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Abstract 

GSAT is a randomized greedy local repair pro- 
cedure that was introduced for solving propo- 
sitional satisfiability and constraint satisfaction 
problems. We present an improvement to GSAT 
that is sensitive to the problem’s structure. 
When the problem has a tree structure the al- 
gorithm is guaranteed to find a solution in lin- 
ear time. For non-tree networks, the algorithm 
designates a subset of nodes, called cutset, and 
executes a regular GSAT algorithm on this set 
of variables. On all the rest of the variables 
it executes a specialized local search algorithm 
for trees. This algorithm finds an assignment 
that, like GSAT, locally minimizes the sum of un- 
satisfied constraints and also globally minimizes 
the number of conflicts in every tree-like sub- 
network. We will present results of experiments 
showing that this new algorithm outperforms reg- 
ular GSAT on sparse networks whose cycle-cutset 
size is bounded by 3OYo of the nodes. 

Introduction 
GSAT is a randomized greedy local repair procedure 
that was introduced for solving propositional satisfia- 
bility and constraint satisfaction problems (Minton et 
al. 1990), (Selman et al. 1992). GSAT for a CSP 
starts from a random assignment to each variable. It 
then ‘flips’ a value of some variable such that the new 
value leads to the largest increase in the number of sat- 
isfied constraints. This is repeated until all constraints 
are satisfied, until a predetermined number of flips is 
reached, or until GSAT reaches a local minimum. Re- 
cently, such local repair algorithms were successfully 
used on various large-scale hard problems such as 3- 
SAT, N-queen, scheduling and constraint satisfaction 
(Minton et al. 1990), (Selman et al. 1992). 

It is known that optimization and constraint satis- 
faction can be accomplished in linear time and in a 
distributed fashion when the constraint graph of the 
problem is tree-structured (Bertelf? & Brioschi 1972), 
(Dechter et al. 1990), (Collin et al. 1991). The guaran- 
tees provided by the tree algorithm are very attractive 
and we would like to combine it with GSAT and ex- 

tend it to general constraint networks using the idea 
of cycle-c&set decomposition (Dechter 1990). 

The work presented in this paper grows out of the 
work on improving connectionist energy minimization 
(Pinkas & Dechter 1995) where the idea of computing 
global minimization over subtrees induced by a subset 
of instantiated cutset variables was first introduced. 
Here we adapt this general method to the case of con- 
straint satisfaction, in which the energy function is the 
sum of unsatisfied constraints, and the connectionist 
energy minimization algorithm is any local repair algo- 
rithm like GSAT. The result is a local search algorithm 
having two types of variables: a subset of variables 
that execute the traditional GSAT algorithm (the cut- 
set variables), and the rest of the variables that execute 
the tree algorithm (the tree variables) in the context 
of the entire network. We subsequently provide the 
first empirical evidence that this method is successful 
in practice on classes of problems with relatively small 
cycle-cutset. 

A binary constraint satisfaction problem (CSP) ’ 
(Dechter 1992), (Mackworth 1992) is the problem of 
finding an assignment to n variables, X1, . .., X,, where 
each variable has a domain of values Di, such that all 
the given binary constraints Rij are satisfied. Rij is a 
constraint between variables Xi, Xj, and is given as the 
set of all pairs of values that are allowed. We also de- 
note Rij (21, U) = 1 if ( V, u) E Rij, and ‘0’ otherwise. A 
constraint satisfaction problem can be associated with 
a constraint graph where each variable is associated 
with a node and any two variables appearing in the 
same constraint are connected. 

This paper is organized as follows. Section 2 presents 
a local search algorithm for trees that is guaranteed to 
converge to a solution in linear time. Section 3 extends 
the approach, resulting in a local search algorithm for 
arbitrary networks. This algorithm is a combination of 
GSAT and Tree Algorithm. Sections 4 and 5 present 
some experimental results using our new algorithm. 

‘For simplicity of exposition we restrict ourselves to bi- 
nary constraint problems. However everything is applicable 
to the general CSP. 
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Tree Algorithm : minimizing the cost of a tree-like subnetwork: 

Input: An arc consistent CSP problem with its variables V divided into cycle cutset 
variables Y and tree variables X, V = X U Y and X n Y = 0. The set of cycle cutset 
variables has a fixed assignment Y = y. 

Output: An assignment X = x that minimizes the cost C(X 1 Y = y) of the entire 
network conditioned on assignment Y = y. 

t. For every value of every variable compute its cost : 

(a) For any value Ic of any cycle cutset variable U;: , the cost Cy, (Ic) is 0. 

(b) For any value k of a tree variable Xi, the cost Cx, (k) is 

cxm = c mini (CX, (1) + wxI,xj(k, 1)) 
child Xj of X, 

where WX.,X, (k, 1) is the weight of the constraint between variables Xi and Xj 
and is either 0 if (k, I) E R x,,xj or some positive number otherwise. 

!. Compute new values for every tree variable : 
For a tree variable Xi, let dx, be the set of values of Xi that is consistent with the 
newly assigned value w(p(Xi)) of the parent p(Xi) of Xi. Then the new value of Xi is 

w(xi> = arg mink E dx, @X,(k) + wX,,p(X,)(k, v(dxi>>>> 

Figure 1: Tree Algorithm 

Tree Algorithm for Networks with Y and tree variables X such that the subgraph of P 

Cycles induced by X is a forest. 

It is well-known that tree-like constraint problems 
can be solved in linear time (Mackworth & Freuder 
1985). We use the idea of cycle-cutset (Dechter 1990) 
to generalize it for networks with cycles, an idea used 
both in Bayes networks and constraint networks. The 
cycle-cutset decomposition is based on the fact that 
an instantiated variable cuts the flow of information 
on any path on which it lies and therefore changes the 
effective connectivity of the network. Consequently, 
when the group of instantiated variables cuts all cy- 
cles in the graph, (e.g., a cycle-cutset), the remain- 
ing network can be viewed as cycle-free and can be 
solved by a tree algorithm. The complexity of the 
cycle-cutset method when incorporated within back- 
tracking schemes can be bounded exponentially in the 
size of the cutset in each nonseparable component of 
the graph (Dechter 1990). 

Given a fixed assignment of values to cycle cutset 
variables Y = y we define a cost CX,(V) for every tree 
variable Xi E X and for each of its values v E Dx, 
with respect to the parent p(Xi) of Xi as follows. Let 

7’p(xZ) be the subproblem of P induced by Y and the 
sztree of P rooted at Xi (including Xi). The cost 
CX, (w) is th e minimum sum of unsatisfied constraints 

in TX p(x’) when Xi = a v 
Y = 3. 

nd conditioned on assignment 

Given this we can solve the constraint problem P in 
two steps. First we can compute the minimum cost of 
all trees conditioned on a fixed assignment Y = y and 
then minimize the resulting function over all possible 
assignments to Y. Let C(XIY = y) be the sum of un- 
satisfied constraints in the entire network conditioned 
on assignment Y = y, and Cmin the minimum overall 
sum of unsatisfied constraints. Clearly, 

In this section we will present a Tree Algorithm that 
generalizes the original tree algorithm (Mackworth & 
Freuder 1985) to cyclic networks. When the problem 
has a tree structure, this algorithm finds a solution 
like the original tree algorithm. However, when the 
constraint graph contains cycles, it finds an assignment 
that minimizes the sum of unsatisfied constraints over 
all its tree subnetworks (Pinkas & Dechter 1995). 

Crnin = Ig$(y) = pnlyqx I y = !I)) 

The conditional minima of C(X 1 Y = y) can be com- 
puted efficiently using the Tree Algorithm in Figure 1. 
The overall minima could be achieved by enumerating 
over all possible assignments to Y. 

Assume that we have a constraint problem P that 
is arc consistent and has all of its variables V divided 
into two disjoint sets of variables, cycle cutset variables 

The Tree Algorithm works by first computing the 
cost Cx,(k) f or every tree variable Xi assuming a fixed 
cutset assignment Y = y. It then computes new values 
for all tree variables Xi using the cost values computed 
earlier and the new value of the parent of Xi. 
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Algorithm : one TRY of GSAT with Cycle Cutset : 

Input: A CSP problem with its variables V divided into cycle cutset variables C and tree variables 
T, V=CUTandCnT=Q). 

Output: An assignment X = 2, Y = y that is a local minimum of the overall cost function C (X, Y). 

1. Create a random initial assignment for all variables. 

2. Alternatively execute these two steps until either the problem is solved, the Tree Algorithm does 
not change the values of the variables, or no progress is being made. 

(a) Run Tree Alg ori th m on the problem, where the values of cycle cutset variables are fixed. 

(b) Run GSAT on the problem, where the values of tree variables are fixed. 

To measure progress, we are using a system of credits. Every time GSAT flips a variable, it spends 
one credit. Whenever GSAT finds a new assignment that satisfies more constraints than any other 
assignment it has found during this try, we give GSAT new credit that is equal to the number of 
flips it has performed during this try so far. Whenever GSAT runs out of credit, it stops. 

Figure 2: GSAT with Cycle Cutset 

GSAT with Cycle Cutset 
The Tree Algorithm described in the previous sec- 

tion leads to a combined algorithm for solving con- 
straint problems. The Tree Algorithm is a basic oper- 
ation that minimizes the cost of tree subnetworks given 
a cycle cutset assignment. However, the combined, al- 
gorithm depends on a second search algorithm to find 
cycle cutset assignments. We could use a complete 
backtracking type algorithm for enumerating all cycle 
cutset assignments. The complexity of this algorithm 
would be exponential in the size of the cutset, and it 
would be practical only if the cutset size is very small 
(Dechter 1990). 

We could also use an incomplete search algorithm 
to generate cycle cutset assignments. In this paper we 
have chosen to use GSAT for that purpose, because 
GSAT has proven to be superior to complete system- 
atic search methods on large classes of constraint sat- 
isfaction problems. 

We will next show how to implement the combined 
algorithm of GSAT and Tree Algorithm, called GSAT 
+ CC (GSAT with Cycle Cutset). Given a constraint 
problem we assume that the set of variables is al- 
ready divided into a set of cycle cutset variables Y = 
{Yl, “‘, Yk) and a set tree variables X = {Xl, . . . . X,}. 
The Tree Algorithm will be used as a’basic subroutine 
in GSAT + CC. GSAT will always keep track of the 
current cycle cutset assignment and occasionally will 
ask the Tree Algorithm to compute an assignment for 
the tree variables that would minimize the cost of tree 
subnetworks. 

However, the role of Tree Algorithm in this combined 
algorithm is more than just a simple subroutine. By 
computing a minimal assignment for the tree variables, 
Tree Algorithm is providing information for GSAT that 
guides the GSAT search as well. 

This exchange of information between GSAT and 
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Tree Algorithm is implemented by a feature of the Tree 
Algorithm in Figure 1. When a new value is computed 
for a tree variable Xi, the new value of the parent of Xi 
(that is computed before X; gets a new value) is used 
to filter the domain of Xi. Only those values in the 
domain of Xi are candidates that are consistent with 
the new value of the parent of Xi. This restriction 
comes from the observation that if the Tree Algorithm 
leaves a constraint inside the tree subnetwork (ie. a 
constraint that only contains tree variables) unsatis- 
fied, then this will not provide any useful information 
for GSAT since GSAT will not see it. The only tree 
variables that have effect on GSAT are those that are 
adjacent to cycle cutset variables. Therefore, whenever 
a constraint involving a tree variable has to remain un- 
satisfied, the Tree Algorithm has to make sure that it 
is adjacent to a cycle cutset variable 2. 

The combined algorithm GSAT + CC will execute a 
number of tries, each of which starts from a new ran- 
dom initial assignment. The number of tries GSAT 
+ CC executes is a function of some input parame- 
ter. Within one try, GSAT + CC will alternatively 
use both GSAT and Tree Algorithm, First it will run 
Tree Algorithm on the problem, such that the values 
of cycle cutset variables are fixed. Once the Tree Al- 
gorithm has finished, it will run GSAT on the problem 
such that the values of tree variables are fixed. Once 
GSAT has finished, for whatever reason, it will switch 
back to the Tree Algorithm. One try of the combined 
algorithm GSAT + CC is described in Figure 2. 

Theorem 1 The Tree Algorithm in Figure 1 is guar- 
anteed to find an assignment that minimizes the sum 
of unsatisfied constraints in every tree-like subnetwork, 
conditioned on the cutset values. 

21f we don’t enforce this condition, the performance 
of GSAT + CC would deteriorate by several orders of 
magnitude. 



Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 44/64 
number of I average I Time I GSAT 1 GSAT time 1 GSAT+CC 1 GSAT+CC time 
constraints cutset size Bound solved per solvable solved per solvable 

125 11% 29 set 46 10 set 90 2 set 
130 12 % 46 set 29 16 set 77 6 set 
135 14 % 65 set 13 23 set 52 10 set 

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 40/64 
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time 
constraints cutset size Bound solved per solvable solved per solvable 

160 20 % 52 set 33 20 set 90 7 set 
165 21 % 60 set 13 30 set 80 17 set 
I70 22 % 70 set 4 40 set 54 22 set 

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 32/64 
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time 
constraints cutset size Bound solved per solvable solved per solvable 

235 34 % 52 set 69 14 set 66 18 set 
240 35 % 76 set 57 22 set 57 29 set 
245 36 % 113 set 40 43 set 40 43 set 

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 28/64 
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time 
constraints cutset size Bound solved per solvable solved per solvable 

290 41 % 55 set 74 13 set 30 25 set 
294 42 % 85 set 80 25 set 23 41 set 
300 43 % 162 set 63 45 set 19 82 set L 

Table 1: GSAT vs. GSAT + CC 

If the weights of all constraints are fixed at 1, GSAT 
+ CC is guaranteed to converge to an assignment that 
is a local minimum of the number of unsatisfied con- 
straints. In general, it will converge to an assignment 
that is a local minimum of the weighted sum of unsat- 
isfied constraints 3. 0. 

Experimental Methodology 
In order to test our new algorithm, we have gener- 

ated several sets of random binary CSPs. For every 
set of test problems, we have run both regular GSAT 
alone and GSAT with Cycle Cutset (GSAT + CC) on 
exactly the same problems. 

In our experiments all variables had the same do- 
main size Ii of natural numbers { 1, . . . , Ii}. All binary 
CSP problems we generated are characterized by the 
following parameters: 

1. N - number of variables. 
2. Ii - number of values. 
3. C - number of constraints. 
4. T - tightness of the constraint, as a fraction of the 

maximum I{2 pairs of values that are nogoods. 

Every binary CSP problem is generated by first uni- 
formly randomly choosing C pairs of variables and then 

31n some versions of GSAT weights of constraints change 
dynamically during the search. 

creating a constraint for every pair. To create a con- 
straint, we randomly pick T x Ic2 tuples and mark 
them as pairs of values that are not allowed. 

Both GSAT and GSAT + CC are incomplete ran- 
domized algorithms. In order to compare their perfor- 
mance on a given problem, we will run both algorithms 
on the problem such that both have the same amount 
of CPU time. For final comparison, given a set of test 
problems, we have measured the number of problems 
they are able to solve provided that both algorithms 
were given the same amount of CPU time per problem. 

In our experiments we have used a version of GSAT 
(Kask & Dechter 1995) that we believe includes most of 
the currently known best heuristics. We use a heuris- 
tic proposed by Gent and Welsh (Gent & Walsh 1993) 
for breaking ties. We also use constraint weighting as 
proposed by the Breakout method of P. Morris (Mor- 
ris 1993) and by Selman and Kautz in a different form 
(Selman & Kautz 1993). This method proposes a way 
of escaping local minimums by reweighting constraints. 
We also use a version of random walk called a random 
noise strategy (Selman et al. 1992). This method sug- 
gest picking, with some small probability, a variable 
that appears in an unsatisfied constraint and flipping 
its value so that the constraint becomes satisfied. Fi- 
nally, we also use a system of credits for automatically 
determining the length of every try of GSAT. 
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Binary CSP, 100 instances, 125 variables, 6 values, tightness 21/36 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

170 14 % 36 set 81 100 
180 16 % 54 set 62 93 
190 17 % 66 set 30 72 

Binary CSP, 100 instances, 125 variables, 6 values, tightness 18/36 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

245 26 % 66 set 66 90 
250 27 % 77 set 42 79 
255 28 % 90 set 25 66 

Binary CSP, 100 instances, 125 variables, 6 values, tightness 16/36 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

290 33 % 41 set 84 76 
300 34 % 62 set 64 47 
305 35 % 86 set 41 34 

Table 2: GSAT vs. GSAT + CC 

Binary CSP, 100 instances, 150 variables, 4 values, tightness 8/16 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

215 14 % 50 set 56 98 
220 15 % 56 set 45 94 
225 16 % 63 set 21 84 

Binary CSP, 100 instances, 150 variables, 4 values, tightness 7/16 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

270 23 % 46 set 59 82 
275 24 ‘71 59 set 44 70 
280 25 % 64 set 32 62 

Binary CSP, 100 instances, 150 variables, 4 values, tightness 6/16 
# of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved 

335 31 % 56 set 72 46 
340 32 % 65 set 65 41 
345 33 ‘71 74 set 53 29 

Table 3: GSAT vs. GSAT + CC 

The amount of tiri-re GSAT (GSAT + CC) spends on 
a problem is determined by a parameter MaxFlips. In 
general, the length of a each try is different from the 
length of the previous try, because it is determined 
automatically by GSAT at runtime. Whenever GSAT 
finishes a try, the number of flips it performed during 
this try is subtracted from the given MaxFlips. If 
the remaining A4axFlips is greater than 0, GSAT will 
start another try. Note that GSAT and GSAT + CC 
will use a different input parameter MuxFlips in order 
to use the same amount of CPU time. 

It is worth noting that the version of GSAT used in 
GSAT + CC did not use constraint reweighting. We 
observed that since we already use the Tree Algorithm 
the added benefit of constraint reweighting is insignifi- 
cant (except when the graph is a complete graph) and 
can sometimes actually hurt the performance of the 
combined algorithm. 

Once we have generated a random problem, we have 
to find a cycle cutset required by GSAT + CC as input. 
We have used a very simple greedy heuristic to approxi- 
mate this NP-complete problem. For every variable we 
compute the number of cycles it participates in using 
depth first search. We pick the variable that partici- 
pates in the most cycles, place it in the cycle cutset, 
remove it from the graph and repeat the whole pro- 
cess. However, the maximum number of cycles a vari- 
able can belong to is exponential. Therefore we have 
placed a limit (in our experiments it was a couple of 
hundred) on the number of cycles a node has to be in 
before it was placed in the cycle cutset and removed. 
This greedy heuristic was very fast and usually took 
no more than a couple of seconds per problem 4. 

*In our experimental results we have not counted this 
time as part of the GSAT + CC running time. 
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Experiments 
We have run three sets of experiments. All problems 
in the first set of experiments had 100 variables, each 
having 8 values. We varied the tightness of the con- 
straints and the number of constraints. In Table 1 we 
have the results of these experiments. We have orga- 
nized the results by increasing cycle cutset size. We can 
see that when the cycle cutset size is less than 30% of 
the variables, GSAT + CC can solve up 3-4 times more 
problems, given the same amount of CPU time, than 
GSAT alone. When the cycle cutset size is about 30% 
both algorithms are roughly equal. When the cutset 
size grows further, GSAT alone is better than GSAT 
+ CC. The same is true when we look at the time each 
algorithm takes to solve a problem (provided it is able 
to solve the problem). When the cutset size is less 
than 30%, GSAT + CC can solve problems faster than 
GSAT alone. When the cutset size is more than 30%, 
GSAT alone is faster. Note that each line in the table 
is the sum of results for 100 random instances. 

The time bound is set so that the MaxFlips param- 
eter for GSAT alone ranges from 300,000 to l,OOO,OOO, 
and for GSAT + CC from 10,000 to 60,000. We have 
tried to set the tightness of constraints and the number 
of constraints so that we get problems that are close 
to the 50% solvability region. 

In Tables 2 and 3 we have the results of experiments 
with two sets of random problems (with 125 variables, 
each having 6 values; and 150 variables, ea,ch having 4 
values). The results are very similar to those with the 
first set of problems - when the cutset size is less than 
30% GSAT + CC is better than GSAT. But when the 
cutset size is larger than 30%, GSAT alone is better. 

Conclusion 
We have presented a new combined algorithm that is 
parameterized by a subset of cutset variables, given 
as input. In this algorithm cutset variables execute a 
regular search algorithm (like GSAT) while the rest of 
the variables execute the Tree Algorithm, a local search 
algorithm that finds solutions on tree subnetworks. 

On acyclic networks this algorithm is guaranteed to 
find a solution in linear time. When all the nodes are 
designated as cutset nodes this algorithm reduces to 
the main search algorithm (like GSAT). 

Our experiments with this new algorithm have pro- 
vided a simple criteria for deciding when to use this 
new algorithm - whenever we can find a small cut- 
set (no more than 30010 of the variables in the cutset), 
GSAT + CC is superior to one of the best alternative 
algorithms, GSAT. 
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