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Abstract 

Learning during backtrack search is a space-intensive 
process that records information (such as additional 
constraints) in order to avoid redundant work. In this 
paper, we analyze the effects of polynomial-space- 
bounded learning on runtime complexity of backtrack 
search. One space-bounded learning scheme records only 
those constraints with limited size, and another records 
arbitrarily large constraints but deletes those that become 
irrelevant to the portion of the search space being 
explored. We find that relevance-bounded learning allows 
better runtime bounds than size-bounded learning on 
structurally restricted constraint satisfaction problems. 
Even when restricted to linear space, our relevance- 
bounded learning algorithm has runtime complexity near 
that of unrestricted (exponential space-consuming) 
learning schemes. 

Introduction 

Tractable subclasses of the finite constraint satisfaction 
problem can be created by restricting constraint graph 
structure. The algorithms that exploit this structure most 
effectively have time and space complexities exponential in 
the induced width of the constraint graph (Dechter 1992). 
One such algorithm (Frost & Dechter 1994) applies unre- 
stricted learning during backtrack search. Because the 
exponential space requirement of unrestricted learning is 
often impractical, we investigate the effects of space- 
bounded learning on runtime complexity. There are two dis- 
tinct methods for limiting the space consumption of learn- 
ing. One bounds the size of the constraints recorded 
(Dechter 1990; Frost & Dechter 1994), and the other 
records constraints of arbitrary size, but deletes those that 
become irrelevant to the current portion of the search space 
being explored (Ginsberg 1993; Ginsberg & McAllester 
1994). 

We define graph parameters that reflect the exponential 
complexity of backtrack search enhanced with each of these 
two learning schemes. With respect to bounding runtime, 
we find that relevance-bounded learning is a better invest- 
ment of space than size-bounded learning. Further, our lin- 
ear space relevance-bounded learning algorithm has 
runtime complexity ( O(exp(Zl)) near that of unrestricted 
learning schemes (O(exp(w*)) ). An analysis of expected 
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values for 1, and w* on randomly generated graphs reveals 
that I, is usually within a small constant of w* , and that 
dedicating more space to learning further reduces the differ- 
ence in runtime bounds. 

Our results are similar to several other structure-exploit- 
ing techniques. What distinguishes this work from the 
cycle-cutset method (Dechter 1990) and graph-splitting 
techniques (Freuder & Quinn 1985; Bayardo & Miranker 
1995) is we do not require positioning variables with few 
constraints between them first in the ordering in order to 
effectively bound runtime. We demonstrate that our tech- 
niques provide good bounds across a wide variety of graph 
arrangement policies. Unlike schemes that exploit nonsepa- 
rable components of the constraint graph (Freuder 1985; 
Dechter & Pearl 1987), our algorithms are backtrack-driven 
and require no exponential time preprocessing phases. They 
thereby preserve good performance on easy instances and 
allow application of additional proven backtrack enhance- 
ment schemes including lookahead (Nadel 1988), conflict- 
directed backjumping (Prosser 1993), and restricted forms 
of dynamic variable ordering (Bayardo & Miranker 1995). 

A constraint satisfaction problem (CSP) consists of a set of 
variables, a finite value domain, and a set of constraints. 
The idea is to assign values to variables such that no con- 
straint is violated. More formally, an assignment is a map- 
ping of values to some subset of the variables. A constraint 
is a set of assignments (called nogoods) that map values to 
the same set of variables. An assignment is said to violate a 
constraint if any nogood from the constraint is contained 
within the assignment. A partial solution is an assignment 
which violates no constraint. A solution to the CSP is a par- 
tial solution mentioning every variable. 

The constraint graph of a CSP has a vertex for each vari- 
able and the property that variables mentioned in a con- 
straint are completely connected. A value v is said to 
instantiate a variable x with respect to a partial solution S 
if S u { (x, v) } is itself a partial solution. We will denote 
the number of variables in a CSP with n and the number of 
values in its value domain with k . 

In this paper, we investigate the complexity of determin- 
ing whether a CSP has a solution. The algorithms we 
present can be easily extended to return a solution when one 
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exists. While deciding CSP solubility is NP-complete, it is 
possible to define tractable subclasses by restricting con- 
straint graph structure. For example, some algorithms have 
runtime exponential in the height h of a depth-first search 
(DFS) tree of the constraint graph (Dechter 1992). We can 
define a tractable subclass of CSP by restricting attention to 
those instances that, after arrangement by some specific 
DFS procedure, have a DFS tree with h bounded by some 
constant. 

We define constraint graph parameters similar to h for 
reflecting the exponent in the runtime complexity of our 
restricted learning algorithms. To preserve generality, we 
state runtime complexity in terms of how many domain val- 
ues are considered by the algorithm. Specifically, a value is 
said to be considered whenever the algorithm checks to see 
whether it instantiates some variable. Runtime can be 
bounded by multiplying the number of domain values con- 
sidered with the complexity of verifying an instantiation. 
Complexity of verifying an instantiation depends on the 
arity of the constraints (how many variables mentioned by 
its nogoods) as well as implementation specific factors. 
Typically if the instance is binary (all constraints are of 
arity 2), the complexity of verifying an instantiation is 
O(n). This is because nogoods which map values to the 
same set of variables can be grouped into a single compati- 
bility matrix to be tested in constant time. 

Rooted-Tree Arrangements 

We begin by reviewing the concept of rooted-tree arrange- 
ments for improving runtime complexity of backtrack 
search. We use this result as a starting framework to which 
various learning schemes will be added and evaluated. 

A rooted tree is a noncyclic graph whose edges are 
directed away from the root vertex and towards the leaves. 
A branch of a rooted tree is a path from the root vertex to 
some leaf. A rooted-tree arrangement of a graph (Gavril 
1977)’ is a rooted tree with the same set of vertices as the 
original graph and the property that adjacent vertices from 
the original graph must reside in the same branch of the 
rooted tree. The concept is illustrated in Figure 1. Directed 
edges represent a rooted-tree arrangement of the vertices. 
For illustrative purposes, the original constraint graph edges 
are displayed as dashed arcs to demonstrate that adjacent 
vertices appear along the same branch. 

Backtrack algorithms can exploit rooted-tree arrange- 
ments to improve runtime complexity on some instances. 
Such an algorithm appears in Figure 2. We refer to the 
working assignment as the set of instantiations made to the 
current subproblem’s ancestors. The algorithm traverses the 

1 It is not clear whether pseudo-tree as defined in (Freuder & 
Quinn 1985) is equivalent to a rooted-tree arrangement or 
depth-first search (DFS) tree. Nevertheless, a rooted-tree 
arrangement is a slight generalization of DFS tree (Bayardo 
& Miranker 1995), and the results from (Freuder & Quinn 
1985) apply to both. 

FIGURE 1. A graph and a sed-tree arrangement 
of the graph. 

rooted-tree arrangement in a depth-first manner as sug- 
gested by Dechter (1992) with respect to DFS trees. 

TREE-S• LVE( P ) 
let x denote the root variable of P 
for each value v instantiating x w.r.t. the working assignment 

for each subproblem P, corresponding to the subtree 
rooted at a child of x 

if TREE-S• LVE( P, ) = FALSE 
then try another value v (continue outer for loop) 

return TRUE 
return FALSE 

FIGURE 2. An algorithm for backtracking along a 
rooted-tree arrangement 

If h denotes the height of the rooted tree, then the total 
number of values considered by Tree-Solve is Q(nkh) since 
recursion depth is bounded by h . Correctness of the tech- 
nique follows from the fact that any subtree of the rooted- 
tree arrangement corresponds to a subproblem whose solu- 
bility is determined only by the instantiations of its ances- 
tors -- by definition, there are no constraints between the 
subproblem variables and those within other branches of 
the rooted tree. 

Unrestricted Learning 

Tree-Solve exploits the fact that only the instantiations of a 
subproblem’s ancestors affect its solubility status. However, 
the constraint graph structure can often be used to further 
reduce the set of responsible instantiations. For instance, 
consider variable x4 from Figure 1. Ancestor x2 does not 
connect to any variable in the subproblem rooted at x4, so 
the instantiation of x2 is irrelevant with respect to this sub- 
problem’s solubility. More generally, given an ancestor x, 
of a subproblem P , if x, does not connect to any variable 
within the subproblem P, then the instantiation of x, is 
irrelevant with respect to its solubility. 
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DEFINITION 4. I: The defining set of a subproblem is the set 
of ancestors that are connected to at least one subprob- 1 
lem variable in the constraint graph. 

Figure 3 provides the defining sets for the subproblems 
within the previous example. Subproblems are identified by 
their root variables. The concept of induced width (Dechter 
1992) is equivalent to defining set size, and we elaborate 
further on the relationship in the appendix. We use this 
atypical definition since (we feel) it makes the subproblem 
relationships more explicit, and thereby simplifies the com- 
plexity proofs. 

ds(x,) = 0 
ddx,) = -&I 
ddx,) = Lq, x2> 
&x4) = -ix3 > 
ds(x,) = {x3, x41 
&x6) = -ix49 x5 I 
ds(x7) = {x41 
ds&J = -I-Q, x2> 
ds(x,) = cxp $7 x*> 
d&J = -Ix27 x91 

/ 

FIGURE 3. Defining sets of each subproblem. 

Suppose Tree-Solve is attempting to solve a subproblem 
P with defining set X. The working assignment, when 
restricted to variables within X, is called the deJning set 
assignment of P . If P is determined to be unsolvable, we 
can record its defining set assignment as an additional 
nogood. Should the assignment resurface, since we have 
made note of it as a nogood, Tree-Solve( P ) can immedi- 
ately return FALSE instead of attempting the subproblem 
again. Similarly, if P has been successfully solved given a 
particular defining set assignment, should the assignment 
resurface, Tree-Solve( P ) can immediately return TRUE. 
This requires recording the assignment as a good (Bayardo 
& Miranker 1994). Dechter (1990) calls the recording of 
additional nogoods during backtrack search learning. We 
use this term to apply to the recording of goods as well. 

Figure 4 illustrates the described learning extensions. We 
now consider the effect of these extensions on runtime com- 
plexity. First, the size of the largest defining set in the 
rooted tree will be denoted with the parameter w* . For 
example, the problem in Figure 3 has w* = 3. Next, we 
say the root variable of a subproblem is visited whenever 
the subproblem is attempted. We denote the number of 
times a variable x is visited by v(x) . 

LEMMA 4.2: Given a subproblem P with root variable x 
and defining set size s , v(x) < kS . 

Proofi A good or nogood is recorded with each attempt at 
solving P . There are only kS unique defining set assign- 

LEARNING-TREE-S• LVE( P ) 
* if the defining set assignment of P is good 
* then return TRUE 
* if the defining set assignment of P is nogood 
* then return FALSE 

let x denote the root variable of P 
for each value v instantiating x w.r.t. the working assignment 

for each subproblem P, corresponding to the subtree 
rooted at a child of x 

if LEARNING-TREE-S• LVE( P, ) = FALSE 
then try another value v (continue outer for loop) 

* Record the defining set assignment of P as a good 
return TRUE 

* Record the defining set assignment of P as a nogood 
return FALSE 

FIGURE 4. Tree-Solve extended with unrestricted 
learning capabilities. 

ments of P. After kS visits, every possible defining set 
assignment is recorded as good or nogood, so the sub- 
problem rooted at x will not be attempted again. 0 

THEOREM 4.3: The number of values considered by the 
unrestricted learning algorithm is O(nkw* + I). 

Proof Each time a variable is visited, at most k values 
are considered. Recall that the number of variables is n 
and the largest defining set size is w* . By lemma 4.2, the 
algorithm visits at most O(nkw*) variables total, so total 
values considered is O(nk”* + l) . 0 

Theorem 4.3 is similar to a result in (Frost & Dechter 
1994). The difference here is that due to the addition of 
good recording and a different proof technique, we reduce 
the bound on domain values considered from exponential in 
the number of variables to linear. While this improvement 
may seem minor at this point since we have reduced only 
the base of the exponent, the algorithmic differences are 
necessary for the results developed in the following sec- 
tions. 

The space requirement of, Learning-Tree-Solve with 
unrestricted learning is O(nkw ) . This is because there are 
n variables, up to kW* (no)goods are recorded for each 
variable, and each (no)good is up to w* (which we regard 
as a constant) in size. 

Size-Bounded Learning 

Since space is often a more precious resource than time, it 
may be desirable to improve space complexity in exchange 
for a small runtime penalty. Dechter (1990) suggests 
recording nogoods of limited size, and defines i th order 
[size-bounded] learning as the scheme in which only those 
(no)goods of size i or less are recorded, where i is a con- 
stant less than w* . Consider modifying the Learning-Tree- 
Solve algorithm to perform i th order size-bounded learn- 
ing. After doing so, learning is only performed at variables 
with a defining set of size i or less. Its space complexity is 
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thereby Q(nP) . The effect on runtime complexity is as fol- 
lows: 

LEMMA 5.1: Given a variable x whose defining set has size 
s I i , v(x) 5 k’ . 

Prooj? See arguments from Lemma 4.2. Cl 

LEMMA 5.2: Given a variable x whose defining set has size 
s>i, v(x)5ki+d where d denotes the distance in edges 
between x and its nearest ancestor where learning is per- 
formed. 

Proof Follows from Lemma 5.1 and the fact that 
v(x) I k . v(x& where xP is the parent of x in the tree. 
cl 

DEFINITION 5.3: Let di denote the 
each variable in the rooted tree. 

maximum of d + i for 

THEOREM 5.4: The number of values cojsi+red by the 
size-bounded learning algorithm is O(nk I ) . 

Proof Follows from Lemma 5.2 and the fact that at most 
k values are considered with each variable visit. Cl 

FIGURE 5. Effects of first and second-order size- 
bounded learning. 

Figure 5 illustrates the values of d, and d, from the 
example problem. Variables at which learning is performed 
are highlighted (recall that these are the variables whose 
defining sets have size i or less). The large arrows point to 
the variables which have the maximum value of d + i . For 
this instance, second-order size-bounded learning achieves 
a runtime complexity equivalent to unrestricted learning 
even though its space requirement is quadratic instead of 
cubic. 

elevance-Bounded Learning 

Another approach for bounding the space consumption of 
learning is to record (no)goods at every backtrack point, but 
to also delete (no)goods when they are no longer considered 
“relevant”. For instance, Dynamic Backtracking (Ginsberg 

1993) records nogoods of arbitrary size; but, a nogood is 
deleted once it contains more than one variable-value pair 
not appearing in the working assignment. We now general- 
ize the notion of relevance to define a class of relevance- 
bounded learning schemes. A similar generalization 
appears in (Ginsberg & McAllester 1994). 

DEFINITION 6.1: A (no)good is i -relevant if it differs from 
the working assignment in at most i variable-value pairs. 

DEFINITION 6.2: An i th order relevance-bounded learning 
scheme maintains only those derived (no)goods that are 
i -relevant. 

Now consider modifying Learning-Tree-Solve to per- 
form i th order relevance-bounded learning. The next theo- 
rem establishes that relevance-bounded learning requires an 
asymptotically equivalent amount of space as size-bounded 
learning of the same order. 

THEOREM 6.3: Space consumption of the relevance- 
bounded learning algorithm is O(nk’) . 

Pro08 Consider a variable x with defining set X. If X 
has size i or less, then the (no)goods recorded at x are 
always relevant, and occupy O(k’) space. Suppose now 
that the size of X is greater than i . For this case, 
(no)goods recorded at x are sometimes deleted. Let S 
denote the set of (no)goods recorded at x that exist at 
some point in time. By definition of relevance and the 
search order of the algorithm, the (no)goods in S are 
equivalent when restricted to the uppermost s - i ances- 
tors in X. This implies that S has size at most 
[Xlk’ = O(k’) . 0 Vera11 space complexity is therefore 
O(nki). Cl 

The effect on runtime complexity of relevance-bounded 
learning is complicated, so we begin with an example 
before jumping into formalities. Consider bounding the 
number of visits to variable xl0 from the example instance 
when first-order relevance-bounded learning is being 
applied. Recall that the defining set of variable xl0 is 
{x2, x9} . Note that the subproblem rooted at x8 cannot 
affect the instantiation of x2. Therefore, as long as the 
algorithm is solving the subproblem rooted at x8 (call it 
P, ), all constraints recorded at xl0 remain l-relevant. 
After k visits to variable x,e while solving P, , we there- 
fore have that all possible combinations of xg have been 
recorded as good or nogood. Variable xi0 will therefore not 
be visited again until we are done solving P, . We thus have 
that v(xie) 5 k . v(xs) . We next generalize this idea to apply 
to any instance and any order i of relevance-bounded learn- 
ing. 

LEMMA 6.4: Given a variable x whose defining set has size 
sli, v(x)lk’. 

Proofi Since (no)goods of size i or less are always i -rel- 
evant, simply apply the arguments from Lemma 4.2. cl 

Given a vertex x with defining set X, let A(x, j) denote 
the member of X that is the j th nearest to x along the 
branch from x to the root. For instance, from our example 
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problem, A(xIO, I) = x9, and A(x,,, 2) = x2. Further, let 
C(y, x) denote the child of y that resides on the same 
branch as x . Thus, C(x2, xlO) = xs . 

LEMMA 6.5: Given a vertex x whose defining set is bigger 
than i , v(x) 2 ki - v(C(A(x, i + l), x)) . 

Proofi As long as the instantiation of variable A(x, i + 1) 
and the instantiations of its ancestors remain unchanged, 
by definition, the (no)goods recorded at x are i -relevant. 
Consider then the subproblem P rooted at 
C(A(x, i + l), x) . Solving this subproblem does not 
affect the instantiations of A(x, i + 1) and its ancestors, 
so all (no)goods recorded at x while attempting P 
remain i -relevant until we are done attempting P . The 
number of visits to variable x while attempting P is 
bounded by ki since after ki visits, all possible instantia- 
tions of the defining set members within subproblem P 
are recorded as good or nogood. The claim follows 
immediately from this fact. 0 

DEFINITION 6.6: Let li denote the largest exponent from 
each bound derived from applying lemmas 6.4 and 6.5 to 
every variable in the problem. 

THEOREM 6.7: The number of values considered by the rel- 
evance-bounded learning algorithm is O(nk”+ ‘) . 

Proof: Clear. Cl 

V(Xl) = 1 
v(x2) 2 k 
v(x3) 5 k - v(x2) 5 k2 
v(x4) 5 k 
v(x5) 2 k e V(Q) 5 k2 
v(x6) I k . v(x5) ,< k3 
v(q) 5 k 
v(x8) I k - v(x2) < k2 
v(xg) 5 k - v(x& 5 k3 
v(xlo) I k - v(x8) S k3 

I, = 3 

FIGURE 6. Effects of first-order relevance- 
bounded learning. 

Figure 6 illustrates the value of I, for our example prob- 
lem. Since k3 bounds the number of visits to any variable, 
I, = 3 . First-order relevance-bounded learning thereby 
achieves runtime complexity equivalent to unlimited learn- 
ing on this instance, while using only O(nk) space. 

Comparison of Zi, di , h and W* 

Maximum defining set size is a lower-bound for li and di 
for any i . It is important to know how close these parame- 
ters come to w* in order to determine whether polynomial 
space restrictions provide a worthwhile trade-off. This sec- 

tion provides such an evaluation, concluding that li pro- 
vides a close approximation of w” even when i = 1 . We 
also show that usually 1, is less than d, , implying rele- 
vance-bounded learning provides a better investment of 
space than does size-bounded learning. 

Minimizing w* by cleverly arranging the variables is 
NP-hard (Arnborg 1985). It is likely that finding the rooted- 
tree arrangement that minimizes either h , di , or li for any 
i is also NP-hard due to its close relation to this and other 
NP-hard problems. As a result, a heuristic is often used to 
arrange the variables of a graph. Then, a structure-based 
technique is applied with respect to that arrangement. In 
this section, we evaluate the expected values of the various 
parameters when using this approach. 

Figure 7 plots the expected values of the graph parame- 
ters h, d,, d, , 1, , 1, and w* . The rooted-tree arrange- 
ment policy we used was to apply depth-first search to find 
an arbitrary DFS tree. Each point on the plot represents the 
average parameter value from 100 connected graphs with 
100 vertices. Graphs were generated randomly with the 
number of edges specified by the horizontal axis. To ensure 
connectivity, a random spanning tree was greedily gener- 
ated from a random starting point, and then the remaining 
edges added in. An additive factor of 1 is applied to each 
parameter other than h so that it reflects the actual expo- 
nent in its algorithm’s runtime complexity function. 

The figure reveals that relevance-bounded learning is 
more effective at bounding runtime than size-bounded 
learning. In fact, we usually have that 1, < d, . We also see 
that relevance-bounded learning closely approximates the 
effects of unrestricted learning: both 1, and 1, are within a 
small constant of w* throughout the plotted range where on 
average, 1, I w* + 5 and 1, I w* + 6. The fewer the edges, 
the closer the expected values of li and w* . For instance, 
when the number of edges is 119 or less, 1, I w* + 3 . 

100 110 120 130 140 
Edgea I” Conatralnt Graph 

FIGURE 7. Expected parameter values: DFS 
arrangement 

We repeated these experiments with other arrangement 
policies, and the results appear in Figure 8. Note that now 
d, is sometimes better than 1, , but only for the sparsest 
graphs. For the maximum degree arrangement policy, all 
parameters (even h ) are reasonably close to induced width. 
This policy positions several variables with few constraints 
between them first in the arrangement since it greedily 
selects the remaining variable with the most edges in the 
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constraint graph. Over all arrangement policies investi- 
gated, we see that on average, 1,s I, < 2w* . Whatever the 
arrangement heuristic applied, relevance-bounded learning 
seems to always produce a runtime bound near that of unre- 
stricted learning. The more space dedicated to learning, the 
more closely the effect of unrestricted learning is approxi- 
mated. Size-bounded learning, on the other hand, approxi- 
mates unrestricted learning only for the sparsest graphs. 
After a certain point, size-bounded learning fails to perform 
much (if any) learning since the defining sets become too 
large. 

FIGURE 8. Expected parameter values: minimum 
width and maximum degree arrangements. 

It is possible to relate li and di to other parameters from 
the literature. For instance, it is easy to define an arrange- 
ment policy such that given a cycle-cutset of size c , 
1 r I c + 1 . Similarly, given a graph with nonseparable com- 
ponent size of r , we can define an arrangement policy such 
that I, I d, I r . Due to length restrictions, we leave the 
details of these policies as exercises to the reader. 

Conclusions and Future Work 

We have presented and theoretically evaluated backtrack- 
based algorithms for tractable constraint satisfaction on 
structurally-restricted instances. The runtime complexity of 
backtrack search enhanced with unrestricted learning is 
known to be exponential in w* . We defined similar graph 
parameters for backtrack enhanced with i th order size- 
bounded learning (di ) and i th order relevance-bounded 
learning (Zi ). An evaluation of expected values of these 
parameters reveals that li is within a small constant of w* 

for sparse instances, and within a factor of 2 for all cases 
explored. Further, 1 r (linear-space consuming relevance- 
bounded learning) is often much less than d, (cubic space- 
consuming size-bounded learning). From this we conclude 
that relevance-bounded learning is a better investment of 
space resources than size-bounded learning, and that our 
low-order relevance bounded learning algorithm provides a 
space-efficient alternative to unrestricted learning in appli- 
cations requiring tractable constraint satisfaction on struc- 
turally-restricted instances. One potential application is 
real-time multi-join query evaluation since multi-join que- 
ries have a graph structure that is typically assumed to be 
tree or nearly-tree structured (Swami 1989). Heuristic algo- 
rithms for the CSP and related problems are prone to patho- 
logical behavior (Gent & Walsh 1996), and are thereby 
inappropriate for real-time domains. 

We suspect the theoretical differences between the vari- 
ous learning schemes will hold with respect to average-case 
performance on denser instances, and leave the issue open 
to future study. The algorithms from this paper have been 
given the minimal functionality needed to achieve the stated 
bounds. However, since they are all variations of standard 
backtrack search, they remain open to additional backtrack 
optimizations known to improve average-case performance. 
For instance, the algorithms use statically-determined cul- 
prits for every possible failure. Techniques such as conflict- 
directed backjumping (Prosser 1993) apply runtime derived 
information to potentially minimize the set of culprits even 
further. Dynamic ordering of the variables is another pow- 
erful technique for improving average-case performance 
(Haralick & Elliot 1980). Structure-based techniques 
impose some restrictions on the variable arrangements, but 
rooted-tree search procedures are open to a limited form of 
search rearrangement. The idea is at any point we can 
attempt the open subproblems in any order (Bayardo & 
Miranker 1995). Finally, lookahead techniques such as for- 
ward checking (Nadel 1988) can help realize failures earlier 
in the search. Integrating lookahead with our algorithms is 
straightforward because the defining sets, since they are 
derived from structure alone, identify a set of culprits that is 
not affected by the particular mechanism used to identify 
failure within a given subproblem. 

This research was supported in part by an AT&T Bell Labo- 
ratories Ph.D. fellowship. 

Here we demonstrate the equivalence of maximum defining 
set size and induced width. The parameters are different 
only in that one is defined with respect to a rooted-tree 
arrangement of the graph, and the other with respect to an 
ordering of the graph vertices. We demonstrate equivalence 
by showing (1) a graph with a rooted-tree arrangement can 
be ordered so that induced width is equivalent to maximum 

Search 81 Learning 303 



defining set size, and (2) given an ordered graph, we can 
obtain a rooted-tree arrangement whose maximum defining 
set size is equal to induced width of the ordered graph. - 

Induced width is a property of a graph with an ordering 

eferences 

imposed on its vertices. A child of a vertex v in an ordered 
graph is a vertex that is adjacent to v and follows v in the 
ordering. The induced graph of an ordered graph G is an 
ordered graph with the same ordered set of vertices as G 
and the imailest set of edges to contain the edges of G and 
enforce the property that any two vertices sharing a child 
are adjacent. We can build the induced graph of G by itera- 
tively connecting any nonadjacent vertices that share a 
child. The width of a vertex in an ordered graph is the num- 
ber of parents it has in the graph. The induced width of the 
ordered graph (w* ) is the maximum of the widths from 
each vertex in the induced graph. 

We can obtain a rooted-tree arrangement T of a graph G 
from its induced graph G’ as follows: Let the first vertex 
along the ordering be the root of 
of another vertex X, if and only 

T. A 
if xh 

vertex xb is a child 
is the first node to 

that x, follow xa in the odering, and have the property 
and x/, are adjacent in G’ (the induced graph). 

Figure 9 illustrates the process. To create the induced 
graph, we first note that in the original graph, vertices 1 and 
4 share the child 5, therefore an induced edge is added 
between them. After adding this edge, we now have that 
vertices 1 and 2 share the child 4, so edge (1,2) is added. 
This completes the process of forming the induced graph. 
The rooted-tree arrangement of the ordered graph is dis- 
played to the right of the induced graph. To form the 
we simply keep those edges from the induced graph 
connect a vertex its nearest child. 

tree, 
that 

FIGURE 9. An ordered graph, the edges (dashed) 
added to form the induced graph, and its backtrack 

tree. 

A property of the rooted-tree arrangement provided by 
the procedure is that the defining set of any subproblem is 
equivalent to its set of parents in the induced graph. We 
have therefore described a process for obtaining a rooted- 
tree arrangement whose largest defining set size is equiva- 
lent to induced width. We can similarly obtain an ordered 
graph from a rooted tree arrangement whose induced width 
is equivalent to the largest defining set size: simply order 
the nodes of the graph according to a depth-first traversal of 
the rooted tree. 
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