
A Graph-Based Method for Improving GSAT

Kalev Kask and Rina Dechter
Department of Information and Computer Science

University of California, Irvine, CA 92717
{kkask, dechter}@ics.uci.edu

Abstract

GSAT is a randomized greedy local repair pro-
cedure that was introduced for solving propo-
sitional satisfiability and constraint satisfaction
problems. We present an improvement to GSAT
that is sensitive to the problem’s structure.
When the problem has a tree structure the al-
gorithm is guaranteed to find a solution in lin-
ear time. For non-tree networks, the algorithm
designates a subset of nodes, called cutset, and
executes a regular GSAT algorithm on this set
of variables. On all the rest of the variables
it executes a specialized local search algorithm
for trees. This algorithm finds an assignment
that, like GSAT, locally minimizes the sum of un-
satisfied constraints and also globally minimizes
the number of conflicts in every tree-like sub-
network. We will present results of experiments
showing that this new algorithm outperforms reg-
ular GSAT on sparse networks whose cycle-cutset
size is bounded by 3OYo of the nodes.

Introduction
GSAT is a randomized greedy local repair procedure
that was introduced for solving propositional satisfia-
bility and constraint satisfaction problems (Minton et
al. 1990), (Selman et al. 1992). GSAT for a CSP
starts from a random assignment to each variable. It
then ‘flips’ a value of some variable such that the new
value leads to the largest increase in the number of sat-
isfied constraints. This is repeated until all constraints
are satisfied, until a predetermined number of flips is
reached, or until GSAT reaches a local minimum. Re-
cently, such local repair algorithms were successfully
used on various large-scale hard problems such as 3-
SAT, N-queen, scheduling and constraint satisfaction
(Minton et al. 1990), (Selman et al. 1992).

It is known that optimization and constraint satis-
faction can be accomplished in linear time and in a
distributed fashion when the constraint graph of the
problem is tree-structured (Bertelf? & Brioschi 1972),
(Dechter et al. 1990), (Collin et al. 1991). The guaran-
tees provided by the tree algorithm are very attractive
and we would like to combine it with GSAT and ex-

tend it to general constraint networks using the idea
of cycle-c&set decomposition (Dechter 1990).

The work presented in this paper grows out of the
work on improving connectionist energy minimization
(Pinkas & Dechter 1995) where the idea of computing
global minimization over subtrees induced by a subset
of instantiated cutset variables was first introduced.
Here we adapt this general method to the case of con-
straint satisfaction, in which the energy function is the
sum of unsatisfied constraints, and the connectionist
energy minimization algorithm is any local repair algo-
rithm like GSAT. The result is a local search algorithm
having two types of variables: a subset of variables
that execute the traditional GSAT algorithm (the cut-
set variables), and the rest of the variables that execute
the tree algorithm (the tree variables) in the context
of the entire network. We subsequently provide the
first empirical evidence that this method is successful
in practice on classes of problems with relatively small
cycle-cutset.

A binary constraint satisfaction problem (CSP) ’
(Dechter 1992), (Mackworth 1992) is the problem of
finding an assignment to n variables, X1, . .., X,, where
each variable has a domain of values Di, such that all
the given binary constraints Rij are satisfied. Rij is a
constraint between variables Xi, Xj, and is given as the
set of all pairs of values that are allowed. We also de-
note Rij (21, U) = 1 if (V, u) E Rij, and ‘0’ otherwise. A
constraint satisfaction problem can be associated with
a constraint graph where each variable is associated
with a node and any two variables appearing in the
same constraint are connected.

This paper is organized as follows. Section 2 presents
a local search algorithm for trees that is guaranteed to
converge to a solution in linear time. Section 3 extends
the approach, resulting in a local search algorithm for
arbitrary networks. This algorithm is a combination of
GSAT and Tree Algorithm. Sections 4 and 5 present
some experimental results using our new algorithm.

‘For simplicity of exposition we restrict ourselves to bi-
nary constraint problems. However everything is applicable
to the general CSP.

350 Constraint Satisfaction

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Tree Algorithm : minimizing the cost of a tree-like subnetwork:

Input: An arc consistent CSP problem with its variables V divided into cycle cutset
variables Y and tree variables X, V = X U Y and X n Y = 0. The set of cycle cutset
variables has a fixed assignment Y = y.

Output: An assignment X = x that minimizes the cost C(X 1 Y = y) of the entire
network conditioned on assignment Y = y.

t. For every value of every variable compute its cost :

(a) For any value Ic of any cycle cutset variable U;: , the cost Cy, (Ic) is 0.

(b) For any value k of a tree variable Xi, the cost Cx, (k) is

cxm = c mini (CX, (1) + wxI,xj(k, 1))
child Xj of X,

where WX.,X, (k, 1) is the weight of the constraint between variables Xi and Xj
and is either 0 if (k, I) E R x,,xj or some positive number otherwise.

!. Compute new values for every tree variable :
For a tree variable Xi, let dx, be the set of values of Xi that is consistent with the
newly assigned value w(p(Xi)) of the parent p(Xi) of Xi. Then the new value of Xi is

w(xi> = arg mink E dx, @X,(k) + wX,,p(X,)(k, v(dxi>>>>

Figure 1: Tree Algorithm

Tree Algorithm for Networks with Y and tree variables X such that the subgraph of P

Cycles induced by X is a forest.

It is well-known that tree-like constraint problems
can be solved in linear time (Mackworth & Freuder
1985). We use the idea of cycle-cutset (Dechter 1990)
to generalize it for networks with cycles, an idea used
both in Bayes networks and constraint networks. The
cycle-cutset decomposition is based on the fact that
an instantiated variable cuts the flow of information
on any path on which it lies and therefore changes the
effective connectivity of the network. Consequently,
when the group of instantiated variables cuts all cy-
cles in the graph, (e.g., a cycle-cutset), the remain-
ing network can be viewed as cycle-free and can be
solved by a tree algorithm. The complexity of the
cycle-cutset method when incorporated within back-
tracking schemes can be bounded exponentially in the
size of the cutset in each nonseparable component of
the graph (Dechter 1990).

Given a fixed assignment of values to cycle cutset
variables Y = y we define a cost CX,(V) for every tree
variable Xi E X and for each of its values v E Dx,
with respect to the parent p(Xi) of Xi as follows. Let

7’p(xZ) be the subproblem of P induced by Y and the
sztree of P rooted at Xi (including Xi). The cost
CX, (w) is th e minimum sum of unsatisfied constraints

in TX p(x’) when Xi = a v
Y = 3.

nd conditioned on assignment

Given this we can solve the constraint problem P in
two steps. First we can compute the minimum cost of
all trees conditioned on a fixed assignment Y = y and
then minimize the resulting function over all possible
assignments to Y. Let C(XIY = y) be the sum of un-
satisfied constraints in the entire network conditioned
on assignment Y = y, and Cmin the minimum overall
sum of unsatisfied constraints. Clearly,

In this section we will present a Tree Algorithm that
generalizes the original tree algorithm (Mackworth &
Freuder 1985) to cyclic networks. When the problem
has a tree structure, this algorithm finds a solution
like the original tree algorithm. However, when the
constraint graph contains cycles, it finds an assignment
that minimizes the sum of unsatisfied constraints over
all its tree subnetworks (Pinkas & Dechter 1995).

Crnin = Ig$(y) = pnlyqx I y = !I))

The conditional minima of C(X 1 Y = y) can be com-
puted efficiently using the Tree Algorithm in Figure 1.
The overall minima could be achieved by enumerating
over all possible assignments to Y.

Assume that we have a constraint problem P that
is arc consistent and has all of its variables V divided
into two disjoint sets of variables, cycle cutset variables

The Tree Algorithm works by first computing the
cost Cx,(k) f or every tree variable Xi assuming a fixed
cutset assignment Y = y. It then computes new values
for all tree variables Xi using the cost values computed
earlier and the new value of the parent of Xi.

Stochastic Search 351

Algorithm : one TRY of GSAT with Cycle Cutset :

Input: A CSP problem with its variables V divided into cycle cutset variables C and tree variables
T, V=CUTandCnT=Q).

Output: An assignment X = 2, Y = y that is a local minimum of the overall cost function C (X, Y).

1. Create a random initial assignment for all variables.

2. Alternatively execute these two steps until either the problem is solved, the Tree Algorithm does
not change the values of the variables, or no progress is being made.

(a) Run Tree Alg ori th m on the problem, where the values of cycle cutset variables are fixed.

(b) Run GSAT on the problem, where the values of tree variables are fixed.

To measure progress, we are using a system of credits. Every time GSAT flips a variable, it spends
one credit. Whenever GSAT finds a new assignment that satisfies more constraints than any other
assignment it has found during this try, we give GSAT new credit that is equal to the number of
flips it has performed during this try so far. Whenever GSAT runs out of credit, it stops.

Figure 2: GSAT with Cycle Cutset

GSAT with Cycle Cutset
The Tree Algorithm described in the previous sec-

tion leads to a combined algorithm for solving con-
straint problems. The Tree Algorithm is a basic oper-
ation that minimizes the cost of tree subnetworks given
a cycle cutset assignment. However, the combined, al-
gorithm depends on a second search algorithm to find
cycle cutset assignments. We could use a complete
backtracking type algorithm for enumerating all cycle
cutset assignments. The complexity of this algorithm
would be exponential in the size of the cutset, and it
would be practical only if the cutset size is very small
(Dechter 1990).

We could also use an incomplete search algorithm
to generate cycle cutset assignments. In this paper we
have chosen to use GSAT for that purpose, because
GSAT has proven to be superior to complete system-
atic search methods on large classes of constraint sat-
isfaction problems.

We will next show how to implement the combined
algorithm of GSAT and Tree Algorithm, called GSAT
+ CC (GSAT with Cycle Cutset). Given a constraint
problem we assume that the set of variables is al-
ready divided into a set of cycle cutset variables Y =
{Yl, “‘, Yk) and a set tree variables X = {Xl, X,}.
The Tree Algorithm will be used as a’basic subroutine
in GSAT + CC. GSAT will always keep track of the
current cycle cutset assignment and occasionally will
ask the Tree Algorithm to compute an assignment for
the tree variables that would minimize the cost of tree
subnetworks.

However, the role of Tree Algorithm in this combined
algorithm is more than just a simple subroutine. By
computing a minimal assignment for the tree variables,
Tree Algorithm is providing information for GSAT that
guides the GSAT search as well.

This exchange of information between GSAT and

352 Constraint Satisfaction

Tree Algorithm is implemented by a feature of the Tree
Algorithm in Figure 1. When a new value is computed
for a tree variable Xi, the new value of the parent of Xi
(that is computed before X; gets a new value) is used
to filter the domain of Xi. Only those values in the
domain of Xi are candidates that are consistent with
the new value of the parent of Xi. This restriction
comes from the observation that if the Tree Algorithm
leaves a constraint inside the tree subnetwork (ie. a
constraint that only contains tree variables) unsatis-
fied, then this will not provide any useful information
for GSAT since GSAT will not see it. The only tree
variables that have effect on GSAT are those that are
adjacent to cycle cutset variables. Therefore, whenever
a constraint involving a tree variable has to remain un-
satisfied, the Tree Algorithm has to make sure that it
is adjacent to a cycle cutset variable 2.

The combined algorithm GSAT + CC will execute a
number of tries, each of which starts from a new ran-
dom initial assignment. The number of tries GSAT
+ CC executes is a function of some input parame-
ter. Within one try, GSAT + CC will alternatively
use both GSAT and Tree Algorithm, First it will run
Tree Algorithm on the problem, such that the values
of cycle cutset variables are fixed. Once the Tree Al-
gorithm has finished, it will run GSAT on the problem
such that the values of tree variables are fixed. Once
GSAT has finished, for whatever reason, it will switch
back to the Tree Algorithm. One try of the combined
algorithm GSAT + CC is described in Figure 2.

Theorem 1 The Tree Algorithm in Figure 1 is guar-
anteed to find an assignment that minimizes the sum
of unsatisfied constraints in every tree-like subnetwork,
conditioned on the cutset values.

21f we don’t enforce this condition, the performance
of GSAT + CC would deteriorate by several orders of
magnitude.

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 44/64
number of I average I Time I GSAT 1 GSAT time 1 GSAT+CC 1 GSAT+CC time
constraints cutset size Bound solved per solvable solved per solvable

125 11% 29 set 46 10 set 90 2 set
130 12 % 46 set 29 16 set 77 6 set
135 14 % 65 set 13 23 set 52 10 set

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 40/64
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time
constraints cutset size Bound solved per solvable solved per solvable

160 20 % 52 set 33 20 set 90 7 set
165 21 % 60 set 13 30 set 80 17 set
I70 22 % 70 set 4 40 set 54 22 set

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 32/64
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time
constraints cutset size Bound solved per solvable solved per solvable

235 34 % 52 set 69 14 set 66 18 set
240 35 % 76 set 57 22 set 57 29 set
245 36 % 113 set 40 43 set 40 43 set

Binary CSP, 100 instances per line, 100 variables, 8 values, tightness 28/64
number of average Time GSAT GSAT time GSAT+CC GSAT+CC time
constraints cutset size Bound solved per solvable solved per solvable

290 41 % 55 set 74 13 set 30 25 set
294 42 % 85 set 80 25 set 23 41 set
300 43 % 162 set 63 45 set 19 82 set L

Table 1: GSAT vs. GSAT + CC

If the weights of all constraints are fixed at 1, GSAT
+ CC is guaranteed to converge to an assignment that
is a local minimum of the number of unsatisfied con-
straints. In general, it will converge to an assignment
that is a local minimum of the weighted sum of unsat-
isfied constraints 3. 0.

Experimental Methodology
In order to test our new algorithm, we have gener-

ated several sets of random binary CSPs. For every
set of test problems, we have run both regular GSAT
alone and GSAT with Cycle Cutset (GSAT + CC) on
exactly the same problems.

In our experiments all variables had the same do-
main size Ii of natural numbers { 1, . . . , Ii}. All binary
CSP problems we generated are characterized by the
following parameters:

1. N - number of variables.
2. Ii - number of values.
3. C - number of constraints.
4. T - tightness of the constraint, as a fraction of the

maximum I{2 pairs of values that are nogoods.

Every binary CSP problem is generated by first uni-
formly randomly choosing C pairs of variables and then

31n some versions of GSAT weights of constraints change
dynamically during the search.

creating a constraint for every pair. To create a con-
straint, we randomly pick T x Ic2 tuples and mark
them as pairs of values that are not allowed.

Both GSAT and GSAT + CC are incomplete ran-
domized algorithms. In order to compare their perfor-
mance on a given problem, we will run both algorithms
on the problem such that both have the same amount
of CPU time. For final comparison, given a set of test
problems, we have measured the number of problems
they are able to solve provided that both algorithms
were given the same amount of CPU time per problem.

In our experiments we have used a version of GSAT
(Kask & Dechter 1995) that we believe includes most of
the currently known best heuristics. We use a heuris-
tic proposed by Gent and Welsh (Gent & Walsh 1993)
for breaking ties. We also use constraint weighting as
proposed by the Breakout method of P. Morris (Mor-
ris 1993) and by Selman and Kautz in a different form
(Selman & Kautz 1993). This method proposes a way
of escaping local minimums by reweighting constraints.
We also use a version of random walk called a random
noise strategy (Selman et al. 1992). This method sug-
gest picking, with some small probability, a variable
that appears in an unsatisfied constraint and flipping
its value so that the constraint becomes satisfied. Fi-
nally, we also use a system of credits for automatically
determining the length of every try of GSAT.

Stochastic Search 353

Binary CSP, 100 instances, 125 variables, 6 values, tightness 21/36
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

170 14 % 36 set 81 100
180 16 % 54 set 62 93
190 17 % 66 set 30 72

Binary CSP, 100 instances, 125 variables, 6 values, tightness 18/36
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

245 26 % 66 set 66 90
250 27 % 77 set 42 79
255 28 % 90 set 25 66

Binary CSP, 100 instances, 125 variables, 6 values, tightness 16/36
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

290 33 % 41 set 84 76
300 34 % 62 set 64 47
305 35 % 86 set 41 34

Table 2: GSAT vs. GSAT + CC

Binary CSP, 100 instances, 150 variables, 4 values, tightness 8/16
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

215 14 % 50 set 56 98
220 15 % 56 set 45 94
225 16 % 63 set 21 84

Binary CSP, 100 instances, 150 variables, 4 values, tightness 7/16
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

270 23 % 46 set 59 82
275 24 ‘71 59 set 44 70
280 25 % 64 set 32 62

Binary CSP, 100 instances, 150 variables, 4 values, tightness 6/16
of constraints avg. cutset size Time Bound GSAT solved GSAT+CC solved

335 31 % 56 set 72 46
340 32 % 65 set 65 41
345 33 ‘71 74 set 53 29

Table 3: GSAT vs. GSAT + CC

The amount of tiri-re GSAT (GSAT + CC) spends on
a problem is determined by a parameter MaxFlips. In
general, the length of a each try is different from the
length of the previous try, because it is determined
automatically by GSAT at runtime. Whenever GSAT
finishes a try, the number of flips it performed during
this try is subtracted from the given MaxFlips. If
the remaining A4axFlips is greater than 0, GSAT will
start another try. Note that GSAT and GSAT + CC
will use a different input parameter MuxFlips in order
to use the same amount of CPU time.

It is worth noting that the version of GSAT used in
GSAT + CC did not use constraint reweighting. We
observed that since we already use the Tree Algorithm
the added benefit of constraint reweighting is insignifi-
cant (except when the graph is a complete graph) and
can sometimes actually hurt the performance of the
combined algorithm.

Once we have generated a random problem, we have
to find a cycle cutset required by GSAT + CC as input.
We have used a very simple greedy heuristic to approxi-
mate this NP-complete problem. For every variable we
compute the number of cycles it participates in using
depth first search. We pick the variable that partici-
pates in the most cycles, place it in the cycle cutset,
remove it from the graph and repeat the whole pro-
cess. However, the maximum number of cycles a vari-
able can belong to is exponential. Therefore we have
placed a limit (in our experiments it was a couple of
hundred) on the number of cycles a node has to be in
before it was placed in the cycle cutset and removed.
This greedy heuristic was very fast and usually took
no more than a couple of seconds per problem 4.

*In our experimental results we have not counted this
time as part of the GSAT + CC running time.

354 Constraint Satisfaction

Experiments
We have run three sets of experiments. All problems
in the first set of experiments had 100 variables, each
having 8 values. We varied the tightness of the con-
straints and the number of constraints. In Table 1 we
have the results of these experiments. We have orga-
nized the results by increasing cycle cutset size. We can
see that when the cycle cutset size is less than 30% of
the variables, GSAT + CC can solve up 3-4 times more
problems, given the same amount of CPU time, than
GSAT alone. When the cycle cutset size is about 30%
both algorithms are roughly equal. When the cutset
size grows further, GSAT alone is better than GSAT
+ CC. The same is true when we look at the time each
algorithm takes to solve a problem (provided it is able
to solve the problem). When the cutset size is less
than 30%, GSAT + CC can solve problems faster than
GSAT alone. When the cutset size is more than 30%,
GSAT alone is faster. Note that each line in the table
is the sum of results for 100 random instances.

The time bound is set so that the MaxFlips param-
eter for GSAT alone ranges from 300,000 to l,OOO,OOO,
and for GSAT + CC from 10,000 to 60,000. We have
tried to set the tightness of constraints and the number
of constraints so that we get problems that are close
to the 50% solvability region.

In Tables 2 and 3 we have the results of experiments
with two sets of random problems (with 125 variables,
each having 6 values; and 150 variables, ea,ch having 4
values). The results are very similar to those with the
first set of problems - when the cutset size is less than
30% GSAT + CC is better than GSAT. But when the
cutset size is larger than 30%, GSAT alone is better.

Conclusion
We have presented a new combined algorithm that is
parameterized by a subset of cutset variables, given
as input. In this algorithm cutset variables execute a
regular search algorithm (like GSAT) while the rest of
the variables execute the Tree Algorithm, a local search
algorithm that finds solutions on tree subnetworks.

On acyclic networks this algorithm is guaranteed to
find a solution in linear time. When all the nodes are
designated as cutset nodes this algorithm reduces to
the main search algorithm (like GSAT).

Our experiments with this new algorithm have pro-
vided a simple criteria for deciding when to use this
new algorithm - whenever we can find a small cut-
set (no more than 30010 of the variables in the cutset),
GSAT + CC is superior to one of the best alternative
algorithms, GSAT.

References
Bertele, U., and Brioschi, F. 1972. Nonserial Dynamic
Programming. Academic Press.

Collin, Z.; Dechter, R; and Katz, S. 1991. On the

Feasibility of Distributed Constraint Satisfaction. In
Proceedings of IJCAI. Sydney, Australia.

Dechter, R. 1990. Enhancement Schemes for Con-
straint Processing: Backjumping, Learning and Cutset
Decomposition. Artificial Intelligence 41(3): 273-312.

Dechter, R. 1992. Constraint networks. Encyclopedia
of Artificial Intelligence 2nd ed. John Wiley & Sons,
Inc., 276-285.

Dechter, R.; Dechter, A.; and Pearl, J. 1990. Opti-
mization in Constraint Networks. In Oliver, R.M., and
Smith, J.Q., Influence Diagrams, Belief Nets and De-
cision Analysis. John Wiley & Sons, Inc.

Gent, I.P., and Walsh, T. 1993. Towards an Under-
standing of Hill-Climbing Procedures for SAT. In Pro-
ceedings of AAAI, 28-33.

Kask, K., and Dechter, R. 1995. GSAT and Local Con-
sistency. In Proceedings of IJCAI. Montreal, Canada.

Mackworth, A. 1992. Constraint Satisfaction. Ency-
clopedin of Artificial In.telligence 2nd ed. John Wiley
& Sons, Inc., 285-293.

Mackworth, A.K., and Freuder, E.C. 1985. The Com-
plexity of Some Polynomial Network Consistency Algo-
rithms for Constraint Satisfaction Problems. Artificial
Intelligence, 25: 65-74.

Minton, S.; Johnson, M.D.; and Phillips, A.B.
1990. Solving Large Scale Constraint Satisfaction and
Scheduling Problems Using a Heuristic Repair Method.
In Proceedings of the Eighth Conference on Artificial
Intelligence, 17-24.

Morris, P. 1993. The Breakout Method for Escaping
From Local Minima. In Proceedings of AAAI, 40-45.

Pinkas, G., and Dechter, R. 1995. On Improving Con-
nectionist Energy Minimization. Journal of Artificial
Intelligence Research (JAIR), 3: 223-248. A shorter
version appeared in AAAI-92.

Selman, B. ; Levesque, H.; and Mitchell, D. 1992. A
New Method for Solving Hard Satisfiability Problems.
In Proceedings of the Tenth National Conference on
Artificial Intelligence, 440-446.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
Strategies for Improving Local Search. In Proceedings
of AAAI, 337-343.

Selman, B., and Kautz, H. 1993. An Empirical Study
of Greedy Local Search for Satisfiability Testing. In
Proceedings of AA AI, 46-5 1.

Stochastic Search 355

