
Tabu Search Techniques for
Large -School Timeta

Andrea Schaerf”

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198, Rome, Italy
e-mail: aschaerf (Ddis . uniromai . it

Abstract

The high-school timetabling problem consists in as-
signing all the lectures of a high school to the time
periods in such a way that no teacher (or class) is in-
volved in more than one lecture at a time and other
side constraints are satisfied. The problem is NP-
complete and is usually tackled using heuristic meth-
ods. This paper describes a solution algorithm (and
its implementation) based on Z’abzr Search. The algo-
rithm interleaves different types of modes and makes
use of an adaptive relaxation of the hard constraints.
The implementation of the algorithm has been suc-
cessfully experimented in some large high schools with
various kinds of side constraints.

Introduction
The high-school timetabling problem regards the
weekly scheduling for all the lectures of a high school.
The problem consists in assigning lectures to periods
in such a way that no teacher (or class) is involved in
more than one lecture at a time and other side con-
straints are satisfied.

The manual solution of the timetabling problem usu-
ally requires several days of work. In addition, the so-
lution obtained may be unsatisfactory to some respect.
For these reasons, a considerable attention has been de-
voted to automated timetabling. During the last thirty
years, many papers related to automated timetabling
have appeared in conferences and journals, and several
applications have been developed and employed.

Most of the early techniques (Schmidt & Strohlein
1979; Junginger 1986) were based on a simulation of
the human way of solving the problem. All such heuris-
tic techniques were based on a successive augmenta-
tion. That is, a partial timetable is filled in, lecture by
lecture, until either all lectures have been scheduled
or no lecture can be scheduled without violating the
constraints.

*This work has been carried out while the author was
visiting CWI in Amsterdam. It is part of the ERCIM fel-
lowship Programme and financed by the Commission of the
European Communities.

Later on, researchers started to apply general tech-
niques to this problem. Then, we see algorithms based
on integer programming (Tripathy 1992), network flow
(Ostermann & de Werra 1983), and others. In addi-
tion, the problem has also been tackled by reducing it
to a well-studied theoretical problem: graph coloring
(Neufeld & Tartar 1974).

More recently, some approaches based on new search
techniques appeared in the literature; among oth-
ers, we have simulated annealing (Abramson 1991),
tabu search (Costa 1994), genetic algorithms (Col-
orni, Dorigo, & Maniezzo 1992), constraint satisfaction
(Yoshikawa et al. 1996), and combination of different
methods (Cooper & Kingston 1993).

The problem has a large number of variants, depend-
ing on the country, on the type of school, and even
on the specific school involved (Schaerf 1995). The
problem we tackle comes from the Italian high-school
system. In some countries, e.g. Germany (Junginger
1986), the high school is organized in a similar way,
and so the solution proposed in this paper applies as
well. In some others, e.g. Holland, students are more
free to choose a certain number of subjects, and so it is
organized more like a college, and different algorithms
and techniques apply.

The algorithm we propose is based on local search
(or neighborhood search) and it is an adaptation of
tabu search, with some modifications. Our algorithm
is suitable for both interactive and batch run. That is,
it can generate a timetable directly from scratch, but
it also allows the user for manual modifications of the
timetable and the constraints during the search phase.

For the sake of brevity, some aspects of the algorithm
are omitted. They can be found in (Schaerf 1996).

igh-School Timetabling Problem
The problem we deal with is an optimization problem,
and it is therefore defined through a solution space and
an objective function.

Solution Space
There are m classes cl, . . . , cm, n teachers tl, . . . , t,,
and p periods 1, . . . ,p. It is given a non-negative inte-

Stochastic Search 363

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

ger matrix Rmx,, called Requirements matrix, where
rij is the number of lectures that teacher tj must give
to class ci. The unavailabilities of teachers and classes
are taken into account by introducing two binary ma-
trices TnXP and CnzXP such that ?jk = 1 (resp. cik = I)
if teacher tj (resp. class ci) is available at period I%, and
fjk = 0 (resp. cik = 0) otherwise. The mathematical
formulation of the problem is the following (de Werra
1985; Junginger 1986).

find xijk (i = l..m; j = l..n; k = %..p)
P

s.t.
c

Xijk = Tij (i = l..m; j = l..n)
k=l

(1)

n

Xijk 5 cik (i = l..m; k = l..p) (3)

xijk = 0 or 1 (i = l..m;j = l..n;k = l..p)(4)

This problem has been shown NP-complete in (Even,
Itai, & Shamir 1976). In order to deal with real in-
stances of the problem, we tackle a variant of it. In
particular, we add two other types of constraint.

First, each class, for a given set of periods, must
necessarily be involved in (at least) one lecture. This
constraint can be expressed as follows

n

): zijk 2 dik

j=l

(i = l..m; k = l..p) (5)

where DmXp is a binary matrix such that dik: = 1 if
class ci must necessarily be taught at period k, and
dik = 0 otherwise. Constraints 5 are very crucial
for high-school timetabling, and they represent one of
the major differences between high-school timetabling
and university timetabling. In fact, they require the
timetable to be completely filled in, which is a con-
straint genuinely hard to satisfy. The set of k’s for
which dik: = 1 usually comprises all the periods but
the last one of each day (or the last two, depending on
the total requirements of the specific class ci).

Second, some pairs of lectures require to be sched-
uled simultaneously. Specifically, there exists a set of
quadruples (i, j, i’, j’) such that all lectures of teacher
tj to class ci must be simultaneous to lectures of
teacher tjl to class ci/. For each quadruple (i, j, i’, j’) 9
the above constraint can be expressed as follows

xijkxiljlk $- zijk FiljJk = 1 (k = l..p) (6)
where E denotes the complement of the binary variable
x; that is, I = 1 if x = 0, and vice versa.

Constraints 6 also are necessary for tackling practi-
cal cases. In fact, they turned out to be a quite general
mechanism using which it is possible to model various
features that are usually present in actual schools: lab-
oratory assistants, shared gymnastic rooms, bilingual

classes (i.e. two foreign languages taught at the same
time to a single class), and others. All such features, al-
though they may be formulated differently, can always
be reduced to constraint of the above form introducing
dummy classes.

Objective Function

The computation of the objective function presuppose
the definition of a number of items for teachers, classes,
and teacher/class pairs. In particular, for each teacher
we define: minimum and maximum number of teach-
ing periods per day, undesired teaching periods, and
seniority. For each class we define the site in which
its class room is located. For each pair teacher/class
we define: maximum number of lectures per day, and
length of the class work (i.e. minimum number of lec-
tures that must be given consecutively in one day, at
least once a week).

Our objective function is a weighted sum of the fol-
lowing components, which refer to the schedule of a
single teacher, and are summed up for all teachers. In
brackets we put the default penalty weight, which can
be modified for specific schools.

Holes [l]: Idle periods between two lectures in the
teaching assignments of a day.

Splits [6]: Two lectures to a class separated by one
or more lectures to different classes.

Under-use [4]: Number of teaching periods in a day
less than the minimum specified for the teacher.

Over-use [3]: Number of teaching periods in a day
more than the maximum specified for the teacher.

@lusters [6]: More lectures to the same class in the
same day than the maximum specified for the pair
teacher/class.

Undesired [3]: Teaching in an undesired period. The
penalty of this feature is normalized based on the
number of requests of each teacher and multiplied
by the seniority of the teacher.

Class-work [IO]: Not having (at least once a week)
enough joint teaching periods to run the class work
(or the practical class in the laboratory) for the spe-
cific teacher/class pair.

Commutations [5]: Moving from one site to
between two consecutive teaching periods.

another

In order to compute correctly some of the above
components (i.e. holes, over-use, under-use), we need
to split the unavailabilities of teachers into two kinds:
out-school and in-school. The out-school ones are the
ones in which the teacher cannot teach because he/she
is away from the school, the in-school ones represent
the situation in which the teacher is at school but
he/she is not available for teaching (e.g. for admin-
istrative work or professional development).

364 Constraint Satisfaction

ocal Search and Tabu Search
Local search techniques are a family of general-purpose
techniques for the solution of optimization problems.
They are based on the notion of neighbor. Consider an
optimization problem, and let S be its search space and
f its objective function (to minimize). A function N,
which depends on the structure of the specific problem,
assigns to each feasible solution s E S its neighborhood
Iv(s) C S. Each solution s’ E N(s) is called a neighbor
of s.

A local search technique, starting from an initial so-
lution SO (which can be obtained with some other tech-
nique or generated at random), enters in a loop that
navigates the search space, stepping iteratively from
one solution to one of its neighbors. We call move the
modification that transforms a solution to one of its
neighbors.

Among the local search techniques, we have the run-
domized non-ascendent method (RNA): It analyzes a
random neighbor and accepts it if it is better or equal
to the current one. It stops after a fixed number of
iterations without improving the value of the objective
function. Allowing for sideways moves, this method
has the feature of being able to follow descending paths
that pass through plateaux.

We now briefly describe the basic principles of tabu
search (TS). See for example (Glover, Taillard, & de
Werra 1993) for a comprehensive presentation.

Starting from the initial solution se, the TS algo-
rithm iteratively explores a subset of the neighborhood
N(s) of the current solution s; the neighbor that gives
the minimum value of the objective function becomes
the new current solution, independently of the fact that
its value is better or worse than the value in s.

In order to prevent cycling, there is a so-called tabu
list, which is the list of moves which is forbidden to
make. This is the list of the reverse of the last k: ac-
cepted moves (where Ic is a parameter of the method)
and it is usually run as a queue of fixed size; that is,
when a new move is added, the oldest one is discarded.

There is also a mechanism that overrides the tabu
status of a move: If a move gives a large improve-
ment of the objective function, then its tabu status is
dropped and the resulting solution is accepted as the
new current one. More precisely, we define an aspiru-
tion function A that, for each value 2, of the objective
function, returns another value 21’ for it, which repre-
sents the value that the algorithm aspires to reach from
v.the given value. Given a current solution s, the ob-
jective function f, and a neighbor solution s’ obtained
through the move m, if f(s’) 5 A(f(s)) then s’ can be
accepted, even if m is in the tabu list.

The procedure stops either after a given maximum
number of iterations without improvements or when
the value of the objective function in the current solu-
tion reaches a given lower bound.

The main control parameters of the procedure are
the length of the tabu list k, the aspiration function A,

the cardinality of the set of neighbor solutions tested
at each iteration, and TSmax, the maximum number of
iterations without improving the objective function.

Some other local search methods (including Simu-
lated Annealing) have been considered in a prelimi-
nary work (Schaerf & Schaerf 1995), which shows a
quite clear dominance of tabu search over simulated
annealing for high-school timetabling.

epresentation of the roblem
A timetable is represented as an integer-valued ma-
trix MmXP such that each row j of A4 represents the
weekly assignment for teacher tj. In particular, each
entry mjk contains the name of the class that teacher
tj is meeting at period k. The value mjk = 0 rep-
resents the fact that tj is not teaching at period k.
Values larger than the number of classes m represent
special activities, such as being at disposal for tem-
porary teaching posts, teacher-parents meetings, and
assisting assignments.

We choose this representation because it allows for
the definition of simple and natural types of moves,
which permit to navigate effectively the search space.
Moreover, this is generally the representation upon
which the persons that do manual timetabling rea-
son, and therefore, it is also suitable for interactive
timetabling with manual corrections. This represen-
tation has been used also by (Colorni, Dorigo, &
Maniezzo 1992).

Figure 1 shows a fragment of a real timetable. For
the sake of readability, in the external representation
the class numbers are converted into their names (“1A" ,
?!A" , . . .); the symbol “<>” represents periods in which
the teacher is assigned to be at disposal for possible
supply teaching. The figure also shows the unavail-
abilities of teachers, where “--” represents out-school
ones and “**” represents in-school ones,

The lowercase class names represent dummy classes
which are used for simultaneous assignments (Con-
straints 6). For example, in Figure 1, teacher 13 is
an English teacher and teaches “First Foreign Lan-
guage” to the bilingual class 2E being assisted by the
French teacher 14 who takes care of the students than
take French as first foreign language; therefore, when
teacher 13 teaches to class “2E” (Wednesday second pe-
riod, in Figure l), teacher 14 must teach to the dummy
class “2e”. Conversely, “Second Foreign Language” is
taught to class 2E by the French teacher 17, which is
assisted by teacher 13 for the students that take French
as first foreign language (and English as second one).

Embedding Infeasibilities
Infeasible timetables are also included in the search
space of the algorithms. The objective function is aug-
mented so as to embed also the number of infeasibili-
ties. In particular, we count: (1) the number of times
that either two teachers teach to the same class in one
period or a class is uncovered (2) the number of times

Stochastic Search 365

tchr I Monday I Tuesday I

3 I <> 2A I -- -- -- -- -- -- I . .
4 1 IA 4A 4A <> -- I 0 1A -- I * .
5 1 2B 3B 2B 0 0 3B 1B I . .
6 1 0 IB ** 4B 5B ; -- -- -- -- -- -- 1 . .
7 0 3c 3c 2c I 3c 0 2c 2c 2c
8 I 5c 1c 1c I 4c 4c 0 5c ; ::
9 I 2D 2D I 1D 1D I . .
10 1 2E 2E 3D 3D 5D I 5D 5D 2E 3D
11 I 5A 3A 2A 1A 4A 1 1A 0 2A I ::
12 I 2C 3C 2B 1B 3B I IC 3C 3B 1B 2B
13 I 1D 3D I 3D 2E 2d 2e ; ::
14 I 3A 4a I 2e <> 2A 1A 3A I . .
15 I 1B 3B 5B I 2B 5B 4B
16 I -- -- -- -- -- -- 1 2C 1(-J 3C I ::
17 1 -- -- -- -- -- em -- I 2D 2E 5D I .o

Figure 1: A fragment of a timetable

a simultaneous assignment is missed, and (3) the num-
ber of times a teacher (a class) teaches (is taught) when
he/she (it) is not available.

The possibility that a teacher teaches simultaneously
to two (or more) classes is ruled out automatically in
the representation chosen.

The weight given to the infeasibilities is set to the
value 20 which is higher than the weight of all other
quantities. However (as explained below) in order to
ensure a better navigation of the search space, such
weight is allowed to vary during the search phase.

Move Types and Neighborhood Structure

The first type of move that we consider is the one that
naturally fits in our representation. It is obtained by
simply swapping two distinct values on a given row.
That is, the lectures of a teacher t in two different
period pr and ~2. are exchanged between them, or, in
case that one value is 0, one lecture is moved to a
different period. We call a move of such type atomic
move, and we identify it through the triple (t, pl, ~2).
For simplicity, we assume always pl > ~2, which makes
a moves to be the (unique) reverse of itself.

Atomic moves applied to feasible timetables gener-
ally create infeasibilities assigning two teachers to the
same class. For this reason, we also consider more
complex move types. In particular, we consider dou-
ble moves, which are moves made by a pair of atomic
moves, so that the second one “repairs” the infeasibil-
ity (or one of the infeasibilities) created by the first one
by exchanging the lecture that conflicts with the one
just inserted. If the first atomic move creates no infea-
sibilities, then there is no second move and the double
move reduces to an atomic one.

It can be easily shown that the search space is con-
nected under the neighborhood relation in both cases

of atomic and double moves. In particular, a timetable
can be reached by any other one in a number of moves
(either atomic or double) which is at most equal to the
total number of lectures (i.e. the sum of all elements
of the matrix R).

Costa (1994) employs a different type of move. That
is, he allows only for the reassignment of a single lec-
ture to a different period. In his representation, how-
ever, a single teacher can teach more than one lecture
at the same time, therefore a swap of assignments for
a single teacher can be done in two consecutive moves
letting both assignment in the same period at the in-
termediate step. We don’t follow such choice because,
in our case, it would be difficult to define an effec-
tive objective function (which is very much based on
single teacher assignments) in
signments for a single period.

presence of multiple as-

Application of the Tabu Search
Our algorithm is basically a TS with the neighborhood
defined by atomic moves. However, the TS is inter-
leaved with a phase of RNA using double moves. The
idea of alternating simple and complex moves has been
suggested, as a tactical improvement, by (Glover, Tail-
lard, & de Werra 1993).

In details, the initial solution is obtained by schedul-
ing the lectures for each teacher randomly, respecting
the requirement matrix (it can be obtained from previ-
ous runs, in case of interactive timetabling). Then, the
RNA starts to work on the initial timetable as far as
it makes no improvements for a given number of iter-
ations (RNAmax). At this point, the TS starts and goes
on until it makes a given number of iterations without
improving (TSmax). The whole process (RNA + TS)
is repeated on the best solution found, and it stops
when it gives no improvements for a given number of
times (Cycles). The integer-valued quantities RNAmax,
TSmax, and Cycles are parameters of the algorithm.

The RNA is used for two different purposes. First,
it generated the initial solution for the TS. In fact,
the use of the TS starting from the random solution
is too time consuming, and RNA instead represents a
fast method to generate a reasonably good initial solu-
tion (which generally still contains a few infeasibilities).
Second, after the TS has given no improvements for a
given number of iterations it is useful to run the RNA
on the best solution found. The reason for it is twofold:
On the one hand, the RNA (using double move) might
find improvements that the TS is not able to find at
that stage. On the other hand, the RNA with double
moves, even if it does not improve the solution (which
is often the case), it makes substantial sideways modifi-
cations. Therefore, it “shuffles” the solution before the
TS starts again to try to improve it. The idea under-
lying such procedure is that after the TS has worked
unsuccessfully for a given number of iterations, it is
useful to modify the solution so that the TS can start
in a different direction.

Constraint Satisfaction

Adaptive Relaxat ion
During the RNA phase, the weight of the infeasibili-
ties is set to the value W = 20, which is higher than
all the other weights involved in the objective func-
tion. Conversely, during the TS stage, such weight is
dynamically adjusted in the following way (as proposed
in (Gendreau, Hertz, & Laporte 1994)): For each of the
three sources of infeasibilities we multiply W by a real-
valued factor cyi (for i = 1,2,3) which varies according
to the following scheme:

1. At the beginning of the search we set CY.~ := 1.

2. Every k moves (with k = 10 in our experiments):

o if all the k solutions visited are feasible w.r.t. the
infeasibility (i) then o.i := &i/y;

o if all the k solutions visited are infeasible w.r.t.
the infeasibility (i) then asa := CK~ . y;

o otherwise CX~ is left unchanged.

The real-valued quantity y is randomly selected (at
each time) in the interval [l&2.2]. In (Gendreau,
Hertz, & Laporte 1994), y is deterministically set to
2; we prefer to randomize such value to avoid that de-
terministic ratios between different components of the
objective function could bias the search.

Tabu List Management

We employ a tabu list of variable size. In particu-
lar, each performed move is inserted in the tabu list
together with the number of iterations I it is going
to be in the list. The number I is randomly selected
between two given parameters &an and Imcsz (with
I min I 2;naE). Each t ime a new move is inserted in
the list, the value I of all the moves in the list is up-
dated (i.e. decremented), and when it gets to 0, the
move is removed.

We enforce two different tabu mechanisms. The first
one states that a move m = (t,pl,pz) is tabu if the ex-
act triple (t, pl, ~2) appears in the tabu list. The sec-
ond mechanism, which has a short term effect, states
that m is tabu if either (t, ~1) or (t,pz) appear in the
last-inserted 18t elements (with Ist < &an) of the tabu
list. In practice, the assignments of teacher t at times
p1 and p2 cannot be swapped for I iterations and they
cannot be singularly exchanged with any other assign-
ment for the shorter period of Ist iterations.

Aspiration Function
Due to the use of the adaptive relaxation, the value
reached from a given solution depends on the current
values of the CM. In order to have a meaningful aspira-
tion criterion, we base the definition of the aspiration
function on the value of the non-relaxed objective func-
tion, i.e. the one obtained setting CX~ = 1 for i = 1,2,3.

We just mention that for the second school (20
classes, 44 teachers, 632 lectures to schedule) a
timetable of value 54 has been obtained in 64 minutes
with the following setting of the parameters: &in =
20, InaaZ = 25, I,t = 1, TSmax = 1000, Cycles = 4.
After some manual adjustments and 36 more minute
of running time, a timetable of value 28 has been pro-
duced. The manually-produced running timetable of
the school has an objective value of 172.

We use the simplest standard aspiration function, For the third school (38 classes, 61 teachers and
which accepts a tabu move only if it improves the 1098 lectures to schedule) a timetable of value 51 has
best current solution. That is, we set A(f(s)) equal been obtained in 272 minutes with the following setting

to f(s*) - 1, where s* is the current optimum, for all
solutions s.

We experimented also with other aspiration func-
tions; however, mostly due to the fact that they are
based on the non-relaxed objective function they did
not give any improvement to the method.

Neighborhood Exploring
The size of the neighborhood of any solution s, is given
by 1 N(s) 1 = mp(p - 1)/2, which is the number of
teachers times the number of unordered pairs of dis-
tinct periods. However, moves that swap two identical
lectures do not actually change the timetable; therefore
they are considered illegal and they are not included
in the neighborhood. This fact decreases the number
of legal moves by a factor that depends on the num-
ber of classes n and on the requirement matrix R (in
practical cases it has the value of approximately 30%).

Due to the adaptive relaxation it is very difficult
to find a way to predict the most promising moves.
For this reason we choose to analyze the entire neigh-
borhood at each iteration. Actually, not all moves are
considered in the same way. Some of them, called semi-
illegal, moves are accepted only if they strictly improve
the (current) objective function. The details about
semi-illegal moves can be found in (Schaerf 1996).

Experimental
All the code has been implemented in standard C++
and it runs on a Silicon Graphics workstation INDY.
We experimented with three schools, which differ from
each other for number of lectures and constraints.

The first school is a small dummy one, that we
specifically constructed to use it as a test example on
which it is possible to run a massive number of trials.
On such school, we experimented with a large number
of combinations of values of different parameters so as
to understand how they interplay.

The following two are big real schools on which the
timetabling is a tough problem that takes several days
of manual work. On these schools, we obviously had
to re-tuned some of the parameters based on the size
and the peculiarities of the specific schools.

For the sake of brevity, we do not present here the
configuration of the schools and all the results of our
experiments. They can be found in (Schaerf 1996).

Stochastic Search 367

of the parameters: &in = 25, Inaaz = 35, I,t = 2, using simulated annealing: sequential and parallel al-
TSmax = 1500, Cycles = 4. The running timetable gorithms. Management Science 37(1):98-113.
of the school, produced manually with the interactive
support of a commercial package (which schedules one

Colorni, A.; Dorigo, M.; and Maniezzo, V. 1992. A ge-

class at a time using some direct heuristic), has an
netic algorithm to solve the timetable problem. Tech-

objective value of 279.
nical Report 90-060 revised, Politecnico di Milano,
Italy.

Conclusions
We have presented a TS-based algorithm for the high-
school timetabling problem. The algorithm has given
good results for schools of various types, and for differ-
ent settings of the weights of the objective functions.
For all cases, the timetable produced turned out to be
better than the hand-made ones.

We found experimenting with different schools (of
different types and sizes) absolutely necessary to en-
sure that the method is correct and general enough.
In fact, it prevents the algorithm to be tuned only
for the characteristic of the specific school in exami-
nation. In addition, it prevents the programmer from
hard-coding some of the data of the school, instead of
letting them to be part of the configuration supplied
to the program. Unfortunately, the absence of a com-
mon definition of the problem and of widely-accepted
benchmarks prevents us from comparing with other al-
gorithms appeared in the literature.

The disadvantage of local search methods is that
they do not allow the user to reason upon timetables
only partially filled in. As a consequence, they do not
permit to focus only on a group of lectures which are
specifically critical to be scheduled. On the other hand,
they offer a great advantage (over constructive meth-
ods and genetic algorithms) for interactive timetabling,
which is generally necessary for finding a solution prac-
tically agreeable by the staff of the school. Giving the
possibility to start the search from any timetable, eas-
ily allow for interactive construction and maintenance
of timetables. In fact, once a timetable as been gen-
erated, it can be used as the starting point for a new
search after some constraints (or the timetable itself)
have been manually modified.

In addition, in all practical cases our algorithm was
able to find a feasible timetable in a reasonable amount
of time. Conversely, constructive algorithms may not
be able to create a complete timetable. They generally
are able to schedule 9O-95% of the lectures, leaving the
user with the problem to fit in to remaining 5-10% of
the timetable, which can be extremely difficult.

Acknowledgments. I wish to thank Giansalvatore
Mecca and Elisabetta Ranieri for their cooperation and
for making available to me all the data of the schools.
I also thank Amedeo Cesta, Giansalvatore Mecca, and
Marco Schaerf for valuable comments on earlier drafts
of this paper.

References
Abramson, D. 1991. Constructing school timetables

Cooper, T. B., and Kingston, J. H. 1993. The solu-
tion of real instances of the timetabling problem. The
Computer Journal 36(7):645-653.
Costa, D. 1994. A tabu search algorithm for com-
puting an operational timetable. European Journal
of Operational Research 76:98-110.
de Werra, D. 1985. An introduction to timetabling.
European Journal of Operational Research 19: 151-
162.
Even, S.; Itai, A.; and Shamir, A. 1976. On the
complexity of timetabling and multicommodity flow
problems. SIAM Journal of Computation 5(4):691-
703.
Gendreau, M.; Hertz, A.; and Laporte, G. 1994. A
tabu search heuristic for the vehicle routing problem.
Management Science 40(10):1276-1290.
Glover, F.; Taillard, E.; and de Werra, D. 1993. A
user’s guide to tabu search. Annals of Operations
Research 41~3-28.
Junginger, W. 1986. Timetabling in Germany - a
survey. Interfaces 16:66-74.
Neufeld, G. A., and Tartar, J. 1974. Graph color-
ing conditions for the existence of solutions to the
timetable problem. Communications of the ACM
17(8):450-453.
Ostermann, R., and de Werra, D. 1983. Some ex-
periments with a timetabling system. OR Spektrum
3: 199-204.
Schaerf, A., and Schaerf, M. 1995. Local search tech-
niques for high school timetabling. In Proc. of the 1st
Intl. Conf. on the Practice and Theory of Automated
Timetabling, 313-323.
Schaerf, A. 1995. A survey of automated timetabling.
Technical Report CS-R9567, CWI, Amsterdam, NL.
Available at http://www.cwi.nl/ftp/CWIreports/
AP.
Schaerf, A. 1996. Tabu search techniques for large
high-school timetabling problems. Technical Report
CS-R9611, CWI, Amsterdam, NL. Available at http:
//www.cwi.nl/ftp/CWIreports/AP.
Schmidt, G., and Strohlein, T. 1979. Timetable con-
struction - an annotated bibliography. The Computer
Journal 23(4):307-316.
Tripathy, A. 1992. Computerised decision aid for
timetabling- A case analysis. Discrete Applied Math-
ematics 35(3):313-323.
Yoshikawa, M.; Kaneko, K.; Nomura, Y.; and Watan-
abe, M. 1996. A constraint-based high school schedul-
ing system. IEEE Expert, February 1996:63-72.

368 Constraint Satisfaction

