
Adding New Clauses for Faster ocal Seam

Byungki CHA and Kazuo IWAMA
Dept. of Computer Science and Communication Engineering

Kyushu University, Hakozaki, Fukuoka 812-81, JAPAN
{cha, iwama}@csce.kyushu-u.ac.jp

Abstract

A primary concern when using local search methods
for CNF satisfiability is how to get rid of local mini-
mas. Among many other heuristics, Weighting by Mor-
ris (1993) and Selman and Kautz (1993) works over-
whelmingly better than others (Cha and Iwama 1995).
Weighting increases the weight of each clause which is
unsatisfied at a local minima. This paper introduces a
more sophisticated weighting strategy, i.e., adding new
clauses (ANC) that are unsatisfied at the local min-
ima. As those new clauses, we choose resolvents of the
clauses unsatisfied at the local minima and randomly
selected neighboring clauses. The idea is that ANC is
to make the slope of search space more smooth than
the simple weighting. Experimental data show that
ANC is faster than simple weighting: (i) When the
number of variables is 200 or more, ANC is roughly
four to ten times as fast as weighting in terms of the
number of search steps. (ii) It might be more impor-
tant that the divergence of computation time for each
try is much smaller in ANC than in weighting. (iii)
There are several possible reasons for ANC’s superior-
ity, one of which is that ANC returns the same local
minima much less frequently than weighting.

Introduction

Many people agree that it is one of the most remark-
able findings in the 90’s that the local search works
well for CNF satisfiability testing in spite of the prob-
lem’s highly combinatorial nature (Gu 1992; Selman
et.al 1992). That was followed by an even more im-
portant finding; the weighting strategy to escape from
local minimas (Morris 1993; Selman and Kautz 1993).
Cha and Iwama (1995) showed that the weighted local
search is overwhelmingly faster than other local search
algorithms such as GSAT (Selman et. al 1992) and Ran-
dom Walk (Selman and Kautz 1993). Local search
starts from a random truth assignment and moves to
a neighboring truth assignment, one after another, in

332 Constraint Satisfaction

the direction that the number of unsatisfied clauses de-
creases. Suppose that one gets to a truth assignment8.
called a local minima, where the number of unsatis-
fied clauses is less than or equal to the number of un-
satisfied clauses at any neighboring truth assignment.
Then the weighted local search, or WEIGHT for short,
increases the weight of each unsatisfied clause at, t,he
local minima, hoping that the weighted sum of un-
satisfied clauses will be larger t,han some neighboring
assignment and we will be able to escape from the lo-
cal minima. One good point of t,his approach is that
we do not have to be nervous about details of how to
increase the weight. Due to Cha and Iwama (1995),
WEIGHT is surprisingly stable against different ways
of increasing the weight, integers or reals, fixed values
or random values, etc. Ironically this means that there
is little hope of improving the weighted local search by
simply changing the weighting method.

In this paper, we do try to improve the weighted
local search from a little different angle. One can see
that increasing the weight of some clause by, say. one,
is equivalent to adding one same clause to the formula.
Such an added clause may not be one of the existing
clauses but may be a new one. The problem is of course
how to select this new clause. Our solution here is a
resolvent obtained from the unsatisfied clause at, the
local minima and its neighboring clause. The new al-
gorithm is called ANC (Adding New Clauses). When it
gets to a local minima, ANC generates as many such
resolvents as it obtains the same effect as WEIGHT
increases the weight of the clauses.

Experimental data show that ANC is considerably
faster than WEIGHT. Experiments were conducted
using random 3CNF formulas (Clause/Variable ra-
tio=4.3) and the 3CNF formulas of C/V ratio 2.0 that
have only one satisfying truth assignment. ‘The lat-
ter formulas can be generated by the AIM Generat,or
(Asahiro eta1 1993) and have shown to be hard and ap-
propriate for local search algorithms (Cha and Iwama
1995). When the number of variables is 200 or more,

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

ANC is four to ten times faster than WEIGHT. Exper-
iments were also conducted for more natural formulas
on VLSI design and Block world planning, for which
ANC is also better generally. It might be more im-
portant that the divergence of cell moves in each try
for different formulas or even for the same formula is
much smaller in ANC than in WEIGHT. The number
of cell moves in each try is within three times the aver-
age in ANC but is 10 times or even more occasionally
in WEIGI-IT.

ANC is not a result of trial and error but is due to an
intensive analysis of the weakness of WEIGHT, which
will be described in Sec. 4. Among others, the most
serious problem of WEIGHT is that it tends to visit
the same truth assignment many times just as wan-
dering in circles. There are reasonable explanations
for why adding the resolvents is effective to prevent
this circle-wandering. In fact the number of revisited
truth assignments is 10 to 100 times less in ANC than
in WEIGHT.

By a rough estimation, the number of cell moves
of ANC triples when the number of variables doubles.
This means the growth of the number of steps is ap-
proximately O(~Z’.~). We need more time in each cell
move to add resolvents in ANC than increasing the
weight in WEIGHT. However, this portion of compu-
tation has a lot of room for improvement by better
coding techniques and parallelization.

Weighted Local Search
A literal is a (logic) variable z or its negation Z. A
cluvse is a sum of one or more literals. A (CNF) for-
mula is a product of clauses. A specific assignment of
true (or 1) and false (or 0) to all the variables is called
a cell. (This might be unusual; note that the terminol-
ogy in this paper is associated with the Karnaugh map
being popular in switching theory.) For cells Cl and
C2, the Humming distance between Cl and Cz is the
number of variables for which the assignment is differ-
ent (true for Cl and false for C2 or vice versa). Ci
is a neighbor of Cz if their Hamming distance is one.
It is said that a clause A covers a cell C if the truth
assignment denoted by C makes A false.

The number of overlaps of a cell C, denoted by
OL(C), is the number of the clauses that cover 6. A
cell C is called a local minima if OL(C’) 2 Oh(C)
for all neighbors C’ of C. A cell is called a solution if
OL(C) = 0.

Basically, local search for CNF satisfiability tries
to reach a solution by gradually moving to cells of a
smaller number of overlaps hoping that it can even-
tually get to a cell of zero overlaps. Its fundamental
structure is as follows:

Algorithm Local-Search

C := a randomly selected initial cell

until C becomes a solution do

if C is not a local minima then do a else do /?

A specific local search algorithm is obtained by com-
pleting a and p. For example, in the simplest algo-
rithm called RESTART, a = Move-downward that is
to move the one of the neighboring cells whose over-
laps (less than the current one) are the least and ,8 =
Restart that stops the current search and goes to a
new initial cell. In the well-known GSAT (Selman
et.u11992), a = p = Move-to-minimum (moving to the
neighboring cell whose overlaps are minimum regard-
less of being less than the current overlaps) + Restart
at every fixed number of steps.

In weighted local search algorithms, a weight,
w(A) > 0, is associated with each clause A. Its value
is initially one for all clauses. Now the definition of
the number of overlaps is changed into the sum of the
weights of the clauses that cover the cell. Namely

OL(C) =
A covers C

In the standard weighted local search, WEIGHT, cy =
Move-downward and p = Weighting, i.e., to add one
to w(A) for all the clauses A which cover the current
cell. As shown in Cha and Iwama (1995), WEIGHT
is overwhelmingly faster than others. The difference of
performance can reach as large as 100 times even when
the number of variables is moderate, say, 100.

RecaIl that WEIGHT adds a unit weight (one) to
each clause covering the current cell. Different weight-
ing strategies include: (i) adding two to each clause,
(ii) adding a real value to each clause that is mini-
mum enough to escape from the current local minima,
(iii) adding a random value between 0.5 and 1.5 to each
clause and (iv) adding one to a single clause selected at,
random. It is a little surprising that the performance
of the weighted local search is very similar for their
different weighting strategies (Cha and Iwama 1995).

Another important feature is t,hat WEIGHT works
much better for high-C/V-ratio formulas than for low-
C/V-ratio ones. This is claimed in Cha and Iwama
(1995) using the instances such that they all have the
same number (= one) of satisfying trut#h assignments
to make conditions even. There is at least one obvious
reason for the better performance: When the C/V-
ratio is high, the average number of clauses covering
each cell is high and there is a nice “slope” down to
the solution (= 0 overlaps) which begins from a fairly
distant place from the solution.

Stochastic Search 333

Adding New Clauses
One can see that increasing the weight of a clause A is
equivalent to adding another same A to the formula f
(i.e., two A’s exist in f). This leads to the idea that we
can expect a similar effect as weighting by adding new
clauses. The problem is how to find the new clauses.
There are two necessary conditions: (i) they must not
cover the satisfying cells. (ii) They should increase the
number of overlaps at the local minima. Our solution
is to select resolvents of two clauses.

For a clause Al, another clause A2 is called a neigh-
boring clause, or Al and A2 are neighboring, if there
exists exactly one variable x which appears affirma-
tively in A1 and negatively in A2 (or vice versa). For
example, (~1 + 23 + &) and (x1 + ?!a + x5) are neigh-
boring. For two neighboring clauses A1 = (x+X) and
A2 = (Z+Y), the clause (X+Y) is called a resolvent of
Al and Aa. For example, (x1 +Z4 +x5) is the resolvent
for the previous two clauses.

Algorithm ANC

SQ := the set of clauses in the given formula f
SA := q5
c := a randomly selected initial cell
until C becomes a solution do
if C is not a local minima

then do Move-downward
else for each clause A in SQ which covers C,

do find a neighboring clause B in SQ U SA
such that the resolvent X of A and
B covers C; add X into S, (Usually
there are many such B’s, one of
which is selected at random. If no
such B exists, than no resolvent is
added for the A, which, however
happens very rarely.)

Recall that WEIGHT increases a unit weight for
each clause covering the local minima. Instead, ANC
adds one resolvent for each clause covering the local
minima if we assume that such a resolvent can always
be found. Theoretically, there is a chance that we can-
not find an enough number of resolvents to leave the
local minima; the algorithm falls into a cycle. We have
never experienced that this actually happened so far.
If one wishes to avoid this more certainly, here is a
simple modification: As the clause x added in SA, the
clause A itself is allowed if there is no resolvents. An-
other possible modification is that not only a clause in
SQ but a clause in S, is also considered to take a resol-
vent with B. We actually experimented this method,
but there were no clear differences.

Experiments were conducted using two different
types of 3CNF formulas: One is completely random
formulas of C/V-ratio 4.3 (but only satisfiable ones)
and is denoted by rN, where N is the number of vari-
ables such as ~100. The other is the formulas gener-
ated by AIM Generators (Asahiro et.al 1993) which
are basically random-instance generators but can con-
trol several attributes of generated instances including
C/V-ratio and the number of solutions. In this paper,
we used the formulas whose C/V-ratio is 2.0 and that
have only one solution. Probably they are hardest test-
instances for local search algorithms that are available
in the form of random instances (Asahiro et.al 1993).
This type of instances are denoted by ON such as 0100.

Table 1 shows the performance of ANC and
WEIGHT. In this paper the performance is always
shown by the number of cell moves. Without oth-
ers stated, each figure is the average of 100 instances.
One can see that ANC is significantly better than
WEIGHT. 0400 is quite hard, for which only two in-
stances were able to be solved by ANC and WEIGHT
within a reasonable time. The last three instances are
not random formulas but more natural ones on fault
diagnosis of VLSI design, etc. As for these three for-
mulas, we ran the algorithm five times for each. The
figures on the table are their averages.

Table 1: Performance of ANC and WEIGHT

Figs. 1 to 4 show the divergence of the performance
for each try. For example, the upper-left graph in Fig. 1
shows that among 100 instances (100 tries), two in-
stances need less than 500 steps, nine 500-1000 steps,
and so on. Figs. 1 and 2 show the divergence for dif-
ferent instances and Figs. 3 and 4 the divergence for
different (100) tries against the same instance. In both
cases, divergence is larger in WEIGHT than in ANC.
This tendency is especially clear in one-solution in-
stances. WEIGHT occasionally encounters “extremely
slow tries” which are up to 20 times slower than the
average even for those inst antes of relatively small size.
It turned out that this becomes more serious as the size

334 Constraint Satisfaction

of instances grows. The local search is basically an in-
complete algorithm in the sense that it cannot be used
to show that the formula is unsatisfiable. However, as
claimed in Selman et al. (1992), it may be a hint of un-
satisfiability that the search procedure does not stop
for sufficiently long time. For this purpose, a small
divergence of the running time is truly convenient.

25’ 25’
I

ANC
0100

20-

WEIGHT
0100

- 15-

35

30

25

20

40 40

35 35

30 30

25 25

20 20

15 15

10 IO

5 5

0 1000 2000 3000 4000 5000 O

ANC WEIGHT
0200 0200

5

k%O15WO2oooO25wo3OCOO ’ 5cm 1ocm15GQo 2oxm 25cal3omo

Figure 1: Divergence of the Performance

hy and ow ANC orks
This section is for intensive discussion of what kind of
weak points are in WEIGHT and why ANC can com-
pensate them. We shall first discuss the problem of
revisiting the same cells. The second topic is the size
of added clauses. Note that a clause including three lit-
erals covers one eighth of the whole search space (= the
whole cells). Considering that the purpose of adding
clauses is to “fill a hole” that exists at a local minima,
this size of the added clause seems to be too large.

Revisiting Same Cells

As briefly mentioned in Cha and Iwama (1995),
WEIGHT often visits the cells that have already been
visited. It is also known that there is a strong corre-
lation between the amount of those revisited cells and
the number of search steps; when there are many revis-
ited cells, WEIGHT takes long time. In what follows,
we shall take a detailed look at this behaviour, what

WEIGHT
rlO0

WEIGHT
Roo

-CL

Figure 2: Divergence of the Performance

the revisit looks like at the level of each cell-move, why
that happens in WEIGHT and what can possibly pre-
vent that.

Fig. 5 illustrates how the revisit occurs in WEIGHT.
This figure shows cell-moves of WEIGHT for some
0100 instance from the 2601st step to the 2669th step.
Each circle means a cell and the number in it shows in
what step WEIGHT comes there for the first time. Ar-
rows show how WEIGHT moves between cells. Thus,
during these 69 steps, only 19 different cells are visited.
A much more important fact is that the Hamming dis-
tance between each of those cells and the cell numbered
2602 is at most four. Namely, if we consider the 2602
cell as a center, the 67 moves are within a circle of
only radius four. This is what we call “wandering in
circles”.

To consider the reason for this behaviour, we shall
show another data: Suppose that a cell C is a local
minima. The number of overlaps there is usually quite
few, typically three through five according to not only
our experiments but others (e.g., Selman and Kautz
1993). Then how many different clauses are there
which cover some neighboring cell of C? It is quite
stable again according to experiments; about a half of
the whole clauses (say, about 100 of the instance is
0100). Note that each of the neighboring cells of C
is usually covered by a different clause among these

Stochastic Search 335

Figure 3: Divergence of the Performance

30

25

20

ANC
rlO0

3000 4000

WEIGHT
rlO0 i

Figure 4: Divergence of the Performance

neighboring clauses.

Thus the reader can imagine what is illustrated in
Fig. 6, where A0 is the clause covering the local minima
Co and clauses Al, AZ, . . . cover different neighboring
cells Cl, Cz, . . ., respectively. Now what happens if we
raise the height of A0 by weighting. Then, WEIGHT
will probably move to Cl. Then if Cl is again a local
minima, there is a great chance to move back to Co
by raising the height of Cl. Even if it is lucky enough
to move other cells, Cz, C3, and so on, it is just like
traversing on a contour at nearly the bottom of the
hole (= the local minima). It is likely that those cells
are relatively close to Co and again there is a good
chance to reverse the traverse or just to go down to Co
again.

This observation leads us to the conclusion that it is
probably better to raise the portion which spreads over
both A0 and Al, than to raise A,J only. One can see
that the resolvent of A0 and Al exactly satisfies this
condition. Table 2 shows how the number of revisited
celfs decreases by ANC. This result is remarkable and
is probably the reason why ANC does not encounter
the extremely slow instances.

/I t (2606) t-x

Figure 5: Revisit,ing Same Cells in WEIGHT

0 ecreasing the Size of Added Clauses

Although we mentioned that a clause of three literals
is too large “to fill t,he hole”, it, is a difficult, question
to ask proper size. One hint might, be the size of tl!e
hole or the local minima. Fig. 7 shows the average
number of overlaps vs. the I-lamming distance from
the local minima. In t(lle ca.se of 0100 instances. the
average number of overlaps is 25, so t,he radius of the
hole is roughly 35 in terms of the Hanmling dist,ance.
If we assume that this is a circle. t,he number of cells
included in it is 21°0 . cfz, (lo) (t)i ($)‘0o-i x 2’l.
This is much smaller than 29’ thai is t,he number of
cells covered by a clause of t.hree literals.

To see the effect of adding smaller-sized clauses, wc
conducted experiments of t,hc algorithm that is thta
same as ANC but the added clause is not thr> resolvcsnt
but the clause which is obtained by adding one random
literal into the clause covering the local minima (i.e.,
the size becomes one half). Tile result is shown in Ta-
ble 2. Where the new algorithm is denoted by HALF.
As one can see, HALF is better t,han WEIGHT.

Instances HALF ,iNC WEIGHT
rlO0 786 297 1222
r200 1565 1217 3303

Table 2: Performance of .iilgorithm HALF

In the case of ANC as well, t,he size of added clauses
is likely to be smaller t,han clauses of three lit,crals.
The reason is t&hat t,he resolvcnt is t,aken between a
clause of three literals (in #?Q > and a clause of three

336 Constraint Satisfaction

Figure 6: Illustration of the Local Minima and Its
Neighbors

45

Figure 7: Average Overlaps around the Local Minima

or more literals (in SQ u SA). To make this clearer,
we calculated the total number N, of cells which are
covered by the whole added cells. Table 3 shows this
number for each try of ANC and WEIGHT where each
entry is a pair of the value of N,/2g7 and the number
of total search steps. As one can see, we selected the
tries in which the number of search steps is roughly the
same for ANC and WEIGHT. Nevertheless, the total
number of the cells covered by added clauses is much
less in ANC than in WEIGHT; N, of ANC is about
the half of NC of WEIGHT algorithm.

Concluding Remarks
The analysis given in Sec. 4 suggests several other pos-
sibilities for improvements of the weighted local search:

(1) Further smaller size of added clauses may be even
better. To make the added clause further smaller, one
can take a resolvent once more with another clause.

(2) ANC currently takes the resolvent between the

Inst antes ANC WEIGHT
0100-1 (1233,2333) (2230,1828)
0100-2 (1504,301o) (4238,2909)
0100-3 (1879,3417) (15450,9656) \
rlOO-1 (19,57j ’ (29,54)
rlOO-2 (128.229) (255.234)

I I

rlOO-3 I i284:472j 1 i534:430\ I

Table 3: The Number of Cells Covered by Added
Clauses

clause covering the local minima and a randomly se-
lected neighboring clause A. We can impose some con-
ditions on t,his clause A, e.g., the one that covers some
neighboring cell of the local minima.

In this paper, the performance is measured only by
the number of cell moves. However, we cannot ig-
nore the computation time needed in a single cell-move
which is especially important for algorithms having
complicated cell-move st,rategies, like ANC. In practice
it is very important to reduce this portsion of computa-
tion time using cleaver data structure, randomization
techniques (e.g., computing the overlaps of not every
neighboring cell but some randomly selected ones), and
so on. It might also be possible to make use of super-
computers.

eferences
Asahiro, Y., Iwama, K. and Miyano, E. (1993). Ran-
dom generation of test instances with controlled at-
tributes, 2nd DIMA CS Chaddenge Worksh.op.

Cha, B. and Iwama, K. (1995). Performance test of
local search algorithms using new types of random
CNF formulas, Proc. IJCAI-95, Vol.1, pp.304-310.

Dubois, O., Andre, P., Boufkhad, Y. and Carlier, J.
(1993). SAT versus UNSAT, 2nd DIMACS Challenge
Workshop.

Gu, J. (1992). Efficient local search for very large-
scale satisfiability problems, Sigart Rudletin, Vo1.3,
No.1, pp.8-12.

Morris, P. (1993). The breakout method for escaping
from local minima, Proc. AAAI-93, pp.40-45.

Selman, B. and Kautz, H.A. (1993). An empirical
study of greedy local search for satisfiability testing,
Proc. AAAI-93, pp.46-51.

Selman, B. and Kautz, H.A. (1993). Local search
strategies for satisfiability testing, 2nd DIMA CS
Challenge Workshop.

Selman, B., Levesque, H.J. and Mitchell, D.G. (1992).
A new method for solving hard sat,isfiability problems,
Proc. AAAI-92, pp.440-446.

Stochastic Search 337

