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Abstract 

A primary concern when using local search methods 
for CNF satisfiability is how to get rid of local mini- 
mas. Among many other heuristics, Weighting by Mor- 
ris (1993) and Selman and Kautz (1993) works over- 
whelmingly better than others (Cha and Iwama 1995). 
Weighting increases the weight of each clause which is 
unsatisfied at a local minima. This paper introduces a 
more sophisticated weighting strategy, i.e., adding new 
clauses (ANC) that are unsatisfied at the local min- 
ima. As those new clauses, we choose resolvents of the 
clauses unsatisfied at the local minima and randomly 
selected neighboring clauses. The idea is that ANC is 
to make the slope of search space more smooth than 
the simple weighting. Experimental data show that 
ANC is faster than simple weighting: (i) When the 
number of variables is 200 or more, ANC is roughly 
four to ten times as fast as weighting in terms of the 
number of search steps. (ii) It might be more impor- 
tant that the divergence of computation time for each 
try is much smaller in ANC than in weighting. (iii) 
There are several possible reasons for ANC’s superior- 
ity, one of which is that ANC returns the same local 
minima much less frequently than weighting. 

Introduction 

Many people agree that it is one of the most remark- 
able findings in the 90’s that the local search works 
well for CNF satisfiability testing in spite of the prob- 
lem’s highly combinatorial nature (Gu 1992; Selman 
et.al 1992). That was followed by an even more im- 
portant finding; the weighting strategy to escape from 
local minimas (Morris 1993; Selman and Kautz 1993). 
Cha and Iwama (1995) showed that the weighted local 
search is overwhelmingly faster than other local search 
algorithms such as GSAT (Selman et. al 1992) and Ran- 
dom Walk (Selman and Kautz 1993). Local search 
starts from a random truth assignment and moves to 
a neighboring truth assignment, one after another, in 
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the direction that the number of unsatisfied clauses de- 
creases. Suppose that one gets to a truth assignment8. 
called a local minima, where the number of unsatis- 
fied clauses is less than or equal to the number of un- 
satisfied clauses at any neighboring truth assignment. 
Then the weighted local search, or WEIGHT for short, 
increases the weight of each unsatisfied clause at, t,he 
local minima, hoping that the weighted sum of un- 
satisfied clauses will be larger t,han some neighboring 
assignment and we will be able to escape from the lo- 
cal minima. One good point of t,his approach is that 
we do not have to be nervous about details of how to 
increase the weight. Due to Cha and Iwama (1995), 
WEIGHT is surprisingly stable against different ways 
of increasing the weight, integers or reals, fixed values 
or random values, etc. Ironically this means that there 
is little hope of improving the weighted local search by 
simply changing the weighting method. 

In this paper, we do try to improve the weighted 
local search from a little different angle. One can see 
that increasing the weight of some clause by, say. one, 
is equivalent to adding one same clause to the formula. 
Such an added clause may not be one of the existing 
clauses but may be a new one. The problem is of course 
how to select this new clause. Our solution here is a 
resolvent obtained from the unsatisfied clause at, the 
local minima and its neighboring clause. The new al- 
gorithm is called ANC (Adding New Clauses). When it 
gets to a local minima, ANC generates as many such 
resolvents as it obtains the same effect as WEIGHT 
increases the weight of the clauses. 

Experimental data show that ANC is considerably 
faster than WEIGHT. Experiments were conducted 
using random 3CNF formulas (Clause/Variable ra- 
tio=4.3) and the 3CNF formulas of C/V ratio 2.0 that 
have only one satisfying truth assignment. ‘The lat- 
ter formulas can be generated by the AIM Generat,or 
(Asahiro eta1 1993) and have shown to be hard and ap- 
propriate for local search algorithms (Cha and Iwama 
1995). When the number of variables is 200 or more, 
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ANC is four to ten times faster than WEIGHT. Exper- 
iments were also conducted for more natural formulas 
on VLSI design and Block world planning, for which 
ANC is also better generally. It might be more im- 
portant that the divergence of cell moves in each try 
for different formulas or even for the same formula is 
much smaller in ANC than in WEIGHT. The number 
of cell moves in each try is within three times the aver- 
age in ANC but is 10 times or even more occasionally 
in WEIGI-IT. 

ANC is not a result of trial and error but is due to an 
intensive analysis of the weakness of WEIGHT, which 
will be described in Sec. 4. Among others, the most 
serious problem of WEIGHT is that it tends to visit 
the same truth assignment many times just as wan- 
dering in circles. There are reasonable explanations 
for why adding the resolvents is effective to prevent 
this circle-wandering. In fact the number of revisited 
truth assignments is 10 to 100 times less in ANC than 
in WEIGHT. 

By a rough estimation, the number of cell moves 
of ANC triples when the number of variables doubles. 
This means the growth of the number of steps is ap- 
proximately O(~Z’.~). We need more time in each cell 
move to add resolvents in ANC than increasing the 
weight in WEIGHT. However, this portion of compu- 
tation has a lot of room for improvement by better 
coding techniques and parallelization. 

Weighted Local Search 
A literal is a (logic) variable z or its negation Z. A 
cluvse is a sum of one or more literals. A (CNF) for- 
mula is a product of clauses. A specific assignment of 
true (or 1) and false (or 0) to all the variables is called 
a cell. (This might be unusual; note that the terminol- 
ogy in this paper is associated with the Karnaugh map 
being popular in switching theory.) For cells Cl and 
C2, the Humming distance between Cl and Cz is the 
number of variables for which the assignment is differ- 
ent (true for Cl and false for C2 or vice versa). Ci 
is a neighbor of Cz if their Hamming distance is one. 
It is said that a clause A covers a cell C if the truth 
assignment denoted by C makes A false. 

The number of overlaps of a cell C, denoted by 
OL(C), is the number of the clauses that cover 6. A 
cell C is called a local minima if OL(C’) 2 Oh(C) 
for all neighbors C’ of C. A cell is called a solution if 
OL(C) = 0. 

Basically, local search for CNF satisfiability tries 
to reach a solution by gradually moving to cells of a 
smaller number of overlaps hoping that it can even- 
tually get to a cell of zero overlaps. Its fundamental 
structure is as follows: 

Algorithm Local-Search 

C := a randomly selected initial cell 

until C becomes a solution do 

if C is not a local minima then do a else do /? 

A specific local search algorithm is obtained by com- 
pleting a and p. For example, in the simplest algo- 
rithm called RESTART, a = Move-downward that is 
to move the one of the neighboring cells whose over- 
laps (less than the current one) are the least and ,8 = 
Restart that stops the current search and goes to a 
new initial cell. In the well-known GSAT (Selman 
et.u11992), a = p = Move-to-minimum (moving to the 
neighboring cell whose overlaps are minimum regard- 
less of being less than the current overlaps) + Restart 
at every fixed number of steps. 

In weighted local search algorithms, a weight, 
w(A) > 0, is associated with each clause A. Its value 
is initially one for all clauses. Now the definition of 
the number of overlaps is changed into the sum of the 
weights of the clauses that cover the cell. Namely 

OL(C) = 
A covers C 

In the standard weighted local search, WEIGHT, cy = 
Move-downward and p = Weighting, i.e., to add one 
to w(A) for all the clauses A which cover the current 
cell. As shown in Cha and Iwama (1995), WEIGHT 
is overwhelmingly faster than others. The difference of 
performance can reach as large as 100 times even when 
the number of variables is moderate, say, 100. 

RecaIl that WEIGHT adds a unit weight (one) to 
each clause covering the current cell. Different weight- 
ing strategies include: (i) adding two to each clause, 
(ii) adding a real value to each clause that is mini- 
mum enough to escape from the current local minima, 
(iii) adding a random value between 0.5 and 1.5 to each 
clause and (iv) adding one to a single clause selected at, 
random. It is a little surprising that the performance 
of the weighted local search is very similar for their 
different weighting strategies (Cha and Iwama 1995). 

Another important feature is t,hat WEIGHT works 
much better for high-C/V-ratio formulas than for low- 
C/V-ratio ones. This is claimed in Cha and Iwama 
(1995) using the instances such that they all have the 
same number (= one) of satisfying trut#h assignments 
to make conditions even. There is at least one obvious 
reason for the better performance: When the C/V- 
ratio is high, the average number of clauses covering 
each cell is high and there is a nice “slope” down to 
the solution (= 0 overlaps) which begins from a fairly 
distant place from the solution. 
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Adding New Clauses 
One can see that increasing the weight of a clause A is 
equivalent to adding another same A to the formula f 
(i.e., two A’s exist in f). This leads to the idea that we 
can expect a similar effect as weighting by adding new 
clauses. The problem is how to find the new clauses. 
There are two necessary conditions: (i) they must not 
cover the satisfying cells. (ii) They should increase the 
number of overlaps at the local minima. Our solution 
is to select resolvents of two clauses. 

For a clause Al, another clause A2 is called a neigh- 
boring clause, or Al and A2 are neighboring, if there 
exists exactly one variable x which appears affirma- 
tively in A1 and negatively in A2 (or vice versa). For 
example, (~1 + 23 + &) and (x1 + ?!a + x5) are neigh- 
boring. For two neighboring clauses A1 = (x+X) and 
A2 = (Z+Y), the clause (X+Y) is called a resolvent of 
Al and Aa. For example, (x1 +Z4 +x5) is the resolvent 
for the previous two clauses. 

Algorithm ANC 

SQ := the set of clauses in the given formula f 
SA := q5 
c := a randomly selected initial cell 
until C becomes a solution do 
if C is not a local minima 

then do Move-downward 
else for each clause A in SQ which covers C, 

do find a neighboring clause B in SQ U SA 
such that the resolvent X of A and 
B covers C; add X into S, (Usually 
there are many such B’s, one of 
which is selected at random. If no 
such B exists, than no resolvent is 
added for the A, which, however 
happens very rarely.) 

Recall that WEIGHT increases a unit weight for 
each clause covering the local minima. Instead, ANC 
adds one resolvent for each clause covering the local 
minima if we assume that such a resolvent can always 
be found. Theoretically, there is a chance that we can- 
not find an enough number of resolvents to leave the 
local minima; the algorithm falls into a cycle. We have 
never experienced that this actually happened so far. 
If one wishes to avoid this more certainly, here is a 
simple modification: As the clause x added in SA, the 
clause A itself is allowed if there is no resolvents. An- 
other possible modification is that not only a clause in 
SQ but a clause in S, is also considered to take a resol- 
vent with B. We actually experimented this method, 
but there were no clear differences. 

Experiments were conducted using two different 
types of 3CNF formulas: One is completely random 
formulas of C/V-ratio 4.3 (but only satisfiable ones) 
and is denoted by rN, where N is the number of vari- 
ables such as ~100. The other is the formulas gener- 
ated by AIM Generators (Asahiro et.al 1993) which 
are basically random-instance generators but can con- 
trol several attributes of generated instances including 
C/V-ratio and the number of solutions. In this paper, 
we used the formulas whose C/V-ratio is 2.0 and that 
have only one solution. Probably they are hardest test- 
instances for local search algorithms that are available 
in the form of random instances (Asahiro et.al 1993). 
This type of instances are denoted by ON such as 0100. 

Table 1 shows the performance of ANC and 
WEIGHT. In this paper the performance is always 
shown by the number of cell moves. Without oth- 
ers stated, each figure is the average of 100 instances. 
One can see that ANC is significantly better than 
WEIGHT. 0400 is quite hard, for which only two in- 
stances were able to be solved by ANC and WEIGHT 
within a reasonable time. The last three instances are 
not random formulas but more natural ones on fault 
diagnosis of VLSI design, etc. As for these three for- 
mulas, we ran the algorithm five times for each. The 
figures on the table are their averages. 

Table 1: Performance of ANC and WEIGHT 

Figs. 1 to 4 show the divergence of the performance 
for each try. For example, the upper-left graph in Fig. 1 
shows that among 100 instances (100 tries), two in- 
stances need less than 500 steps, nine 500-1000 steps, 
and so on. Figs. 1 and 2 show the divergence for dif- 
ferent instances and Figs. 3 and 4 the divergence for 
different (100) tries against the same instance. In both 
cases, divergence is larger in WEIGHT than in ANC. 
This tendency is especially clear in one-solution in- 
stances. WEIGHT occasionally encounters “extremely 
slow tries” which are up to 20 times slower than the 
average even for those inst antes of relatively small size. 
It turned out that this becomes more serious as the size 
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of instances grows. The local search is basically an in- 
complete algorithm in the sense that it cannot be used 
to show that the formula is unsatisfiable. However, as 
claimed in Selman et al. (1992), it may be a hint of un- 
satisfiability that the search procedure does not stop 
for sufficiently long time. For this purpose, a small 
divergence of the running time is truly convenient. 
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Figure 1: Divergence of the Performance 

hy and ow ANC orks 
This section is for intensive discussion of what kind of 
weak points are in WEIGHT and why ANC can com- 
pensate them. We shall first discuss the problem of 
revisiting the same cells. The second topic is the size 
of added clauses. Note that a clause including three lit- 
erals covers one eighth of the whole search space (= the 
whole cells). Considering that the purpose of adding 
clauses is to “fill a hole” that exists at a local minima, 
this size of the added clause seems to be too large. 

Revisiting Same Cells 

As briefly mentioned in Cha and Iwama (1995), 
WEIGHT often visits the cells that have already been 
visited. It is also known that there is a strong corre- 
lation between the amount of those revisited cells and 
the number of search steps; when there are many revis- 
ited cells, WEIGHT takes long time. In what follows, 
we shall take a detailed look at this behaviour, what 

WEIGHT 
rlO0 

WEIGHT 
Roo 

-CL 

Figure 2: Divergence of the Performance 

the revisit looks like at the level of each cell-move, why 
that happens in WEIGHT and what can possibly pre- 
vent that. 

Fig. 5 illustrates how the revisit occurs in WEIGHT. 
This figure shows cell-moves of WEIGHT for some 
0100 instance from the 2601st step to the 2669th step. 
Each circle means a cell and the number in it shows in 
what step WEIGHT comes there for the first time. Ar- 
rows show how WEIGHT moves between cells. Thus, 
during these 69 steps, only 19 different cells are visited. 
A much more important fact is that the Hamming dis- 
tance between each of those cells and the cell numbered 
2602 is at most four. Namely, if we consider the 2602 
cell as a center, the 67 moves are within a circle of 
only radius four. This is what we call “wandering in 
circles”. 

To consider the reason for this behaviour, we shall 
show another data: Suppose that a cell C is a local 
minima. The number of overlaps there is usually quite 
few, typically three through five according to not only 
our experiments but others (e.g., Selman and Kautz 
1993). Then how many different clauses are there 
which cover some neighboring cell of C? It is quite 
stable again according to experiments; about a half of 
the whole clauses (say, about 100 of the instance is 
0100). Note that each of the neighboring cells of C 
is usually covered by a different clause among these 
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Figure 3: Divergence of the Performance 
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Figure 4: Divergence of the Performance 

neighboring clauses. 

Thus the reader can imagine what is illustrated in 
Fig. 6, where A0 is the clause covering the local minima 
Co and clauses Al, AZ, . . . cover different neighboring 
cells Cl, Cz, . . ., respectively. Now what happens if we 
raise the height of A0 by weighting. Then, WEIGHT 
will probably move to Cl. Then if Cl is again a local 
minima, there is a great chance to move back to Co 
by raising the height of Cl. Even if it is lucky enough 
to move other cells, Cz, C3, and so on, it is just like 
traversing on a contour at nearly the bottom of the 
hole (= the local minima). It is likely that those cells 
are relatively close to Co and again there is a good 
chance to reverse the traverse or just to go down to Co 
again. 

This observation leads us to the conclusion that it is 
probably better to raise the portion which spreads over 
both A0 and Al, than to raise A,J only. One can see 
that the resolvent of A0 and Al exactly satisfies this 
condition. Table 2 shows how the number of revisited 
celfs decreases by ANC. This result is remarkable and 
is probably the reason why ANC does not encounter 
the extremely slow instances. 

/I t ( 2606) t-x 

Figure 5: Revisit,ing Same Cells in WEIGHT 

0 ecreasing the Size of Added Clauses 

Although we mentioned that a clause of three literals 
is too large “to fill t,he hole”, it, is a difficult, question 
to ask proper size. One hint might, be the size of tl!e 
hole or the local minima. Fig. 7 shows the average 
number of overlaps vs. the I-lamming distance from 
the local minima. In t(lle ca.se of 0100 instances. the 
average number of overlaps is 25, so t,he radius of the 
hole is roughly 35 in terms of the Hanmling dist,ance. 
If we assume that this is a circle. t,he number of cells 
included in it is 21°0 . cfz, (lo) (t)i ($)‘0o-i x 2’l. 
This is much smaller than 29’ thai is t,he number of 
cells covered by a clause of t.hree literals. 

To see the effect of adding smaller-sized clauses, wc 
conducted experiments of t,hc algorithm that is thta 
same as ANC but the added clause is not thr> resolvcsnt 
but the clause which is obtained by adding one random 
literal into the clause covering the local minima (i.e., 
the size becomes one half). Tile result is shown in Ta- 
ble 2. Where the new algorithm is denoted by HALF. 
As one can see, HALF is better t,han WEIGHT. 

Instances HALF ,iNC WEIGHT 
rlO0 786 297 1222 
r200 1565 1217 3303 

Table 2: Performance of .iilgorithm HALF 

In the case of ANC as well, t,he size of added clauses 
is likely to be smaller t,han clauses of three lit,crals. 
The reason is t&hat t,he resolvcnt is t,aken between a 
clause of three literals (in #?Q > and a clause of three 
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Figure 6: Illustration of the Local Minima and Its 
Neighbors 

45 

Figure 7: Average Overlaps around the Local Minima 

or more literals (in SQ u SA). To make this clearer, 
we calculated the total number N, of cells which are 
covered by the whole added cells. Table 3 shows this 
number for each try of ANC and WEIGHT where each 
entry is a pair of the value of N,/2g7 and the number 
of total search steps. As one can see, we selected the 
tries in which the number of search steps is roughly the 
same for ANC and WEIGHT. Nevertheless, the total 
number of the cells covered by added clauses is much 
less in ANC than in WEIGHT; N, of ANC is about 
the half of NC of WEIGHT algorithm. 

Concluding Remarks 
The analysis given in Sec. 4 suggests several other pos- 
sibilities for improvements of the weighted local search: 

(1) Further smaller size of added clauses may be even 
better. To make the added clause further smaller, one 
can take a resolvent once more with another clause. 

(2) ANC currently takes the resolvent between the 

Inst antes ANC WEIGHT 
0100-1 (1233,2333) (2230,1828) 
0100-2 (1504,301o) (4238,2909) 
0100-3 (1879,3417) (15450,9656) \ 
rlOO-1 (19,57j ’ (29,54) 
rlOO-2 (128.229) (255.234) 

I I 

rlOO-3 I i284:472j 1 i534:430\ I 

Table 3: The Number of Cells Covered by Added 
Clauses 

clause covering the local minima and a randomly se- 
lected neighboring clause A. We can impose some con- 
ditions on t,his clause A, e.g., the one that covers some 
neighboring cell of the local minima. 

In this paper, the performance is measured only by 
the number of cell moves. However, we cannot ig- 
nore the computation time needed in a single cell-move 
which is especially important for algorithms having 
complicated cell-move st,rategies, like ANC. In practice 
it is very important to reduce this portsion of computa- 
tion time using cleaver data structure, randomization 
techniques (e.g., computing the overlaps of not every 
neighboring cell but some randomly selected ones), and 
so on. It might also be possible to make use of super- 
computers. 
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