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Abstract 

Research into the utility of non-coding segments, 
or introns, in genetic-based encodings has shown 
that they expedite the evolution of solutions in do- 
mains by protecting building blocks against destruc- 
tive crossover. We consider a genetic programming 
system where non-coding segments can be removed, 
and the resultant chromosomes returned into the pop- 
ulation. This parsimonious repair leads to premature 
convergence, since as we remove the naturally occur- 
ring non-coding segments, we strip away their pro- 
tective backup feature. We then duplicate the coding 
segments in the repaired chromosomes, and place the 
modified chromosomes into the population. The du- 
plication method significantly improves the learning 
rate in the domain we have considered. We also show 
that this method can be applied to other domains. 

Introduction 
In genetic-based encodings (GBE), a bit is the atomic 
element of a chromosome and a non-coding segment is 
a continuous collection of bits (2 1) that do not con- 
tribute to the overall fitness of a chromosome. Non- 
coding segments in chromosomes are actively being in- 
vestigated in both genetic algorithms (GA) and ge- 
netic programming (GP) (Nordin 1996; Wu & Lind- 
say 1995). They facilitate the evolution of solutions 
in domains by guarding against destructive crossover 
by providing bits where the exchange of genetic mate- 
rial will not effect the fitness of the chromosome. Du- 
plication of coding segments is found in GP chromo- 
somes, and is believed to be the building blocks for 
GP (Tackett 1993). Multiple appearances of a build- 
ing block increases the probability that it will survive 
reproduction GP research has a difficulty in iden- 
tifying building blocks for a domain (O’Reilly 1995; 
Rosca 1995). We implement a domain in which all 
building blocks can be enumerated, allowing us to in- 
vestigate the effects of duplication of building blocks 
within chromosomes. 
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We present an approach in which all non-coding seg- 
ments are removed from a GP chromosome. A non- 
coding segment, which is a duplicate of the coding seg- 
ment, is spliced onto the chromosome. At least one 
of the resultant children is guaranteed to be at least 
as fit as the parent. We then examine the utility of 
increasing the number of copies of the coding segment 
within the chromosome. 

Non-coding segments 
Non-coding segments model the intragenic regions re- 
ported in the biological literature and are the intron 
segments seen in the GBE literature. They account 
for a large fraction of the DNA (Futuyma 1986) and 
are believed to be backup material for the coding seg- 
ments. For example, the frog Xenopus Zaeuis has 450 
copies of the gene codings for 18s and 28s rRNA 
and 24,000 copies of the gene for 5s rRNA (Futuyma 
1986). The non-coding sequences might also act as a 
library for adaptation. During RNA splicing the non- 
coding sequences are stripped, producing a smaller 
RNA molecule. As the gene can be spliced in a variety 
of ways, the non-coding sequence for one mRNA could 
be a coding sequence for another (Alberts 8 al. 1989). 
As a protein evolves to meet changes in the environ- 
ment, it can also resort to the non-coding segments 
instead of evolving entirely new genetic material. 

Genetic Algorithms 

In the GBE literature, the emphasis on non-coding 
segments has focused on how these extra bits provide 
a buffer against destructive crossover. The canonical 
GA chromosome, or string, representation utilizes a 
binary alphabet. If a don’t care symbol is utilized, 
we have the schemata alphabet (0, 1, *). A schemata 
is a template describing subsets of strings within the 
string. The defzning length of a schema is the distance 
between the outermost bits defined on the binary al- 
phabet. Building blocks have a small defining length 
and are highly fit. They are integral to the schema 
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theorem, which defines how the implicit parallel search 
of a GA “builds” better solutions over time. 

The addition of non-coding segments to chromo- 
somes separates building blocks and protects them 
from being sliced by crossover (Levenick 1991). GA 
chromosomes are typically of fixed length. With a 
string of length 1, and a building block of defining 
length 6, any crossover operation has a probability 

s 
Pl = - 

Z-1 

of destroying a building block (Goldberg 1989). If non- 
coding segments, of a total length of i are added, then 
the probability of destructive crossover breaking up a 
building block of defining length S decreases to 

Pl+i = 
s 

z-l-i-1’ 

An example of non-coding segments is shown in Fig- 
ure l(a): there is a string of length 2 = 15 and a build- 
ing block, bl, of defining length S = 6. The proba- 
bility of crossover destroying bl is Pl = 0.43. In Fig- 
ure l(b) a non-coding segment of length i = 5 is added 
and the probability of destructive crossover decreases 
to Pl+i = 0.32. Adding the non-coding segment to 
the chromosome’s tail reduces the probability of de- 
structive crossover, but does not aid the recombination 
of building blocks as much as placing the non-coding 
segments between the building blocks (Wu 8c Lindsay 
1995). 
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Figure 1: Non-coding segments in GA chromosomes 
prevent destructive crossover. (a) Without the non- 
coding segment. (b) With the non-coding segment. 

G 
The key to inserting non-coding segments into the 
A chromosome is that they reduce the chance of de- 

structive crossover. An “artificial” constraint is that 
only the coding segments are examined to determine 
the fitness of a chromosome. Therefore material within 
a non-coding segment cannot be mixed with that 
within the coding segment. Thus the non-coding seg- 
ment material is meaningless, and selection pressure 
does not drive it to be backup material. 

Wu and Lindsay (Wu & Lindsay 1995) point out 
that there is a drawback to inserting non-coding seg- 
ments: they retard the growth of building blocks. It 
is hard for evolution to recombine the building blocks 
if non-coding segments are there to prevent destruc- 
tive crossover. However, once those building blocks 
are formed, they are quite difficult to break up. 

Genetic Programming 

The “basic” theory of GP is borrowed from that of 
GA. Due to the difficulties in detecting building blocks 
in GP chromosomes research is ongoing into formally 
connecting the theory as to why GP works with that 
of why GAS work (O’Reilly 1995). The canonical 
GP chromosome representation is a parse tree (S- 
expression). The difference between GA and GP is 
more than the fixed versus variable genotype represen- 
tation. In GA there is a close relationship between 
the genotype and phenotype structure of a chromo- 
some. Thus the building blocks of GAS are usually 
represented at the genotype level, and building blocks 
are relatively easy to detect. With the GP, building 
blocks are at the phenotype or semantical level, and 
are difficult to represent, detect, and capture. There 
can also be a duplication of building blocks in a GP 
chromosome, whereas there may not be any such du- 
plication in a GA chromosome. 

Tackett (Tackett 1993) compares the difficulty in re- 
searching building blocks between GP and GA: dif- 
ferent notations of schemata and a non-binary alpha- 
bet. He believes that small subtrees which appear 
frequently in S-expressions are GP’s building blocks. 
These subtrees are prevalent due to their contribution 
to the fitness of the chromosomes in which they appear. 

Altenberg (Altenberg 1994) believes duplications ap- 
pear inside GP chromosomes due to two selection 
forces adding blocks of code to the population. The 
genetic operators spread a block to different chromo- 
somes, and an emergent selection pressure causes the 
formation of duplication within a chromosome. The 
duplication is a result of the fitness of the block be- 
ing replicated. Angeline (Angeline 1994) reports while 
there is redundancy in chromosomes, the benefit of 
these semantically extraneous components is in the 
prevention of destructive crossover. He highlights a 
difference between GAS and GPs with regards to non- 
coding segments: in GAS they are added by design and 
in GPs they evolve naturally. 

Nordin (Nordin 1996) investigates the dynamics of 
non-coding segments in GP evolution. His chromo- 
somes are comprised of linear genomes which are 32 
bit strings and are binary code for a SUN-4. Non- 
coding bits are defined to be those that when replaced 
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by a NOP instruction do not change the semantics or 
phenotype of the chromosome. Using this capability, 
Nordin investigated the effects of non-coding segments 
on destructive crossover. He reached the same conclu- 
sions regarding the utility of non-coding segments as 
did the GA researchers. He reports promising prelim- 
inary results with the canonical representation. 

Clique Detection 
Given a graph G = (V, E) 9 a clique of G is a complete 
subgraph of G, and is denoted by the set of vertices in 
the complete subgraph. The goal is to find all cliques 
of G. Since the subgraph of G induced by any sub- 
set of the vertices of a complete subgraph of G is also 
complete, it is sufficient to find all maximal complete 
subgraphs of G (Kalmanson 1986). A maximal com- 
plete subgraph of G is referred to as a maximal clique. 
Figure 2 is a 10 node graph, with cliques: 

c= ( {0,394>9{09194>9{194,5),0,(2,5,6), 

{3,49 71, (49 7,819 (4959 819 {5,&9>9 (59 69 9)). 

Figure 2: Example 10 node graph. 

A variable length chromosome is needed because in 
general there will be an unknown number of cliques 
per graph. Potential cliques are denoted as candidate 
cbiques. The chromosome is then a collection of candi- 
date cliques. Candidate cliques are tested to determine 
if they: contain duplicate nodes, are subsumed by an- 
other candidate clique, are completely connected, and 
are maximal. 

Each chromosome in the population represents sets 
of candidate cliques. The function and terminal sets 
are F = (ExtCon, IntCon) and T = { 1,. . . ,#nodes). 
ExtCon connects two sets of candidate cliques, while 
IntCon connects nodes inside a candidate clique. The 
fitness evaluation has rewards for both clique size and 
number of cliques. To detect the maximal connected 
subgraphs, the reward for size must be greater than 
that for the number of cliques. The algorithm to eval- 
uate the chromosome is: 

1. Parse it into a ordered series of candidate cliques. 
2. Discard invalid candidates, i.e., repeated nodes. 

3. Discard candidates subsumed by other candidates. 
4. Discard candidates not completely connected. 

If Q and /3 are constants which are configurable by the 
user, c = # of valid candidate maximal cliques, 
and ni = # nodes in cliquei, then the formula for 
measuring the fitness is: 

F=crc+CP”‘. 
i=l 

Approach 
We utilize a strongly typed GP (STGP) (Montana 
1995) system instead of a canonical GP system to 
force type inheritance. A serious constraint on the 
user-defined terminals and functions in GP systems 
is closure, i.e. all of the functions must accept argu- 
ments of a single data type and return values of that 
type. STGP allows for an additional level of typing to 
be added. We have extended STGP by adding type 
inheritance to allow for more than two levels of typ- 
ing (Haynes, Schoenefeld, & Wainwright 1996). In the 
context of the clique detection domain, we are forcing 
the chromosome to evolve “lists” of nodes. 

The fitness function for the clique detector pares 
the chromosome down to the coding segments. The 
list of candidate cliques for a given chromosome suc- 
cinctly encapsulates the content of that chromosome. 
Each candidate clique is a building block from which 
“better” chromosomes can be constructed. This par- 
ing down of the chromosome is similar to the RNA 
splicing in that non-coding segments are stripped out 
of the RNA transcript from DNA. 

If a GA chromosome has invalid bits, and an algo- 
rithm can translate those bits into valid bits, then they 
can be repaired and the resultant chromosome evalu- 
ated to determine the fitness of the original chromo- 
some. Issues are whether or not to return the repaired 
chromosome into the population and at what rate of 
return (Orvosh & Davis 1993). Repair is done at chro- 
mosome evaluation not during the reproduction stage; 
there is no assurance that the repaired chromosome 
will even be selected for reproduction. 

The evaluation function maps chromosomes from 
GP space to clique set space, i.e. genotype to phe- 
notype. Repair maps the phenotype back into a geno- 
type. Since the evaluation function removes nodes that 
do not contribute to the fitness, the resultant chromo- 
some is likely to be smaller than the original. An ex- 
ample chromosome for the 10 node graph is presented 
in Figure 3. It has five candidate cliques, and the only 
cliques are #2 and #S: C = {{4,8,7}, {5,6}}. The 
others are eliminated because they violate at least one 
of the rules: #4 contains duplicate nodes, i.e. node 
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7 is repeated; #3 is subsumed by #2; and, #ktl is not 
completely connected. We have mapped the chromo- 
some from GP space to clique set space. Selection of 
this chromosome for replacement produces the map- 
ping back into GP space shown in Figure 4. Repair 
prunes dead branches of the S-expression. 

Figure 3: S-expression for 10 node graph. 

Figure 4: Repaired S-expression for 10 node graph. 

Simple Repair 
The extraction of candidate cliques is a repair process, 
and we investigate various rates of return of the re- 
paired chromosomes into the population. Our conjec- 
ture is that the genotypes of chromosomes which suc- 
cinctly capture the phenotype of the chromosome are 
more elegant and natural. Non-coding segments can 
be inserted and deleted by evolution in DNA. 

The experiments use both a population size of 2000 
and a generation size of 600, and are averaged over 10 
trials. All statistical significance testing is done with a 
two-tail t-test, with a Student distribution, and a con- 
fidence level of 0.001. The 10 node graph (Figure 2) 
is used for clique detection. All chromosomes are re- 
paired, and we investigate repair rates (the percentage 
of repaired chromosomes returned into the population) 
of O%, 0.5%, 1.5%, 3%, 5%, and 10%. Repair rates 
greater than 0.5% (small repair rates are desirable (Or- 
vosh & Davis 1993)) either degrade the performance 
or cause premature convergence, see Figure 5. Why 
does repair work for GA, but not for GP? Perhaps it is 
just this domain for which repair fails for GP. Or per- 
haps the repair is actually damaging the chromosome 
instead of fixing it up. 

Figure 5: Best fitness for base case and repair rates of 
0.5%,1.5%, 3%, 5%, and 10%. 

Repair removes “dead” or non-coding bits from the 
chromosome, i.e. those bits which do not contribute, 
either positively or negatively, to the calculation of the 
fitness. (In GA research, repair does not remove any 
bits.) Repair also removes genetic diversity. Finally, it 
removes any naturally occurring duplicate non-coding 
segments. Thus the protective backup feature of these 
segments is being negated. GBE research has shown 
that non-coding material protects building blocks from 
the effects of destructive crossover. We will discuss ex- 
periments in which a non-coding segments is inserted 
into the chromosome to investigate if there is a result- 
ing in an increase fitness. 

Repair with Duplication 
Further research is performed in which the repaired 
chromosome is duplicated before it is thrown back into 
the population. For example, the. chromosome repre- 
sented in Figure 6 has been duplicated into the chro- 
mosome in Figure 7. While the genotypes of these 
two chromosome are different, the phenotypes are ex- 
actly the same, i.e. both chromosomes evaluate to the 
same fitness. In effect an non-coding segment has been 
added to the chromosome. 

Figure 6: Best S-expression for generation 0. 

Crossover is destructive for the chromosome in Fig- 
ure 6: any point selected for crossover will break up 
a building block. Crossover cannot be completely de- 
structive for the chromosome in Figure 7: if any point, 
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Figure 7: Generation O’s best S-expression doubled. 

to the left of the root is selected for crossover, then 
the right subtree will remain intact. The child which 
“inherits” the right subtree will have a fitness greater 
than or equal to that of the parent. A similar argu- 
ment holds for the right side. If the root is selected 
as the crossover point, then the child inheriting the 
whole tree still has a lower bound of the fitness of this 
parent. The non-coding segment is redundant in the 
parent, but it will only be redundant in the child if the 
other parent already contains the coding segment. 

Experimental Results 
The chromosome in Figure 7 should aid in the genetic 
search for all of the cliques in the graph, at least one 
of the children will be as fit as the repaired parent. 
The curve RO in Figure 8 is the learning curve for the 
clique detector with no repairs taking place, with the 
solution found at about generation 354. The first ex- 
periment we conduct is to inject repairs with a 0.5% 
probability into the population. The curve R.5Ql in 
Figure 8 is the result after adding one duplicate of the 
coding segment during the repair process. The solu- 
tion is found at about generation 335. The hypothesis 
of the utility of duplication appears to not have been 
significant. If we examine the process, we see that if 
the repaired chromosome is selected for crossover, the 
building block should last for at least one generation. 
Can we force the building block to propagate through 
more than one generation ? Yes, by adding more than 
one copy of the building block during repair. 

We further experiment by adding three and seven 
copies of the coding segment. The curve R.5Q3 in Fig- 
ure 8 utilizes three backups of the coding segment. The 
solution appears around generation 246, a significant 
savings of 108 generations. The curve R.5Q7 utilizes 
seven duplicates. The solution appears around gen- 
eration 171, a savings of 183 generations. Finally, in 
Figure 9, we present the results for a repair rate of 
10%. At a repair rate of 10% and with 7 duplicates 
of the coding segment, there is a significant savings 
of 298 generations over no repair, and 115 generations 
over 0.5% repair with 7 duplications. 

Figure 8: Best fitness for base case and a repair rate 
of 0.5% with 0, 1, 3, and 5 duplications. 

Figure 9: Best fitness for base case and a repair rate 
of 10% with 0, 1, 3, and 5 duplications. 

We find that in general: complete removal of non- 
coding segments causes premature convergence; in- 
creasing duplicates of the coding segment improves the 
learning; and, as the repair rate increases, and more 
than one duplicate of the coding segment is added to 
the chromosome, the learning increases. This contra- 
dicts earlier findings (Orvosh & Davis 1993). 

Conclusions 
We utilize the tree structure of GP chromosomes to 
conduct experimentation into duplication of coding 
segments. We see that the duplication of three or more 
copies of the coding segments significantly speeds up 
the learning process for the clique detection problem. 
We have shown that with seven copies of the coding 
segment, we can at least halve the computational ef- 
fort of finding the optimal solution and at best we have 
shown an 84% increase in finding the optimal solution 
over no repair and duplication at all. While the clique 
detection domain readily lends itself to the study of 
building blocks in the GP chromosome, our results are 
not domain dependent. 

Analysis shows that this method can work for any 
GP domain. Simple editing rules for GP chromosomes 
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have been identified (Koza 1992). The methods used 
by compiler writers to optimize code are also appli- 
cable to “optimizing” the GP chromosome. An ex- 
ample of the repair and duplication process for other 
domains is shown in Figure 10. The parse tree to be 
evaluated is shown in Figure 10(a). The left subtree of 
the root node is True, which cause the middle subtree 
to be a coding segment and the right subtree to be a 
non-coding segment. The tree could be pruned, leav- 
ing only the middle subtree. The IFTE (IfThenElse) 
function can be used to add a duplicate of the coding 
segment (Angeline 1994), as shown in Figure 10(b). 

(a) (b) 

Figure 10: IFTE promotes duplication. (a) The right 
subtree of the IFTE node is non-coding. (b) A dupli- 
cate of the coding segment has been added. 

Our function and terminal sets are not programming 
structures, but rather connectors for data structures. 
The “programming” aspect is handled by the fitness 
function, which is similar to how the GA fitness func- 
tion translates the binary strings into the problem do- 
mains. Thus our results will also hold in domains en- 
coded in variable-length GAS. 

Repair takes place during chromosome evaluation, 
and thus there is no guarantee that the repaired chro- - 
mosome will survive into the next generation. A new 
crossover function could be introduced which either 
takes a single parent and produces a repaired child or 
generates two children: one by straight selection, and 
the other repair. We plan to investigate this extension 
in a propositional inference domain. Our preliminary 
research shows linear non-coding segments naturally 
appear in this domain. Building blocks are also not as 
easy to identify in this domain as in the clique detec- 
tion, and the optimal solution should have no dupli- 
cates of the coding segment. 
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