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Abstract 

The high-school timetabling problem consists in as- 
signing all the lectures of a high school to the time 
periods in such a way that no teacher (or class) is in- 
volved in more than one lecture at a time and other 
side constraints are satisfied. The problem is NP- 
complete and is usually tackled using heuristic meth- 
ods. This paper describes a solution algorithm (and 
its implementation) based on Z’abzr Search. The algo- 
rithm interleaves different types of modes and makes 
use of an adaptive relaxation of the hard constraints. 
The implementation of the algorithm has been suc- 
cessfully experimented in some large high schools with 
various kinds of side constraints. 

Introduction 
The high-school timetabling problem regards the 
weekly scheduling for all the lectures of a high school. 
The problem consists in assigning lectures to periods 
in such a way that no teacher (or class) is involved in 
more than one lecture at a time and other side con- 
straints are satisfied. 

The manual solution of the timetabling problem usu- 
ally requires several days of work. In addition, the so- 
lution obtained may be unsatisfactory to some respect. 
For these reasons, a considerable attention has been de- 
voted to automated timetabling. During the last thirty 
years, many papers related to automated timetabling 
have appeared in conferences and journals, and several 
applications have been developed and employed. 

Most of the early techniques (Schmidt & Strohlein 
1979; Junginger 1986) were based on a simulation of 
the human way of solving the problem. All such heuris- 
tic techniques were based on a successive augmenta- 
tion. That is, a partial timetable is filled in, lecture by 
lecture, until either all lectures have been scheduled 
or no lecture can be scheduled without violating the 
constraints. 

*This work has been carried out while the author was 
visiting CWI in Amsterdam. It is part of the ERCIM fel- 
lowship Programme and financed by the Commission of the 
European Communities. 

Later on, researchers started to apply general tech- 
niques to this problem. Then, we see algorithms based 
on integer programming (Tripathy 1992), network flow 
(Ostermann & de Werra 1983), and others. In addi- 
tion, the problem has also been tackled by reducing it 
to a well-studied theoretical problem: graph coloring 
(Neufeld & Tartar 1974). 

More recently, some approaches based on new search 
techniques appeared in the literature; among oth- 
ers, we have simulated annealing (Abramson 1991), 
tabu search (Costa 1994), genetic algorithms (Col- 
orni, Dorigo, & Maniezzo 1992), constraint satisfaction 
(Yoshikawa et al. 1996), and combination of different 
methods (Cooper & Kingston 1993). 

The problem has a large number of variants, depend- 
ing on the country, on the type of school, and even 
on the specific school involved (Schaerf 1995). The 
problem we tackle comes from the Italian high-school 
system. In some countries, e.g. Germany (Junginger 
1986), the high school is organized in a similar way, 
and so the solution proposed in this paper applies as 
well. In some others, e.g. Holland, students are more 
free to choose a certain number of subjects, and so it is 
organized more like a college, and different algorithms 
and techniques apply. 

The algorithm we propose is based on local search 
(or neighborhood search) and it is an adaptation of 
tabu search, with some modifications. Our algorithm 
is suitable for both interactive and batch run. That is, 
it can generate a timetable directly from scratch, but 
it also allows the user for manual modifications of the 
timetable and the constraints during the search phase. 

For the sake of brevity, some aspects of the algorithm 
are omitted. They can be found in (Schaerf 1996). 

igh-School Timetabling Problem 
The problem we deal with is an optimization problem, 
and it is therefore defined through a solution space and 
an objective function. 

Solution Space 
There are m classes cl, . . . , cm, n teachers tl, . . . , t,, 
and p periods 1, . . . ,p. It is given a non-negative inte- 
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ger matrix Rmx,, called Requirements matrix, where 
rij is the number of lectures that teacher tj must give 
to class ci. The unavailabilities of teachers and classes 
are taken into account by introducing two binary ma- 
trices TnXP and CnzXP such that ?jk = 1 (resp. cik = I) 
if teacher tj (resp. class ci) is available at period I%, and 
fjk = 0 (resp. cik = 0) otherwise. The mathematical 
formulation of the problem is the following (de Werra 
1985; Junginger 1986). 

find xijk (i = l..m; j = l..n; k = %..p) 
P 

s.t. 
c 

Xijk = Tij (i = l..m; j = l..n) 
k=l 

(1) 

n 

Xijk 5 cik (i = l..m; k = l..p) (3) 

xijk = 0 or 1 (i = l..m;j = l..n;k = l..p)(4) 

This problem has been shown NP-complete in (Even, 
Itai, & Shamir 1976). In order to deal with real in- 
stances of the problem, we tackle a variant of it. In 
particular, we add two other types of constraint. 

First, each class, for a given set of periods, must 
necessarily be involved in (at least) one lecture. This 
constraint can be expressed as follows 

n 

): zijk 2 dik 

j=l 

(i = l..m; k = l..p) (5) 

where DmXp is a binary matrix such that dik: = 1 if 
class ci must necessarily be taught at period k, and 
dik = 0 otherwise. Constraints 5 are very crucial 
for high-school timetabling, and they represent one of 
the major differences between high-school timetabling 
and university timetabling. In fact, they require the 
timetable to be completely filled in, which is a con- 
straint genuinely hard to satisfy. The set of k’s for 
which dik: = 1 usually comprises all the periods but 
the last one of each day (or the last two, depending on 
the total requirements of the specific class ci). 

Second, some pairs of lectures require to be sched- 
uled simultaneously. Specifically, there exists a set of 
quadruples (i, j, i’, j’) such that all lectures of teacher 
tj to class ci must be simultaneous to lectures of 
teacher tjl to class ci/. For each quadruple (i, j, i’, j’) 9 
the above constraint can be expressed as follows 

xijkxiljlk $- zijk FiljJk = 1 (k = l..p) (6) 
where E denotes the complement of the binary variable 
x; that is, I = 1 if x = 0, and vice versa. 

Constraints 6 also are necessary for tackling practi- 
cal cases. In fact, they turned out to be a quite general 
mechanism using which it is possible to model various 
features that are usually present in actual schools: lab- 
oratory assistants, shared gymnastic rooms, bilingual 

classes (i.e. two foreign languages taught at the same 
time to a single class), and others. All such features, al- 
though they may be formulated differently, can always 
be reduced to constraint of the above form introducing 
dummy classes. 

Objective Function 

The computation of the objective function presuppose 
the definition of a number of items for teachers, classes, 
and teacher/class pairs. In particular, for each teacher 
we define: minimum and maximum number of teach- 
ing periods per day, undesired teaching periods, and 
seniority. For each class we define the site in which 
its class room is located. For each pair teacher/class 
we define: maximum number of lectures per day, and 
length of the class work (i.e. minimum number of lec- 
tures that must be given consecutively in one day, at 
least once a week). 

Our objective function is a weighted sum of the fol- 
lowing components, which refer to the schedule of a 
single teacher, and are summed up for all teachers. In 
brackets we put the default penalty weight, which can 
be modified for specific schools. 

Holes [l]: Idle periods between two lectures in the 
teaching assignments of a day. 

Splits [6]: Two lectures to a class separated by one 
or more lectures to different classes. 

Under-use [4]: Number of teaching periods in a day 
less than the minimum specified for the teacher. 

Over-use [3]: Number of teaching periods in a day 
more than the maximum specified for the teacher. 

@lusters [6]: More lectures to the same class in the 
same day than the maximum specified for the pair 
teacher/class. 

Undesired [3]: Teaching in an undesired period. The 
penalty of this feature is normalized based on the 
number of requests of each teacher and multiplied 
by the seniority of the teacher. 

Class-work [IO]: Not having (at least once a week) 
enough joint teaching periods to run the class work 
(or the practical class in the laboratory) for the spe- 
cific teacher/class pair. 

Commutations [5]: Moving from one site to 
between two consecutive teaching periods. 

another 

In order to compute correctly some of the above 
components (i.e. holes, over-use, under-use), we need 
to split the unavailabilities of teachers into two kinds: 
out-school and in-school. The out-school ones are the 
ones in which the teacher cannot teach because he/she 
is away from the school, the in-school ones represent 
the situation in which the teacher is at school but 
he/she is not available for teaching (e.g. for admin- 
istrative work or professional development). 
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ocal Search and Tabu Search 
Local search techniques are a family of general-purpose 
techniques for the solution of optimization problems. 
They are based on the notion of neighbor. Consider an 
optimization problem, and let S be its search space and 
f its objective function (to minimize). A function N, 
which depends on the structure of the specific problem, 
assigns to each feasible solution s E S its neighborhood 
Iv(s) C S. Each solution s’ E N(s) is called a neighbor 
of s. 

A local search technique, starting from an initial so- 
lution SO (which can be obtained with some other tech- 
nique or generated at random), enters in a loop that 
navigates the search space, stepping iteratively from 
one solution to one of its neighbors. We call move the 
modification that transforms a solution to one of its 
neighbors. 

Among the local search techniques, we have the run- 
domized non-ascendent method (RNA): It analyzes a 
random neighbor and accepts it if it is better or equal 
to the current one. It stops after a fixed number of 
iterations without improving the value of the objective 
function. Allowing for sideways moves, this method 
has the feature of being able to follow descending paths 
that pass through plateaux. 

We now briefly describe the basic principles of tabu 
search (TS). See for example (Glover, Taillard, & de 
Werra 1993) for a comprehensive presentation. 

Starting from the initial solution se, the TS algo- 
rithm iteratively explores a subset of the neighborhood 
N(s) of the current solution s; the neighbor that gives 
the minimum value of the objective function becomes 
the new current solution, independently of the fact that 
its value is better or worse than the value in s. 

In order to prevent cycling, there is a so-called tabu 
list, which is the list of moves which is forbidden to 
make. This is the list of the reverse of the last k: ac- 
cepted moves (where Ic is a parameter of the method) 
and it is usually run as a queue of fixed size; that is, 
when a new move is added, the oldest one is discarded. 

There is also a mechanism that overrides the tabu 
status of a move: If a move gives a large improve- 
ment of the objective function, then its tabu status is 
dropped and the resulting solution is accepted as the 
new current one. More precisely, we define an aspiru- 
tion function A that, for each value 2, of the objective 
function, returns another value 21’ for it, which repre- 
sents the value that the algorithm aspires to reach from 
v.the given value. Given a current solution s, the ob- 
jective function f, and a neighbor solution s’ obtained 
through the move m, if f(s’) 5 A(f(s)) then s’ can be 
accepted, even if m is in the tabu list. 

The procedure stops either after a given maximum 
number of iterations without improvements or when 
the value of the objective function in the current solu- 
tion reaches a given lower bound. 

The main control parameters of the procedure are 
the length of the tabu list k, the aspiration function A, 

the cardinality of the set of neighbor solutions tested 
at each iteration, and TSmax, the maximum number of 
iterations without improving the objective function. 

Some other local search methods (including Simu- 
lated Annealing) have been considered in a prelimi- 
nary work (Schaerf & Schaerf 1995), which shows a 
quite clear dominance of tabu search over simulated 
annealing for high-school timetabling. 

epresentation of the roblem 
A timetable is represented as an integer-valued ma- 
trix MmXP such that each row j of A4 represents the 
weekly assignment for teacher tj. In particular, each 
entry mjk contains the name of the class that teacher 
tj is meeting at period k. The value mjk = 0 rep- 
resents the fact that tj is not teaching at period k. 
Values larger than the number of classes m represent 
special activities, such as being at disposal for tem- 
porary teaching posts, teacher-parents meetings, and 
assisting assignments. 

We choose this representation because it allows for 
the definition of simple and natural types of moves, 
which permit to navigate effectively the search space. 
Moreover, this is generally the representation upon 
which the persons that do manual timetabling rea- 
son, and therefore, it is also suitable for interactive 
timetabling with manual corrections. This represen- 
tation has been used also by (Colorni, Dorigo, & 
Maniezzo 1992). 

Figure 1 shows a fragment of a real timetable. For 
the sake of readability, in the external representation 
the class numbers are converted into their names (“1A" , 
?!A" , . . . ); the symbol “<>” represents periods in which 
the teacher is assigned to be at disposal for possible 
supply teaching. The figure also shows the unavail- 
abilities of teachers, where “--” represents out-school 
ones and “**” represents in-school ones, 

The lowercase class names represent dummy classes 
which are used for simultaneous assignments (Con- 
straints 6). For example, in Figure 1, teacher 13 is 
an English teacher and teaches “First Foreign Lan- 
guage” to the bilingual class 2E being assisted by the 
French teacher 14 who takes care of the students than 
take French as first foreign language; therefore, when 
teacher 13 teaches to class “2E” (Wednesday second pe- 
riod, in Figure l), teacher 14 must teach to the dummy 
class “2e”. Conversely, “Second Foreign Language” is 
taught to class 2E by the French teacher 17, which is 
assisted by teacher 13 for the students that take French 
as first foreign language (and English as second one). 

Embedding Infeasibilities 
Infeasible timetables are also included in the search 
space of the algorithms. The objective function is aug- 
mented so as to embed also the number of infeasibili- 
ties. In particular, we count: (1) the number of times 
that either two teachers teach to the same class in one 
period or a class is uncovered (2) the number of times 
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tchr I Monday I Tuesday I 
------------------------------------------------- 
3 I <> 2A I -- -- -- -- -- -- I . . 
4 1 IA 4A 4A <> -- I 0 1A -- I * . 
5 1 2B 3B 2B 0 0 3B 1B I . . 
6 1 0 IB ** 4B 5B ; -- -- -- -- -- -- 1 . . 
7 0 3c 3c 2c I 3c 0 2c 2c 2c 
8 I 5c 1c 1c I 4c 4c 0 5c ; :: 
9 I 2D 2D I 1D 1D I . . 
10 1 2E 2E 3D 3D 5D I 5D 5D 2E 3D 
11 I 5A 3A 2A 1A 4A 1 1A 0 2A I :: 
12 I 2C 3C 2B 1B 3B I IC 3C 3B 1B 2B 
13 I 1D 3D I 3D 2E 2d 2e ; :: 
14 I 3A 4a I 2e <> 2A 1A 3A I . . 
15 I 1B 3B 5B I 2B 5B 4B 
16 I -- -- -- -- -- -- 1 2C 1(-J 3C I :: 
17 1 -- -- -- -- -- em -- I 2D 2E 5D I .o 

Figure 1: A fragment of a timetable 

a simultaneous assignment is missed, and (3) the num- 
ber of times a teacher (a class) teaches (is taught) when 
he/she (it) is not available. 

The possibility that a teacher teaches simultaneously 
to two (or more) classes is ruled out automatically in 
the representation chosen. 

The weight given to the infeasibilities is set to the 
value 20 which is higher than the weight of all other 
quantities. However (as explained below) in order to 
ensure a better navigation of the search space, such 
weight is allowed to vary during the search phase. 

Move Types and Neighborhood Structure 

The first type of move that we consider is the one that 
naturally fits in our representation. It is obtained by 
simply swapping two distinct values on a given row. 
That is, the lectures of a teacher t in two different 
period pr and ~2. are exchanged between them, or, in 
case that one value is 0, one lecture is moved to a 
different period. We call a move of such type atomic 
move, and we identify it through the triple (t, pl, ~2). 
For simplicity, we assume always pl > ~2, which makes 
a moves to be the (unique) reverse of itself. 

Atomic moves applied to feasible timetables gener- 
ally create infeasibilities assigning two teachers to the 
same class. For this reason, we also consider more 
complex move types. In particular, we consider dou- 
ble moves, which are moves made by a pair of atomic 
moves, so that the second one “repairs” the infeasibil- 
ity (or one of the infeasibilities) created by the first one 
by exchanging the lecture that conflicts with the one 
just inserted. If the first atomic move creates no infea- 
sibilities, then there is no second move and the double 
move reduces to an atomic one. 

It can be easily shown that the search space is con- 
nected under the neighborhood relation in both cases 

of atomic and double moves. In particular, a timetable 
can be reached by any other one in a number of moves 
(either atomic or double) which is at most equal to the 
total number of lectures (i.e. the sum of all elements 
of the matrix R). 

Costa (1994) employs a different type of move. That 
is, he allows only for the reassignment of a single lec- 
ture to a different period. In his representation, how- 
ever, a single teacher can teach more than one lecture 
at the same time, therefore a swap of assignments for 
a single teacher can be done in two consecutive moves 
letting both assignment in the same period at the in- 
termediate step. We don’t follow such choice because, 
in our case, it would be difficult to define an effec- 
tive objective function (which is very much based on 
single teacher assignments) in 
signments for a single period. 

presence of multiple as- 

Application of the Tabu Search 
Our algorithm is basically a TS with the neighborhood 
defined by atomic moves. However, the TS is inter- 
leaved with a phase of RNA using double moves. The 
idea of alternating simple and complex moves has been 
suggested, as a tactical improvement, by (Glover, Tail- 
lard, & de Werra 1993). 

In details, the initial solution is obtained by schedul- 
ing the lectures for each teacher randomly, respecting 
the requirement matrix (it can be obtained from previ- 
ous runs, in case of interactive timetabling). Then, the 
RNA starts to work on the initial timetable as far as 
it makes no improvements for a given number of iter- 
ations (RNAmax). At this point, the TS starts and goes 
on until it makes a given number of iterations without 
improving (TSmax). The whole process (RNA + TS) 
is repeated on the best solution found, and it stops 
when it gives no improvements for a given number of 
times (Cycles). The integer-valued quantities RNAmax, 
TSmax, and Cycles are parameters of the algorithm. 

The RNA is used for two different purposes. First, 
it generated the initial solution for the TS. In fact, 
the use of the TS starting from the random solution 
is too time consuming, and RNA instead represents a 
fast method to generate a reasonably good initial solu- 
tion (which generally still contains a few infeasibilities). 
Second, after the TS has given no improvements for a 
given number of iterations it is useful to run the RNA 
on the best solution found. The reason for it is twofold: 
On the one hand, the RNA (using double move) might 
find improvements that the TS is not able to find at 
that stage. On the other hand, the RNA with double 
moves, even if it does not improve the solution (which 
is often the case), it makes substantial sideways modifi- 
cations. Therefore, it “shuffles” the solution before the 
TS starts again to try to improve it. The idea under- 
lying such procedure is that after the TS has worked 
unsuccessfully for a given number of iterations, it is 
useful to modify the solution so that the TS can start 
in a different direction. 
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Adaptive Relaxat ion 
During the RNA phase, the weight of the infeasibili- 
ties is set to the value W = 20, which is higher than 
all the other weights involved in the objective func- 
tion. Conversely, during the TS stage, such weight is 
dynamically adjusted in the following way (as proposed 
in (Gendreau, Hertz, & Laporte 1994)): For each of the 
three sources of infeasibilities we multiply W by a real- 
valued factor cyi (for i = 1,2,3) which varies according 
to the following scheme: 

1. At the beginning of the search we set CY.~ := 1. 

2. Every k moves (with k = 10 in our experiments): 

o if all the k solutions visited are feasible w.r.t. the 
infeasibility (i) then o.i := &i/y; 

o if all the k solutions visited are infeasible w.r.t. 
the infeasibility (i) then asa := CK~ . y; 

o otherwise CX~ is left unchanged. 

The real-valued quantity y is randomly selected (at 
each time) in the interval [l&2.2]. In (Gendreau, 
Hertz, & Laporte 1994), y is deterministically set to 
2; we prefer to randomize such value to avoid that de- 
terministic ratios between different components of the 
objective function could bias the search. 

Tabu List Management 

We employ a tabu list of variable size. In particu- 
lar, each performed move is inserted in the tabu list 
together with the number of iterations I it is going 
to be in the list. The number I is randomly selected 
between two given parameters &an and Imcsz (with 
I min I 2;naE). Each t ime a new move is inserted in 
the list, the value I of all the moves in the list is up- 
dated (i.e. decremented), and when it gets to 0, the 
move is removed. 

We enforce two different tabu mechanisms. The first 
one states that a move m = (t,pl,pz) is tabu if the ex- 
act triple (t, pl, ~2) appears in the tabu list. The sec- 
ond mechanism, which has a short term effect, states 
that m is tabu if either (t, ~1) or (t,pz) appear in the 
last-inserted 18t elements (with Ist < &an) of the tabu 
list. In practice, the assignments of teacher t at times 
p1 and p2 cannot be swapped for I iterations and they 
cannot be singularly exchanged with any other assign- 
ment for the shorter period of Ist iterations. 

Aspiration Function 
Due to the use of the adaptive relaxation, the value 
reached from a given solution depends on the current 
values of the CM. In order to have a meaningful aspira- 
tion criterion, we base the definition of the aspiration 
function on the value of the non-relaxed objective func- 
tion, i.e. the one obtained setting CX~ = 1 for i = 1,2,3. 

We just mention that for the second school (20 
classes, 44 teachers, 632 lectures to schedule) a 
timetable of value 54 has been obtained in 64 minutes 
with the following setting of the parameters: &in = 
20, InaaZ = 25, I,t = 1, TSmax = 1000, Cycles = 4. 
After some manual adjustments and 36 more minute 
of running time, a timetable of value 28 has been pro- 
duced. The manually-produced running timetable of 
the school has an objective value of 172. 

We use the simplest standard aspiration function, For the third school (38 classes, 61 teachers and 
which accepts a tabu move only if it improves the 1098 lectures to schedule) a timetable of value 51 has 
best current solution. That is, we set A(f(s)) equal been obtained in 272 minutes with the following setting 

to f(s*) - 1, where s* is the current optimum, for all 
solutions s. 

We experimented also with other aspiration func- 
tions; however, mostly due to the fact that they are 
based on the non-relaxed objective function they did 
not give any improvement to the method. 

Neighborhood Exploring 
The size of the neighborhood of any solution s, is given 
by 1 N(s) 1 = mp(p - 1)/2, which is the number of 
teachers times the number of unordered pairs of dis- 
tinct periods. However, moves that swap two identical 
lectures do not actually change the timetable; therefore 
they are considered illegal and they are not included 
in the neighborhood. This fact decreases the number 
of legal moves by a factor that depends on the num- 
ber of classes n and on the requirement matrix R (in 
practical cases it has the value of approximately 30%). 

Due to the adaptive relaxation it is very difficult 
to find a way to predict the most promising moves. 
For this reason we choose to analyze the entire neigh- 
borhood at each iteration. Actually, not all moves are 
considered in the same way. Some of them, called semi- 
illegal, moves are accepted only if they strictly improve 
the (current) objective function. The details about 
semi-illegal moves can be found in (Schaerf 1996). 

Experimental 
All the code has been implemented in standard C++ 
and it runs on a Silicon Graphics workstation INDY. 
We experimented with three schools, which differ from 
each other for number of lectures and constraints. 

The first school is a small dummy one, that we 
specifically constructed to use it as a test example on 
which it is possible to run a massive number of trials. 
On such school, we experimented with a large number 
of combinations of values of different parameters so as 
to understand how they interplay. 

The following two are big real schools on which the 
timetabling is a tough problem that takes several days 
of manual work. On these schools, we obviously had 
to re-tuned some of the parameters based on the size 
and the peculiarities of the specific schools. 

For the sake of brevity, we do not present here the 
configuration of the schools and all the results of our 
experiments. They can be found in (Schaerf 1996). 
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of the parameters: &in = 25, Inaaz = 35, I,t = 2, using simulated annealing: sequential and parallel al- 
TSmax = 1500, Cycles = 4. The running timetable gorithms. Management Science 37(1):98-113. 
of the school, produced manually with the interactive 
support of a commercial package (which schedules one 

Colorni, A.; Dorigo, M.; and Maniezzo, V. 1992. A ge- 

class at a time using some direct heuristic), has an 
netic algorithm to solve the timetable problem. Tech- 

objective value of 279. 
nical Report 90-060 revised, Politecnico di Milano, 
Italy. 

Conclusions 
We have presented a TS-based algorithm for the high- 
school timetabling problem. The algorithm has given 
good results for schools of various types, and for differ- 
ent settings of the weights of the objective functions. 
For all cases, the timetable produced turned out to be 
better than the hand-made ones. 

We found experimenting with different schools (of 
different types and sizes) absolutely necessary to en- 
sure that the method is correct and general enough. 
In fact, it prevents the algorithm to be tuned only 
for the characteristic of the specific school in exami- 
nation. In addition, it prevents the programmer from 
hard-coding some of the data of the school, instead of 
letting them to be part of the configuration supplied 
to the program. Unfortunately, the absence of a com- 
mon definition of the problem and of widely-accepted 
benchmarks prevents us from comparing with other al- 
gorithms appeared in the literature. 

The disadvantage of local search methods is that 
they do not allow the user to reason upon timetables 
only partially filled in. As a consequence, they do not 
permit to focus only on a group of lectures which are 
specifically critical to be scheduled. On the other hand, 
they offer a great advantage (over constructive meth- 
ods and genetic algorithms) for interactive timetabling, 
which is generally necessary for finding a solution prac- 
tically agreeable by the staff of the school. Giving the 
possibility to start the search from any timetable, eas- 
ily allow for interactive construction and maintenance 
of timetables. In fact, once a timetable as been gen- 
erated, it can be used as the starting point for a new 
search after some constraints (or the timetable itself) 
have been manually modified. 

In addition, in all practical cases our algorithm was 
able to find a feasible timetable in a reasonable amount 
of time. Conversely, constructive algorithms may not 
be able to create a complete timetable. They generally 
are able to schedule 9O-95% of the lectures, leaving the 
user with the problem to fit in to remaining 5-10% of 
the timetable, which can be extremely difficult. 
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