 2 is a reset state space
(Figure 10).

The experiments show that the relationship of the average-
case performances are similar to those in the worst case.
Figure 11 shows how many actions the real-time search al-
gorithms execute in the two blocksworld domains. Note that
the search algorithms are uninformed - in particular, they
initially have no knowledge that putting blocks on the stack
is the best way to achieve the goal state. The horizontal axis
shows the size of the state space (measured by the number of
blocks) and the vertical axis measures the number of actions
executed until a goal state is reached from the start state. We
averaged this over 5000 runs with randomly broken ties.

Every algorithm does better in Domain 1 than in Domain 2.
Edge counting quickly becomes intractable in Domain 2.
With 50 blocks, for example, edge counting needs about
1.7 x 10’” (estimated) action executions, on average, in or-
der to reach the goal state and thus performs about 250 bil-
lion times worse than min-LRTA*. On the other hand, all
algorithms do quite well in Domain 1. With 50 blocks, for
example, min-LRTA* performs 2.2 times worse than BETA

Search Control 283

Node Counting
line 3 u := one-of arg min,, Enc,,J V(.succ(s, u’))
line 4 V(s) := 1 + V(s)

Korf’s original LRTA* algorithm with lookahead one (l-
step LRTA*) is similar to node-counting in that it looks at the
successor states of its current state when choosing actions,
but it has a different value update step (line 4).

0 5 10 15 20 25 30
number of blocks

35 40 45 50

Figure 11: Performance results (blocksworld problem)

and edge counting performs only 8.7 times worse. Thus, the
interval spanned by the average-case complexity of efficient
and inefficient real-time search algorithms is much smaller
in Domain 1 than in Domain 2. This difference is to be
expected, since Domain 1 is Eulerian (and thus of Type I),
whereas Domain 2 resembles a reset state space of Type 2.

If we change the start state in both domains so that all but
four blocks are already stacked initially, then both domains
become easier to solve. However, the performance relation-
ships in Domain 2 remain similar, whereas the performance
relationships in Domain 1 change dramatically. With 50
blocks, for example, min-LRTA* now performs 1.3 times
worse than BETA, but edge counting performs 3.8 times
better than BETA. Thus, for this search problem in a Eule-
rian state space, edge-counting (a real-time search algorithm
that can be intractable) outperforms min-LRTA* (a real-time
search algorithm that is always efficient).

Larger Lookaheads
Some of our results also transfer to real-time search algo-
rithms with larger lookaheads. In the following, we discuss
ndde counting, a variant of edge counting, and the original
l-step LRTA* algorithm, a variant of min-LRTA*. Both al-
gorithms have been used in the literature and have a larger
lookahead than their relatives.

Node counting differs from edge counting in that it looks
at the successor states of its current state when choosing
actions.

Node Counting
line 3 u := one-of arg min,! EA(V) (,,, EA(Jur?,(, u,)) WU~~(.~, a’), u”)
line 4 V(s, a) := I + V(s, (1)

The action selection step always executes the action that
leads to the successor state that has been visited the least
number of times. Note that, in an actual implementation,
one would maintain only one value V(s) for each state s with
w = CuEA V(s, a). initially, V(s) = 0 for all s E S.

I -Step LRTA*
line 3 u := one-of arg min,,l Encyj V(.wcc(s, u’))
line 4 V(s) := I + v(sUcc(s, (1))

Korf showed that l-step LRTA* always reaches a goal state
with a finite number of action executions. (Koenig & Sim-
mons 1995) showed that its complexity is tight at n* - n and
remains tight at 0(n*) for undirected or Eulerian state spaces.

We can show that node counting is similar to edge count-
ing in that there are state spaces for which its complexity is
at least exponential in n. In particular, in our blocksworld
domains, the appearance of the intermediate “pickup” oper-
ators makes it so that a l-step lookahead is insufficient to
avoid the reset traps. Furthermore, in these domains node
counting and edge counting behave identically: they are ef-
ficient in Domain 1, but are both exponential in Domain 2, if
ties are broken appropriately. Although we are not aware of
any complexity analysis for node counting in undirected or
Eulerian state spaces, variations of node counting have been
used independently in (Pirzadeh & Snyder 1990) and (Thrun
1992) for exploring unknown gridworlds, in both cases with
great success. Our experiments confirm these results. In one
experiment, we compared node counting and 1 -step LRTA*
on an empty gridworld of size 50 times 50. We averaged
their run-times (measured in action executions needed to get
from the start state to the upper left square) over 25000 runs
with randomly broken ties. The same 25000 randomly se-
lected start states were used in both cases. Node counting
needed, on average, 2874 action executions to reach the goal
state, compared to 2830 action executions needed by l-step
LRTA*. Out of the 25000 runs, node counting outperformed
1 -step LRTA* 12345 times, was beaten 12621 times, and
tied 34 times. Nearly similar results were obtained in exper-
iments with the eight-puzzle - the average performance of
both algorithms was nearly identical, and each beat the other
about the same number of times.

Thus, l-step LRTA* and node counting were almost
equally efficient on both gridworlds and sliding tile puzzles,
but reset and quicksand state spaces are able to differentiate
between them. Similar reset and quicksand state spaces can
also be constructed for real-time search algorithms with even
larger look-aheads.

Conclusion
This paper presented properties of state spaces that make
them easy, or hard, to search with real-time search algo-
rithms. The goal was to separate the inherent complexity of
a given search problem from the performance of individual
real-time search algorithms. Our approach was to compare
several uninformed real-time search algorithms with mini-
mal lookahead that solve suboptimal search problems - all
algorithms had previously been used by different researchers

284 Constraint Satisfaction

in different contexts. More precisely, we compared ver- Knight, K. 1993. Are many reactive agents better than a few
sions of LRTA* to efficient real-time search algorithms (such deliberative ones? In Proceedings of the IJCAI, 432-437.
as BETA) and - equally importantly - inefficient real-time Koenig, S., and Simmons, R. 1992. Complexity analysis of
search algorithms (such as edge counting). We demonstrated, real-time reinforcement learning applied to finding shortest paths
both theoretically and experimentally, that the performance in deterministic domains. Technical Report CMU-CS-93-106,
characteristics of the studied real-time search algorithms can School of Computer Science, Carnegie Mellon University.

differ significantly in Eulerian and non-Eulerian state spaces Koenig, S., and Simmons, R. 1995. Real-time search in non-
(real-time search algorithms differ in this respect from tradi- deterministic domains. In Proceedings of the IJCAI, 1660-l 667.
tional search algorithms such as A*), We have shown that Koenig, S., and Simmons, R. 1996a. The effect of representation
real-time search algorithms that can be intractable in non- and knowledge on goal-directed exploration with reinforcement
Eulerian state spaces (such as edge counting) have a small learning algorithms. Machine Learning Journal 22:227-250.
complexity in Eulerian and undirected state spaces. This re- Koenig, S., and Simmons, R. 1996b. The influence of do-
sult helps explain why the reported performance of real-time main properties on the performance of real-time search algorithms.
search algorithms have been so good: They tended to be Technical Report CMU-CS-96- 115, School of Computer Science,

tested in Eulerian (usually undirected) domains. Carnegie Mellon University.

Many state spaces, however, are not undirected or Eule-
rian. One way to avoid uncritical generalizations of perfor-
mance figures for real-time search algorithms by non-experts
is to report experimental results not only for Eulerian state
spaces (such as sliding tile puzzles and gridworlds), but also
for non-Eulerian state spaces. In particular, one has to use
non-Eulerian state spaces to show the superiority of aparticu-
lar real-time search algorithm across a wide range ofdomains.
To this end, we presented two classes of hard-to-search state
spaces (“reset” and “quicksand” state spaces) that do not suf-
fer from (all of) the problems of the standard test domains.
Minor variations of these state spaces are also applicable in
distinguishing real-time search algorithms that have larger
lookahead. We therefore suggest that variations of these two
state spaces be included in test suites for real-time search
algorithms.

Koenig, S., and Smimov, Y. 1996. Graph learning with a nearest
neighbor approach. In Proceedings of the Conference on Compu-
tational Learning Theory.
Korach, E.; Kutten, S.; and Moran, S. 1990. A modular tech-
nique for the design of efficient distributed leader finding algo-
rithms. ACM Transactions on Programming Languages and Sys-
tems 12(1):84-101.

Korf, R. 1987. Real-time heuristic search: First results. In
Proceedings of the AAAI, 133-138.

Korf, R. 1988. Real-time heuristic search: New results. In
Proceedings of the AAA I, 13 9- 144.

Korf, R. 1990. Real-time heuristic search. Artificial Intelligence
42(2-3): 189-2 11.
Korf, R. 1993. Linear-space best-first search. Artificial Intelli-
gence 62(1):41-78.

Our study provides a first step in the direction of under-
standing what makes domains easy to solve with real-time
search algorithms. In this paper, we reported results for one
particular property: being Eulerian. Our current work con-
centrates on identifying and studying additional properties
that occur in more realistic applications, such as real-time
control.

Matsubara, S., and Ishida, T. 1994. Real-time planning by in-
terleaving real-time search with subgoaling. In Proceedings of
the International Conference on Artificial Intelligence Planning
Systems, 122-127.
Newman, J. 1953. Leonhard Euler
Scientzjic American 188(6):66-70.

and the Konigsberg bridges.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Menlo Park, California: Addison-Wesley.
Pemberton, J., and Korf, R. 1992. Incremental path planning on
graphs with cycles. In Proceedings of the International Conference
on ArtiJicial Intelligence Planning Systems, 179-l 88.
Pirzadeh, A., and Snyder, W. 1990. A unified solution to cover-
age and search in explored and unexplored terrains using indirect
control. In International Conference on Robotics andAutomation,
volume 3,2113-2119.

eferences
Bar-to, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artzjicial Intelligence 73(1):8 l-
138.

Deng, X., and Papadimitriou, C. 1990. Exploring an unknown
graph. In Proceedings of the Symposium on Foundations of Com-
puter Science, 355-36 1.

Gardner, M. 1973. Mathematical games. ScientcJ?c American
228(1):108-l 15.

Hierholzer, C. 1873. Uber die Moglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Mathema-
tische Annalen 6:30-32.

Ishida, T., and Korf, R. 1991. Moving target search. In Proceed-
ings of the IJCAI, 204-2 10.

Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the AAAI, 525-532.

Ishida, T. 1995. ?Lvo is not always better than one: Experiences in
real-time bidirectional search. In Proceedings of the International
Conference on Multi-Agent Systems, 185-192.

Russell, S., and Wefald, E. 1991. Do the Right Thing - Studies in
Limited Rationality. Cambridge, Massachusetts: The MIT Press.

Stentz, A. 1995. The focussed D* algorithm for real-time replan-
ning. In Proceedings of the IJCAI, 1652-l 659.

Sutherland, I. 1969. A method for solving arbitrary-wall mazes
by computer. IEEE Transactions on Computers C-l 8(12): 1092-
1097.
Thrun, S. 1992. The role of exploration in learning control with
neural networks. In White, D., and Sofge, D., eds., Handbook
of Intelligent Control: Neural, Fuzzy and Adaptive Approaches.
Florence, Kentucky: Van Nostrand Reinhold. 527-559.

Search Control 285

