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Abstract 

Local search algorithms, particularly GSAT and WSAT, 
have attracted considerable recent attention, primar- 
ily because they are the best known approaches to 
several hard classes of satisfiability problems. How- 
ever, replicating reported results has been difficult be- 
cause the setting of certain key parameters is some- 
thing of an art, and because details of the algorithms, 
not discussed in the published papers, can have a large 
impact on performance. In this paper we present an 
efficient probabilistic method for finding the optimal 
setting for a critical local search parameter, Maxflips, 
and discuss important details of two differing versions 
of WSAT. We then apply the optimization method to 
study performance of WSAT on satisfiable instances 
of Random 3SAT at the crossover point and present 
extensive experimental results over a wide range of 
problem sizes. We find that the results are well de- 
scribed by having the optimal value of Maxflips scale 
as a simple power of the number of variables, n, and 
the average run time scale sub-exponentially (basically 
as nlod4 ) over the range n = 25, . . . ,400. 

INTRODUCTION 
In recent years, a variety of local search routines have 
been proposed for (Boolean) satisfiability testing. It 
has been shown (Selman, Levesque, & Mitchell 1992; 
Gu 1992; Selman, Kautz, & Cohen 1994) that local 
search can solve a variety of realistic and randomly 
generated satisfiability problems much larger than con- 
ventional procedures such as Davis-Putnam. 

The characteristic feature of local search is that it 
starts on a total variable assignment and works by 
repeatedly changing variables that appear in violated 
constraints (Minton et al. 1990). The changes are typ- 
ically made according to some hill-climbing heuristic 
strategy with the aim of maximizing the number of 
satisfied constraints. However, as is usual with hill- 
climbing, we are liable to get stuck on local maxima. 
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under contracts F30602-93-C-0031 and F30602-95-1-0023 
and by a doctoral fellowship of the DFG to the second 
author (Graduiertenkolleg Kognitionswissenschaft). 

356 Constraint Satisfaction 

Joaehim P. lser 
Programming Systems Lab 
Universitat des Saarlandes 

Postfach 151150, 66041 Saarbriicken 
Germany 

walser@cs.uni-sb.de 

There are two standard ways to overcome this prob- 
lem: “noise” can be introduced (Selman, Kautz, & 
Cohen 1994); or, with a frequency controlled by a cut- 
off parameter Maxflips we can just give up on local 
moves and restart with some new assignment. Typ- 
ically both of these techniques are used together but 
their use raises several interesting issues: 

What value should we assign to Maxflips? There are 
no known fundamental rules for how to set it, yet it 
can have a significant impact on performance and 
deserves optimization. Also, empirical comparison 
of different procedures should be done fairly, which 
involves first optimizing parameters. 

If we cannot make an optimal choice then how much 
will performance suffer? 

How does the performance scale with the problem 
size? This is especially important when comparing 
local search to other algorithm classes. 

Local search routines can fail to find a solution even 
when the problem instance is actually satisfiable. 
We might like an idea of how often this happens, 
i.e. the false failure rate under the relevant time 
and problem size restrictions. 

At present, resolving these issues requires extensive 
empirical analysis because the random noise implies 
that different runs can require very different runtimes 
even on the same problem instance. Meaningful results 
will require an average over many runs. In this paper 
we give a probabilistic method to reduce the computa- 
tional cost involved in Maxflips optimization and also 
present scaling results obtained with its help. 

The paper is organized as follows: Firstly, we discuss 
a generic form of a local search procedure, and present 
details of two specific cases of the WSAT algorithm 
(Selman, Kautz, & Cohen 1994). Then we describe 
the optimization method, which we call “retrospective 
parameter variation” (RPV), and show how it allows 
data collected at one value of Maxflips to be reused 
to produce runtime results for a range of values. We 
note that the same concept of RPV can also be used 
to study the effects of introducing varying amounts of 
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parallelization into local search by simulating multiple 
threads (Walser 1995). 

Finally, we present the results of experiments to 
study the performance of the two versions of WSAT 
on Random 3SAT at the crossover point (Cheese- 
man, Kanefsky, & Taylor 1991; Mitchell, Selman, & 
Levesque 1992; Crawford & Auton 1996). By mak- 
ing extensive use of RPV, and fast multi-processor ma- 
chines, we are able to give results up to 400 variables. 
We find that the optimal Maxflips setting scales as a 
simple monomial, and the mean runtime scales subex- 
ponentially, but faster than a simple power-law. 

denotes the number of clauses that are fixed (become 
satisfied) if variable P is flipped. Similarly, bp is the 
number that break (become unsatisfied) if P is flipped. 
Hence, fp -bp is simply the net increase in the number 
of satisfied clauses. 

WSAT/G 
proc 

LOCAL SEARCH IN SAT 
Figure 1 gives the outline of a typical local search rou- 
tine (Selman, Levesque, & Mitchell 1992 

1 
to find a sat- 

isfying assignment for a set of clauses a . 

select-variable( a, A) 
c := a random unsatisfied clause 
with probability p : 

S := random variable in C 
probability 1 - p : 

S := variable in C with maximal fp - bp 
end 
return S 

end 

proc 
proc Local-Search-SAT 

Input clauses Q, Maxflips, and Maxtries 
for i := 1 to Maxtries do 

A := new total truth assignment 
for j := 1 to Maxffips do 

if A satisfies a then return A 
P := select-variable(a, A) 
A := A with P flipped 

end 
end 

WSAT/SKC 
select-variable(a) A) 
C := a random unsatisfied clause 
U := minsEC bs 
ifu=Othen 

S := a variable P E C with bp = 0 
else 

return “No satisfying assignment found” 
end 

with probability p : 
S := random variable in C 

probability 1 - p : 
S := variable P E C with minimal bp 

end 
return S 

end 

Figure 1: A generic local search procedure for SAT. Figure 2: Two WSAT variable selection strategies. Ties 
for the best variable are broken at random. 

Here, local moves are “flips” of variables that are 
chosen by select-variable, usually according to a ran- 
domized greedy strategy. We refer to the sequence of 
flips between restarts (new total truth assignments) as 
a “try”, and a sequence of tries finishing with a suc- 
cessful try as a “run”. The parameter Maxtries can be 
used to ensure termination (though in our experihents 
we always set it to infinity). We also assume that the 
new assignments are all chosen randomly, though other 
methods have been considered (Gent & Walsh 1993). 

Two WSAT Procedures 
In our experiments, we used two variants of the WSAT 
- “walk” satisfiability class of local search procedures. 
This class was introduced by Selman et. al. (Selman, 
Kautz, & Cohen 1994) as “WSAT makes flips by first 
randomly picking a clause that is not satisfied by the 
current assignment, and then picking (either at random 
or according to a greedy heuristic) a variable within 
that clause to flip.” Thus WSAT is a restricted version 
of Figure 1 but there remains substantial freedom in 
the choice of heuristic. In this paper we focus on the 
two selection strategies, as given in Figure 2. Here, fp 

The first strategy 2 WSAT/G is simple hillclimb- 
ing on the net number of satisfied clauses, but per- 
turbed by noise because with probability p, a variable 
is picked randomly from the clause. The second pro- 
cedure WSAT/SKC is that of a version of WSAT by 
Cohen, Kautz, and Selman.3 We give the details here 
because they were not present in the published paper 
(Selman, Kautz, & Cohen 1994), but are none-the-less 
rather interesting. In particular, WSAT/SKC uses a 
less obvious, though very effective, selection strategy. 
Firstly, hill-climbing is done solely on the number of 
clauses that break if a variable is flipped, and the num- 
ber of clauses that get fixed is ignored. Secondly, a ran- 
dom move is never made if it is possible to do a move 
in which no Jreviously satisfied clauses become bro- 
ken. In all it exhibits ‘a sort of “minimal greediness”, in 
that it definitely fixes the one randomly selected clause 
but otherwise merely tries to minimize the damage to 
the already satisfied clauses. In contrast, WSAT/G is 
greedier and will blithely cause lots of damage if it can 
get paid back by other clauses. 

‘A clause is a disjunction of literals. A literal is a propo- 2Andrew Baker, personal communication. 
sitional variable or its negation. 3Publically available, ftp://ftp.research.att.com/dist/ai 
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RETROSPECTIVE VARIATION OF 
MAXFLIPS 

We now describe a simple probabilistic method for ef- 
ficiently determining the Maxflips dependence of the 
mean runtime of a randomized local search procedure 
such as WSAT. We use the term “retrospective” be- 
cause the parameter is varied after the actual experi- 
ment; is over. 

As discussed earlier, a side-effect of the randomness 
introduced into local search procedures is that the run- 
time now varies between runs. It is often the case that 
this “inter-run” variation is large and to give meaning- 
ful runtime results we need an average over many runs. 
Furthermore, we will need to determine the mean run- 
time over a range of values of Maxflips. The naive way 
to proceed is to do totally independent sets of runs at 
many different Maxflips values. However, this is rather 
wasteful of data because the successful try on a run 
often uses many fewer flips than the current Maxflips, 
and so we should be able to re-use it (together with the 
number of failed tries) to produce results for smaller 
values of Maxflips. 

Suppose we take a singEe problem instance ZJ and 
make many runs of a local search procedure with 
Maxflips=mD, resulting in a sample with a total of N 
tries. The goal is to make predictions for Maxflips = 
m < ?nD. Label the successful tries by i, and let xi be 
the number of flips it took i to succeed. Write the bag 
of all successful tries as 5’0 = {xl, . . . , xl} and define 
a reduced bag SF by removing tries that took longer 
than m 

som := (xi E SO 1 xi 2 m). (1) 

We are asssuming there is randomness in each try and 
no learning between tries so we can consider the tries 
to be independent. From this it follows that the new 
bag provides us with information on the distribution 
of flips for successful tries with Maxflips=m. Also, 
an estimate for the probability that a try will succeed 
within m flips is simply 

Pm M 
I%7 

N (2) 

Together 5’0” and pm allow us to make predictions for 
the behaviour at Maxflips=m. 

In this paper we are concerned with the expected 
(mean) number of flips Ey,m for the instance Y under 
consideration. Let F be the mean of the elements in 
the bag SF. With probability pm, the solution will be 
found on the first try, in which case we expect F flips. 
With probability (1 - pm) pm, the first try will fail, 
but the second will succeed, in which case we expect 
m + v flips, and so on. Hence, 

E u,m = ~(l-Pm)XPm(km+~) (3) 
ICC0 

which simplifies to give the main result of this section 
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with pm and Sr estimated from the reduced bag as 
defined above. This is as to be expected since l/p, 
is the expected number of tries. It is clearly easy to 
implement a system to take single data-set obtained 
at Maxflips=mg, and estimate the expected number 
of flips for many different smaller values of m. 

Note that it might seem that a more direct and obvi- 
ous method would be to take the bag of all runs rather 
than tries, and then simply discard runs in which the 
final try took longer than m. However, such a method 
would discard the information that the associated tries 
all took longer than m. In contrast, our method cap- 
tures this information: the entire population of tries is 
used. 

Instance Collections To deal with a collection, C, 
of instances we apply RPV to each instance individually 
and then proceed exactly as if this retrospectively sim- 
ulated data had been obtained directly. For example, 
the expected mean number of flips for C is 

Em = -L >: E,,m. 
ICI VEC 

(5) 

Note that this RPV approach is not restricted to means, 
but also allows the investigation of other statistical 
measures such as standard deviation or percentiles. 

Practical Application of RPV The primary limit 
on the use of RPV arises from the need to ensure that 
the bag of successful tries does not get too small and 
invalidate the estimate for pm. Since the bag size de- 
creases as we decrease m it follows that there will be an 
effective lower bound on the range over which we can 
safely apply RPV from a given ?nD. This can be offset 
by collecting more runs per instance. However, there is 
a tradeoff to be made: If trying to make predictions at 
too small a value of m it becomes more efficient to give 
up on trying to use the data from Maxflips=mD and 
instead make a new data collection at smaller Maxflips. 
This problem with the bag size is exacerbated by the 
fact that different instances can have very different be- 
haviours and hence different ranges over which RPV is 
valid. It would certainly be possible to do some analy- 
sis of the errors arising from the RPV. The data collec- 
tion system could even do such an analysis to monitor 
current progress and then concentrate new runs on the 
instances and values of Maxflips for which the results 
are most needed. In practice, we followed a simpler 
route: we made a fixed number of runs per instance 
and then accepted the RPV results only down to values 
of m for some fixed large fraction of instances still had 
a large enough bagsize. 

Hence, RPV does not always remove the need to con- 
sider data collection at various values of Maxflips, how- 
ever, it does allow us to collect data at more widely 
separated Maxflips values and then interpolate be- 
tween the resulting “direct” data points: This saves a 
time-consuming fine-grained data-collection, or binary 
search through Maxflips values. 



EXPERIMENTAL RESULTS 
To evaluate performance of satisfiability procedures, 
a class of randomized benchmark problems, Random 
SSAT, has been studied extensively (Mitchell, Selman, 
& Levesque 1992; Mitchell 1993; Crawford & Auton 
1996). Random 3SAT provides a ready source of hard 
scalable problems. Problems in random &SAT with 
n variables and 1 clauses are generated as follows: a 
random subset of size E of the n variables is selected for 
each clause, and each variable negated with probability 
l/2. If instances are taken from near the crossover 
point (where 50% of the randomly generated problems 
are satisfiable) then the fastest systematic algorithms, 
such as TABLEAU (Crawford & Auton 1996), show a 
well-behaved increase in hardness: time required scales 
as a simple exponential in n. 

In the following we present results for the perfor- 
mance of both variants of WSAT on satisfiable Random 
3SAT problems at the crossover point. We put par- 
ticular emphasis on finding the Maxflips value m* at 
which the mean runtime averaged over all instances is 
a minimum. Note that the clause/variable ratio is not 
quite constant at the crossover point but tends to be 
slightly higher for small n. Hence, to avoid “falling off 
the hardness peak”, we used the experimental results 
(Crawford & Auton 1996) for the number of clauses 
at crossover, rather than using a constant value such 
as 4.3n. To guarantee a fair sample of satisfiable in- 
stances we used TABLEAU to filter out the unsatisfiable 
instances. At n=400 this took about 2-4 hours per in- 
stance, and so even this part was computationally non- 
trivial, and in fact turned out to be the limiting factor 
for the maximum problem size. 

For WSAT/SKC, the setting of the noise parameter 
p has been reported to be optimal between 0.5 and 0.6 
(Selman, Kautz, & Cohen 1994). We found evidence 
that such values are also close to optimal for WSAT/G, 
hence we have produced all results here with p = 0.5 
for both WSAT variants, but will discuss this further 
in the next section. 

We present the experiments in three parts. Firstly, 
we compare the two variants of WSAT using a small 
number of problem instances but over a wide range of 
Maxflips values to show the usage of RPV to determine 
their Maxflips dependencies. We then concentrate on 
the more efficient WSAT/SKC, using a medium num- 
ber of instances, and investigate the scaling properties 
over the range n = 25,. . . ,400 variables. This part 
represents the bulk of the data collection, and heavily 
relied on RPV. Finally, we look at a large data sample 
at n = 200 to check for outliers. 

Overall Maxflips Dependence 
Our aim here is to show the usage of RPV and also 

give a broad picture of how the mean runtime Em 
varies with m for the two different WSAT variants. We 
took a fixed, but randomly selected, sample of lo3 in- 
stances at (n, Z) = (200,854), for which we made 200 

WSATIG RPV - 
WSAT/G direct I++I 

WSAT/SKC RPV ------ 
WSATISKC direct H-I 

oh n ’ ml ’ ’ *’ ’ n *’ ’ ’ m’ ’ ’ *I 
1 e+03 1 e+04 1 e+05 1 e+06 1 e+07 le+08 

m 

Figure 3: Variation of Em against Maxflips=m. Based 
on lk instances of (200,854) with 200 runs per instance. 

runs on each instance at m=5k, 20k, 80k, 800k, 8000k, 
00 using both variants of WSAT. At each m we directly 
calculated Em. We then applied RPV to the samples to 
extend the results down towards the next data-point. 

The results are plotted in Figure 3. Here the error 
bars are the 95% confidence intervals for the particular 
set of instances, i.e. they reflect only the uncertainty 
from the limited number of runs, and nut from the 
limited number of instances. Note that the RPV lines 
from one data point do indeed match the lower, directly 
obtained, points. This shows that the RPV is not in- 
troducing significant errors when used to extrapolate 
over these ranges. 

Clearly, at p = 0.5, the two WSAT algorithms ex- 
hibit very different dependencies on Maxflips: select- 
ing too large a value slows WSAT/G down by a factor 
of about 4, in contrast to a slowdown of about 20% 
for WSAT/SKC. At Maxflips=oo the slowest try for 
WSAT/G took 90 minutes against 5 minutes for the 
worst effort from WSAT/SKC. As has been observed 
before (Gent & Walsh 1995), “random walk” can signif- 
icantly reduce the Maxflips sensitivity of a local search 
procedure: Restarts and noise fulfill a similar purpose 
by allowing for downhill moves and driving the al- 
gorithm around in the search space. Experimentally 
we found that while the peak performance Em* varies 
only very little with small variation of p (rtO.OS), the 
Maxflips sensitivity can vary quite remarkably. This 
topic warrants further study and again RPV is useful 
since it effectively reduces the two-dimensional param- 
eter space (p, m) to just p. 

While the average difference for Em* between the 
two WSATS on Random 3SAT is typically about a fac- 
tor of two, we found certain instances of circuit syn- 
thesis problems (Selman, Kautz, & Cohen 1994) where 
WSAT/SKC is between 15 and 50 times faster. Having 
identified the better WSAT, we will next be concerned 
with its optimized scaling. 

Extensive Experiments on WSAT/SKC 

We would now like to obtain accurate results for the 
performance of WSAT/ SKC on the Random 3SAT do- 
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Figure 4: The variation of mg- and m* with n. We 
use ml+ and ml- as the upper and lower error bounds 
on m”. 

main. So far, we have only considered confidence in- 
tervals resulting from the inter-run variation. Unfortu- 
nately, for the previous sample of 1000 instances, the 
error in Em arising from the inter-instance variation 
is much larger (about 25%). This means that to ob- 
tain reasonable total errors we needed to look at larger 
samples of instances. 

We were mostly interested in the behaviour at and 
near m* . Preliminary experiments indicated that mak- 
ing the main data collection at just m = 0.5n2 would 
allow us to safely use RPV to study the minimum. 
Hence, using WSAT/SKC at p = 0.5, we did 200 runs 
per instance at m = 0.5n2, and then used RPV to find 
m*. The results are summarized in Table 1, and we 
now explain the other entries in this table. We found 
it useful to characterize the E, curves by values of 
Maxflips which we denote by mk-, and define as the 
largest value of m such that m < m* and Em is Ic% 
larger than Em*. Similarly we define mk+ as the small- 
est value of m > m* with the same property. We can 
easily read these off from the curve produced by RPV. 
The RPV actually produces the set EV,m* and so we also 
sorted these and calculated various percentiles of the 
distribution (the 99th percentile means that we expect 
that 99% of the instances will, on average, be solved 
in this number of flips). Finally, the error on E,* is 
the 95% confidence level as obtained from the standard 
deviation of the Ev,m sample (inter-instance). The er- 
ror from the limited number of runs was negligible in 
comparison. In the next section we interpret this data 
with respect to how m* and E,* vary with n. We did 
not convert flips to times because the actual flips rate 
varies remarkably little (from about 70k-flips/set down 
to about 60k-Aips/sec). 

Scaling of Optimal Maxflips 

In Figure 4 we can see how m* and rng- vary with n. 
In order to interpret this data we fitted the function 
unb against m5- because the E, curves are rather flat 
and so m* is relatively ill-defined. However, they seem 
to have the same scaling and also m* > m5- by defini- 

1 .Oe+O6 

1 .Oe+05 

g l.Oe+04 
2 

1 .Oe+03 

1 .Oe+02 :f’ 
, t; 

l.Oe+Ol ” ’ ’ ’ ’ ’ ’ ’ ’ ’ 
50 100 150 200 250 300 350 400 450 

n, number of variables 

Figure 5: The scaling behaviour of WSAT/SKC at 
crossover. The data points are Emf together with its 
95% confidence limits. The lines are best fits of the 
functions given in the text. 

tion. We obtained a best fit4 with the values a = 0.02 
and b = 2.39 (the resulting line is also plotted in Fig- 
ure 4). Similar results for WSAT/G also indicate a very 
similar scaling of n 2.36 For comparison HSAT, a non- . 
randomized GSAT variant that incorporates a history 
mechanism, has been observed to have a m* scaling of 
n1.65 (Gent & Walsh 1995). 

Scaling of Performance 
In Figure 5 we plot the variation of E,. with n. We 
can see that the scaling is not as fast as a simple ex- 
ponential in n, however the upward curve of the corre- 
sponding log-log plot (not presented) indicates that it 
is also worse than a simple monomial. Unfortunately, 
we know of no theoretical scaling result that could be 
reasonably compared with this data. For example, re- 
sults are known (Koutsoupias & Papadimitriou 1992) 
when the number of clauses is Q(n”), but they do not 
apply because the crossover is at O(n). Hence we ap- 
proached the scaling from a purely empirical perspec- 
tive, by trying to fit functions to the data that can 
reveal certain characteristics of the scaling. We also 
find it very interesting that m* so often seems to fit 
a simple power law, but are not aware of any expla- 
nation for this. However, the fits do provide an idea 
of the scaling that might have practical use, or maybe 
even lead to some theoretical arguments. 

We could find no good 2-parameter fit to the Em* 
curve, however the following functions give good fits, 
and provide the lines on Figure 5. (For f(n), we found 
the values fr = 12.5 f 2.02, f2 = -0.6 f 0.07, and 
j-3 = 0.4 f 0.01.) 

f(n) = fl nf2+f3 ktn) 

s(n) = gl exp(ng2( 1 + g3/n)) 

The fact that such different functions give good fits 
to the data illustrates the obviously very limited dis- 

*Using the Marquardt-Levenberg algorithm as imple- 
mented in Gnufit by C. Grammes at the Universitat des 
Saarlandes, Germany, 1993. 
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Vars Cls m* m5- E 95%-cnf. Median 99-pert. 
25 113 70 37 1’;; 2 94 398 
50 218 375 190 591 12 414 2,876 

100 430 2,100 1,025 3,817 111 2,123 27,367 
150 641 6,100 2,925 13,403 486 5,891 120,597 
200 854 11,900 5,600 36,973 2,139 12,915 406,966 
250 1066 15,875 8,800 92,915 8,128 25,575 1,050,104 
300 1279 23,200 13,100 171,991 15,455 43,314 2,121,809 
350 1491 32,000 19,300 334,361 69,850 65,574 4,258,904 
400 1704 43,500 27,200 528,545 114,899 96,048 11,439,288 

Table 1: Experimental results for WSAT/SKC with p = 0.5 on Random 3SAT at crossover. The results are based 
on 10k instances (25-250 variables), 6k instances (300 vars), 3k instances (350 vars) and lk instances (400 vars). 

criminating power of such attempts at empirical fits. 
We certainly do not claim that these are asymptotic 
complexities. 1 However, we include them as indica- 
tive. The fact that fs > 0 indicates a scaling which 
is similar to a simple power law except that the expo- 
nent is slowly growing. Alternatively, the fact that we 
found g2 M 0.4, can be regarded as a further indication 
that scaling is slower than a simple exponential (which 
would have g2 = 1). 

Testing for 0 ut liers 

One immediate concern is whether the average run- 
times quoted above are truly meaningful for the prob- 
lem class Random SSAT. It could easily be that the ef- 
fect of outliers, instances that WSAT takes much longer 
to solve, eventually dominates. That is, as the sam- 
ple size increases then we could get sufficiently hard 
instances and with sufficient frequency such that the 
mean would drift upwards (Mitchell 1993). 

To check for this effect we decided to concentrate on 
(n,Z) = (200,854) and took lo5 instances. Since we 
only wanted to check for outliers, we did not need high 
accuracy estimates and it was sufficient to do just 20 
runs/instance of WSAT/SKC at Maxflips=SOk, not us- 
ing RPV. We directly calculated the mean for each seed: 
in Figure 6 we plot the distribution of the lg(Ev,m). 

100000 t I I I I I I I I I I -j 

10000 

1000 

100 

10 

6 8 10 12 14 16 18 20 22 24 26 28 
i 

Figure 6: From a total of lo5 instances we give the 
number of instances for which the expected number of 
flips Eu,m is in the range 2i 5 Evlln < 2i+1. This is 
for WSAT/SKC at m = SOk, based on 20 runs per 
instance. 

If the tail of the distribution were too long, or if 
there were signs of a bimodal distribution with a small 
secondary peak but at a very large E,* then we would 
be concerned about the validity of the means quoted 
above. However we see no signs of any such effects. 
On the contrary the distribution seems to be quite 
smooth, and its mean is consistent with the previous 
data. However, we do note that the distribution tail is 
sufficiently large that a significant fraction of total run- 
time is spent on relatively few instances. This means 
that sample sizes are effectively reduced, and is the rea- 
son for our use of 10k samples for the scaling results 
where computationally feasible. 

RELATE QRK 
Optimal parameter setting of Maxflips and scaling re- 
sults have been examined before by Gent and Walsh 
(Gent & Walsh 1993; 1995). However, for each sample 
point (each n) Maxflips had to be optimized experi- 
mentally. Thus, the computational cost of a system- 
atic Maxflips optimization for randomized algorithrns 
was too high for problems larger than 100 variables. 
This experimental range was not sufficient to rule out 
a polynomial runtime dependence of about order 3 
(in the number of variables) for GSAT (Gent & Walsh 
1993). 

A sophisticated approach to the study of incomplete 
randomized algorithms is the framework of Las Ve- 
gas algorithms which has been used by Luby, Sinclair, 
and Zuckermann (Luby, Sinclair, & Zuckerman 1993) 
to examine optimal speedup. They have shown that 
for a single instance there is no advantage to having 
Maxflips vary between tries and present optimal cutoff 
times based on the distribution of the runtimes. These 
results, however, are not directly applicable to average 
runtimes for a collection of instances. 

Local Search procedures also have close relations to 
simulated annealing (Selman & Kautz 1993). Indeed, 
combinations of simulated annealing with GSAT have 
been tried for hard SAT problems (Spears 1995). We 
can even look upon the restart as being a short period 
of very high temperature that will drive the variable 
assignment to a random value. In this case we find it 
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interesting that work in simulated annealing also has 
cases in which periodic reheating is useful (Boese & 
Kahng 1994). We intend to explore these connections 
further. 

CONCLUSIONS 
We have tried to address the four issues in the intro- 
duction empirically. In order to allow for optimizing 
Maxflips, we presented retrospective parameter varia- 
tion (RPV), a simple resampling method that signifi- 
cantly reduces the amount of experimentation needed 
to optimize certain local search parameters. 

We then studied two different variants of WSAT, 
which we label as WSAT/G and WSAT/SKC (the 
latter due to Selman et al.). The application of 
RPV revealed better performance of WSAT/SKC. An 
open question is whether the relative insensitivity of 
WSAT/SKC to restarts carries over to realistic prob- 
lem domains. We should note that for general SAT 
problems the Maxflips-scaling is of course not a simple 
function of the number of variables and p only, but is 
also affected by other properties such as the problem 
constrainedness. 

To study the scaling behaviour of local search, we ex- 
perimented with WSAT/SKC on hard Random 3SAT 
problems over a wide range of problem sizes, ap- 
plying RPV to optimize performance. Our experi- 
mental results strongly suggest subexponential scal- 
ing on Random SSAT, and we can thus support pre- 
vious claims (Selman, Levesque, & Mitchell 1992; 
Gent & Walsh 1993) that local search scales signifi- 
cantly better than Davis-Putnam related procedures. 

Unfortunately RPV cannot be used to directly deter- 
mine the impact of the noise parameter p, however it 
is still useful since instead of varying two parameters, 
only p has to be varied experimentally, while different 
Maxflips values can be simulated. 

We plan to extend this work in two further direc- 
tions. Firstly, we intend to move closer to real prob- 
lems. For example, investigations of binary encodings 
of scheduling problems reveal a strong correlation be- 
tween the number of bottlenecks in the problems and 
optimal Maxflips for WSAT/G. Secondly, we would like 
to understand the Maxflips-dependence in terms of be- 
haviours of individual instances. 
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