
ombining 

Jian Zhangt and Hantao Zhang 
Department of Computer Science 

The University of Iowa 
Iowa City, Iowa 52242 

(jizhang, hzhang) @cs.uiowa. edu 

Abstract 

Backtracking techniques are well-known tradi- 
tional methods for solving many constraint sat- 
isfaction problems (CSPs), including the satisfi- 
ability (SAT) problem in the propositional logic. 
In recent years, it has been reported that lo- 
cal search techniques are very effective in solving 
some large-scale instances of the SAT problem. 
In this research, we combine the backtracking 
and local search techniques into a single method 
for solving SAT and CSPs. When setting a pa- 
rameter of the method to either of its two extreme 
values, we obtain the ordinary backtracking pro- 
cedure or the local search procedure. For some 
problems, if the parameter takes values in the 
middle of the two extremes, the new method is 
much more effective than either backtracking or 
local search. We tested the method with classi- 
cal problems like the n-Queens and random SAT 
instances, as well as some difficult problems from 
finite mathematics. In particular, using the new 
method, we solved four open problems in design 
theory. 

Introduction 
Constraint satisfaction problems (CSPs) are very im- 
portant in computer science and AI. Many practical 
problems (e.g., machine vision, planning and graph 
coloring) can be viewed as special cases of CSPs. In 
general, an instance of CSP consists of a set of vari- 
ables, a finite domain of values for each variable, and a 
collection of constraints. A solution to a CSP is a full 
set of assignments (in which every variable is assigned 
a value) such that no constraint is violated. 

The satisfiability problem (SAT) in propositional 
logic is a well-known special case of CSP where the 
variables are propositions whose values are boolean, 
and the constraints are often represented by a formula 

*This work is supported in part by the National Science 
Foundation under Grants CCR-9504205 and CCR-9357851. 

t Permanent Address: Institute of Software, Academia 
Sinica, P.O.Box 8718, Beijing 100080, P.R.China 

in conjunctive normal form (CNF) or a set of clauses. 
In this paper, we also study the satisfiability of first- 
order formulas in finite domains. These problems are 
also known a~ model finding or model generation, be- 
cause a solution is called a model in logic. 

Backtracking techniques are often used to solve fi- 
nite domain CSPs, including the SAT problem. In 
this approach, one starts with an empty interpreta- 
tion and repeatedly assigns a value to a new variable 
as long as the assignment does not violate the con- 
straints; if a conflict occurs, it backtracks and assigns 
a different value to the variable. In this way, it explores 
the search space systematically and exhaustively. The 
performances of backtracking algorithms can be im- 
proved in a number of ways such as forward checking 
and lookahead (Kumar 1992). 

Despite all the improvements on the backtracking 
techniques, many practical instances of CSP are still 
too hard for this approach. It has been known that 
local search methods have a great chance of success 
for a class of CSPs (Gu 1991; Minton et al. 1992). 
In contrast to the backtracking method, a local search 
starts with a random full interpretation and tests if 
the constraints are satisfied under this interpretation. 
If they are, the method stops with success; otherwise, 
the value of some variable is changed according to some 
criteria and then the process is repeated. There are 
also many reports that study local search techniques 
for the SAT problem (Selman, Levesque, & Mitchell 
1992; Gu 1993; Gent & Walsh 1993). 

Local search is very attractive when the search space 
of the problem is too large for a backtracking based 
procedure and the solution set to the problem is very 
dense (the n-queen problems and the randomly gen- 
erated SAT problems are such problems). Although 
the method is incomplete, i.e., there is no guarantee 
that any solution will be found, it can indeed solve 
some large scale problems which are beyond the reach 
of complete search methods. However, this method 
is less successful for some structured problems whose 

Stochastic Search 369 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



solution set is sparse. For instance, several backtrack- 
ing based programs have been reported to solve open 
quasigroup problems (Slaney, Fujita, & Stickel 1995; 
Zhang & Stickel 1994; McCune 1994). However, the 
local search method has difficulty in solving these prob- 
lems. 

A primary motivation of our research is to solve open 
questions in mathematics. Of particular interest to us 
are the quasigroup problems whose solutions are ea- 
gerly sought by mathematicians (Bennett & Zhu 1992). 
Many of these problems are quite difficult and require 
very long time for complete search programs to solve. 
We find that it is often beneficial to combine the local 
search and backtracking search in the following way. 
We start the search procedure with a partial inter- 
pretation which can be obtained by hill climbing, and 
then use backtracking. If the search fails, another par- 
tial interpretation is chosen and the process repeats. 
The next partial interpretation is often obtained by 
modifying the previous one. 

There are two extreme cases of the method. In the 
first case, the initial interpretation is empty, and the 
procedure is identical to backtracking search. In the 
second case, the initial interpretation is a set of assign- 
ments for each variable, and the procedure is similar 
to a local search. In general, this method is incom- 
plete. That is, if it stops without finding a solution, 
we cannot say that the constraints are unsatisfiable. 
But unlike the greedy search and hill-climbing proce- 
dures, our method also relies on constraint propagation 
and backtracking. 

In this paper, we describe the basic ideas of the new 
method and study it empirically. We shall report some 
experimental results on several different satisfiability 
problems. These results were obtained on a SGI work- 
station IRIX 5.3. We used the following programs: 
GSAT (Selman, Levesque, & Mitchell 1992), WSAT 
(Selman & Kautz 1993), SAT0 @hang & Stickel 1994) 
and SEM @hang & Zhang 1995). All of them are writ- 
ten in C. GSAT and WSAT are based on local search 
and random walk, while the other two programs use 
backtracking. GSAT, WSAT and SAT0 are for propo- 
sitional logic; SEM is for first-order logic. SAT0 im- 
plements the Davis-Putnam algorithm (Davis & Put- 
nam 1960), which consists mainly of unit propagation 
and case-splitting. SEM uses more sophisticated infer- 
ence rules and a kind of forward checking. The new 
method was implemented by modifying these two pro- 
grams. With the new approach, we solved four open 
cases of the quasigroup problems. To our knowledge, 
neither the backtracking based programs nor the local 
search based programs have been able to solve these 
problems. 

Search for Finite Models: Basic 
Concepts and Quasigroup Examples 

The model finding (or model generation) problem in 
first-order logic can be briefly described as follows. 
Given a set of sentences (or more simply, clauses), find 
a suitable interpretation of the function and predicate 
symbols in a given finite domain, such that all of the 
sentences hold. An example of model generation is to 
find quasigroups satisfying certain properties. 

A quasigroup is an algebra (S, f), where S is a finite 
set and f is a binary operation whose multiplication 
table is a Latin square, i.e., each row and each column 
is a permutation of the elements in S. Quasigroups 
can be axiomatized by the following two clauses: 

f(x, Y) # fh 4 v Y = z, 
fb, 4 # f(Y, 4 v x = Y 

where the variables 2, y, z are assumed to be univer- 
sally quantified over S. A quasigroup is idempotent if 
f(z,z) = x for all x. Mathematicians are interested 
in quasigroups satisfying certain constraints. These 
constraints can be expressed by first order formulas, 
some of which are given below. For more about them, 
see (Bennett & Zhu 1992; Fujita, Slaney, and Bennett 
1993). 

Let us assume that a domain of size 11 is the set 
D, = { 0, 1, . . . . n - 1 }. The finite model finding 
problem can be formulated as a CSP. The variables 
of the CSP are the cell vatiables (i.e., ground terms 
like f(O,O), f(0, I), etc.) in the multiplication tables 
of the functions. The domain of each variable is D,. 
As for the constraints, we substitute each variable in 
the clauses by the elements of D, in all possible ways, 
and obtain a set of ground instances of the clauses (i.e. 
clauses that do not contain variables). The goal is to 
find a set of assignments (e.g., f(0, 1) = 2) such that 
the given set of ground clauses hold. Note that the 
finite model generation problem in first-order logic can 
also be transformed into a propositional satisfiability 
problem (Kim & Zhang 1994; McCune 1994). 

In the following, we shall not distinguish between 
SAT, CSP and finite model generation. They will be 
simply described as finding suitable values for a set of 
variables such that a given set of clauses are satisfied. 
This kind of problems are usually solved by a back- 
tracking procedure, which begins with an empty set of 

370 Constraint Satisfaction 



proc ICl(V: variables; C: clauses; 
MaxTries, MaxChg : integer) 

begin 
for t := 1 to MaxTries do 

I := random-interpretation(V) ; 
for k := 1 to MaxChg do 

if satisf iable(I, C) 
then return success; 

I := local-change(I) C) ; 
end for 

end for 
return failure; 

end proc 

Figure 1: A greedy local search procedure 

assignments and proceeds to a full set. At each step, 
it tries to find a value for a cell variable whose value 
is not yet known. After assigning some value to the 
cell variable, it propagates this assignment by logical 
reasoning. Such a procedure is complete but is com- 
putationally expensive. Usually only models of small 
size can be found within a reasonable amount of time. 
In many applications, we are only interested in the ex- 
istence of an arbitrary model. In such cases, complete- 
ness may be sacrificed for efficiency. In the following 
we shall study incomplete search methods which may 
find large models more easily. 

Local Search Procedures for 
Model Finding 

Recently several authors studied the local search 
method for propositional satisfiability testing (Gu 
1993; Selman, Levesque, & Mitchell 1992). The 
method is also known as hill climbing or iterative im- 
provement or greedy search. It uses a “cost function” 
(or score function) to guide the search. The cost func- 
tion is usually defined to be the number of clauses 
which are false under a given full interpretation of the 
variables. The search procedure starts with a random 
full interpretation, and repeatedly flips the truth value 
of some variable so that the value of the cost function 
decreases. When the cost becomes zero, the interpreta- 
tion is a model of the clauses. It can also occur that the 
procedure is caught in a local minimum, in which case 
the cost is not zero, but it does not decrease when you 
change the truth value of any variable. Then you have 
to try another interpretation, and repeat the whole 
process. 

The above idea can be readily used in first-order 
logic. The procedure in Figure 1 generalizes the GSAT 
procedure (Selman, Levesque, & Mitchell 1992). 

The procedure random-interpretation(V) returns 
a random interpretation which assigns a value to every 
variable in V. The procedure sat isf iable(1, C) tests 
if the clauses are satisfied under this interpretation. 

The procedure local-change(1, C) computes the 
value of the cost function (i.e., the number of false 
clauses in C under the current interpretation) when 
one variable changes its value while the rest variables 
keep their old values. After this is done for every 
variable, it returns the interpretation whose associated 
cost is minimal. 

Each try in ICl begins with a random set of as- 
signments, and repeatedly improves it by changing the 
values of individual variables (i.e., by making local 
changes). The maximum number of changes in each 
try is given by the parameter MaxChg. A local change 
is allowed even when the number of satisfied clauses 
remains the same. That is, there can be “sideway 
moves” . 

We have experimented with the above procedure on 
various problems. In our experiments, not all the vari- 
ables are involved in random-interpretat ion. Cer- 
tain constraints enable us to fix the values of some vari- 
ables. For example, when finding idempotent quasi- 
groups (IQGs), we know that each cell variable f(i,i) 
should take the value i. 

The procedure ICI was implemented in SEM. It 
can solve the n-Queen and the IQG problems quite 
quickly; but it has difficulty in solving some other prob- 
lems such as finding small finite groups and rings. We 
also translated some quasigroup problems into propo- 
sitional clauses and used GSAT and WSAT to solve 
them. In general, WSAT is much more effective than 
GSAT, and can find IQGs very quickly. But it is not so 
easy for WSAT to find IQGs satisfying additional con- 
straints. For example, the QG6.13 problem (i.e., find- 
ing a 13-element quasigroup satisfying QG6) is known 
to have many solutions (Slaney, Fujita, & Stickel 1995). 
It can be solved by SAT0 in a few minutes, but WSAT 
failed to find a solution after running for many hours 
(with different combinations of parameters used). We 
also tested WSAT on some smaller problems which 
have more solutions than other quasigroup problems’. 
They are very easy for SAT0 and SEM. On each prob- 
lem, we let WSAT run 10 times. The following table 
gives the longest and shortest execution times. 

‘In our experiments, we did not use any special clause 
for eliminating isomorphism (F’ujita, Slaney, and Bennett 
1993). This is better for a local search procedure. 

Stochastic Search 371 



proc IC2(V: variables; c: clauses; 
MaxTries, MaxBr , MaxD , 
MaxFlips, MaxChg: integer) 

begin 
for t := 1 to MaxTries do 

I := init(V, MaxD, MaxFlips) ; 
if I = failure then goto the next try; 
for k := 1 to MaxChg do 

if satisfiable2(1, C, MaxBr) 
then return success; 

r : = local-change2 (I, C) ; 
end for 

end for 
return failure; 

end proc 

Figure 2: A two-phase incomplete search procedure 

Problem shortest longest 
QG2.7 696 sec. 3518 sec. 
QG3.8 1 sec. 23 sec. 
QG4.9 4 sec. 267 sec. 

A New Incomplete Search Strategy 
We think that, when finding finite models of first-order 
theories, logical reasoning (or constraint propagation) 
is very important. For example, if we have the symme- 
try axiom f(x, y) = f(g,x), then the values of the cell 
variables f(l, 2) and f(2,l) should remain the same 
during the search process. They should not be changed 
independently. 

In this section, we describe a different incomplete 
search strategy for finding large finite models, which 
does not eliminate constraint propagation and back- 
tracking. In our approach, the whole search process 
is divided into two phases. In phase one, we obtain a 
“good” partial solution, and then, in phase two, we try 
to extend it to a complete one by backtracking search. 
If this fails, we get another partial solution and try 
again. When the number of solutions is not too small, 
i.e., the constraints are not too hard to satisfy, it is 
quite likely that a complete solution is found after a 
few tries. 

Our approach can be described as the general pro- 
cedure IC2 in Figure 2. It looks quite similar to ICI 
but acts very differently. In the following, we discuss 
the subroutines used in IC2. 

init: The procedure init(V, MaxD, MaxFlips) 
tries to find an initial partial interpretation, i.e., a set 
of assignments to MuxD variables in V, where MaxD is 
a given non-negative integer. Various techniques such 
as local search and constraint propagation can be used 

in this procedure. Below we briefly 
options for its implementation. 

describe several 

Randomly choose MuxD variables and assign ran- 
dom values to them. When MuxD = IVl, this proce- 
dure is identical to random-interpretation(V) in 
ICl. 

Randomly choose MuxD variables and apply a 
greedy local search on them (rather than on the 
whole set of variables) to find a partial interpreta- 
tion under which no clause in C is false. If no such 
interpretation can be found, the value failure is re- 
turned. In the greedy search, the “cost function” is 
the number of falsified clauses, and the maximum 
number of “flips” is given by MaxFlips. 

Repeat option 2 several times to obtain a number of 
partial interpretations. Only one of the best partial 
interpretations will be recorded and returned, ac- 
cording to some criteria (e.g., number of constraints 
satisfied, number of assignments after the constraint 
propagation). 

Assign an available value to one variable at a time, 
followed by constraint propagation, until a set of 
MaxD variables are chosen. If a dead end occurs 
before MaxD variables are assigned, the value fail- 
ure is returned. 

sat isf iable2: This procedure decides the satisfia- 
bility of C, given a partial interpretation I. It uses 
backtracking and constraint propagation techniques to 
extend I into a full solution. The procedure returns 
success when such an interpretation is found. If MuxD 
= 0 (i.e., the input I is an empty interpretation), Mux- 
Tries = MuxChg = 1, and Mu&r = 00, then IC2 is 
identical to a complete search procedure. 

When option 4 is used for the implementation of 
init, the partial interpretation generated by init cor- 
responds to a branch (from the root to an internal 
node) in the complete backtracking-based search tree. 
The procedure satisfiable2 then explores the sub- 
tree below this node. In the upper part of the tree 
above this node, we do not explore every branch. In- 
stead, only some selected branches are considered. 

Sometimes it may happen that the procedure 
satisfiable2 spends too much time to explore the 
search space. This may occur when the value of MuxD 
is too small, or when one happens to choose a bad ini- 
tial partial model. Indeed, one shortcoming of back- 
tracking procedures is that they often get stuck in a 
large unsatisfiable region of the search space. One 
way to circumvent the problem is to impose a limit 
on the amount of time used in the second phase or 

372 Constraint Satisfaction 



on the size of the backtracking search tree. The pa- 
rameter MaxBr to satisfiable2 serves this pur- 
pose. MaxBr is the maximum number of branches 
that satisfiable2 can explore in the backtracking 
search tree. If the procedure satisfiable2 has ex- 
plored MaxBr branches without finding a solution, it 
will terminate and IC2 continues to the next try. Of 
course, we may choose to ignore the parameter MaxBr 
by giving it a very big value. 

problem 
Queen 

IQG 

Group 
local-change2: This procedure is similar to 
local-change in ICI. The first goal is to find a partial 
interpretation that minimizes the number of falsified 
clauses; the second goal is to find a partial interpreta- 
tion that maximizes the number of true clauses. (Some 
clauses have no truth values.) When hill-climbing is 
also used in init, the second goal is the only goal of 
this procedure. 

NCG 

Experimental Results Ring 

We modified the program SEM @hang & Zhang 1995) 
so that it can do the incomplete search as described 
previously. Table 1 summarizes some experimental re- 
sults on the following problems: Queens, idempotent 
quasigroups (IQG), groups, noncommutative groups 
(NCG) and rings2. The reader may refer to standard 
textbooks on abstract algebra for the axioms of these 
problems. In Table 1, size means the size of the model, 
tries and time refer to the number of tries and the 
elapsed time (in seconds) for finding the first model, 
respectively. A star (‘*‘) indicates that a model was 
not found within 100 tries. 

Table 1: Incomplete Search in SEM 

We can see that, in many cases, the new method 
can find large models quite easily.3 In general, it takes 
much longer time for SEM, a very efficient backtrack- 
ing model generator, to find one model of such large 
sizes. The last column of Table 1 gives the running 
times of the original program to find smaller models. 

SAT0 finds the first model in about 1 minute. Using 
the second option (MaxD = 10) to obtain a partial 
model, the execution times range from several seconds 
to 2 minutes. The programs GSAT and WSAT are 
quite efficient on random 3SAT problems. For this 
particular formula, if we choose MaxFlips = 4000, 
GSAT usually finds a solution in 3 or 4 seconds after 
about 10 tries. WSAT almost always finds a solution 
in the first try, within 1 second. However, there are 
also some randomly generated satisfiable formulas on 
which SAT0 performs better than GSAT. 

We also modified the program SAT0 and tested it 
with some random 3SAT problems. The running times 
on randomly generated formulas range from within a 
second to many hours. For a typical hard 3SAT for- 
mula that has 400 variables and 1700 clauses, using 
the exhaustive search, SAT0 finds the first solution in 
about 14 minutes. Using the fourth option (MaxD = 
5 and MaxBr = 100000) to obtain a partial model, 

2Among the four options for implementing init, the last 
one was used for these experimental results. The value of 
MaxChg is set to 1, and the procedure satisfiable2 has 
a time limit of 1 minute. 

Open Problems Solved 
Some questions in mathematics need much computer 
time to solve, because the sizes of the models are so 
large. But it is not unusual that there are enough so- 
lutions for an incomplete search method to succeed. 
Indeed, we adopted such a strategy and solved several 
open questions in combinatorics. In (Fujita, Slaney, 
and Bennett 1993; Slaney, Fujita, and Stickel 1995), 
some open problems regarding the existence of quasi- 
groups were reported to be solved. We continued to 
attack the remaining open problems and were able to 
solve some of them. 

3However, the new program does not work well on prob- 
lems that have only a few solutions, like finding groups of 
order 17 or 19. In each case, there is essentially only one 
solution, i.e., the cyclic group. 

What we have been looking for are Latin squares 
with holes, or holey quasigroups (Bennett & Zhu 
1992). Syntactically, such a quasigroup has a type, 
e.g., (h”, k’). This means, its size is hn+ k, and it has 

-- 
size MaxD tries time -- 
8 5 3 1 
12 5 1 2 
16 10 1 15 -- 
12 12 1 4 
20 45 1 .2 
21 50 1 .3 
22 50 1 .5 -- 
15 12 7 4 
16 12 12 10 
17 12 
18 12 ii 10 
19 15 
20 15 ; 3 -- 
16 12 5 2 
18 12 12 18 
20 12 53 170 
24 12 5 50 -- 
15 15 8 26 
18 15 4 31 
20 15 8 74 -- 

TO 
.2 
2 

13 
> 100 

68 
37 

> 200 

15 
8 

199 

> 250 

Stochastic Search 373 



n holes of size h and one hole of size k. A hole is simply 
an empty subsquare, i.e., the cells in that area has no 
specific values. All holes are assumed to be disjoint. 

Using our new incomplete model generation pro- 

eferences 
Bennett, F.E., and Zhu, L. 1992. Conjugate- 
Orthogonal Latin Squares and Related Structures. in: 
J. Dinitz & D. Stinson (eds.), Contemporary Design 

grams, we were able to find several previously un- 
known holey quasigroups, including QG2(127, 4l), 
QG4(25, 3l), QG4(113, 2l), and QG50(121, 5l). To the 
best of our knowledge, neither the backtracking based 
programs nor the local search based programs have 
been able to reproduce these results. There are still 
many open quasigroup problems. For instance, the 
existences of QG2(lg, 11), QG4(117, 2l), QG4(121, 2l), 
QG4(125, 2’), and QG50(1r4, 11) are still unknown. 

Concluding Remarks 

Theory: A Collection of Surveys, John Wiley & Sons, 
41-96. 
Davis, M., and Putnam, H. 1960. A Computing Pro- 
cedure for Quantification Theory. J. of the ACM 7(3): 
201-215. 

Fujita, M., Slaney, J., and Bennett, F.E. 1993. Auto- 
matic Generation of Some Results in Finite Algebra. 
Proc. IJCAI-93, 52-57. 

Gent, I.P., and Walsh, T. 1993. Towards an Under- 
standing of Hill-climbing Procedures for SAT. Proc. 
AAA I-93, 28-33. 

ing. Each of them has some merits and shortcomings. 

Backtracking and local search are two different meth- 
ods for constraint satisfaction and satisfiability test- 

The former explores the search space exhaustively and 
systematically. It is complete but cannot solve some 

Gu, J. 1991. 3,000,OOO Queens in Less Than One 

Gu, J. 1993. Local Search for Satisfiability (SAT) 
Minute. ACM SIGART Bulletin 2(2): 22-24. 

Problem. IEEE Trans. on Systems, Man, and Cyber- 
netics 23(4): 1108-1129. 

large-scale problems in an acceptable amount of time. 
The latter works very well on some difficult random 
problems, but does not use constraint propagation4. 

In this paper, we propose a new approach which 
combines the benefits of the aforementioned two meth- 
ods. To solve a given problem, we make several tries. 
Each try starts with a partial solution, and uses back- 
tracking search to extend it to a complete solution. 
That is, each try jumps to an internal node of the 
search tree and explores exhaustively the search space 
below that node. Constraint propagation is involved 
in generating the initial partial solutions. And itera- 
tive improvement can be used in both phases of the 
search. We also put some limit on the backtracking 
search to avoid spending too much time in unsatisfi- 
able regions. We believe that our approach is suitable 
for those problems whose search space is larger than a 
pure backtracking method can handle and whose solu- 
tion set is not dense enough for a local search method 
to succeed. 

Kim, S., and Zhang, H. 1994. ModGen: Theorem 
Proving by Model Generation. AAAI-94, 162-167. 

Kumar, V. 1992. Algorithms for constraint satisfac- 
tion problems: A survey. AI Magazine 13(l): 32-44. 

McCune, W. 1994. A Davis-Putnam Program and 
Its Application to Finite First-order Model Search: 
Quasigroup Existence Problems. Technical Report 
ANL/MCS-TM- 194, Argonne National Laboratory. 
Minton, S., Johnston, M., Philips, A., and Laird, 
P. 1992. Minimizing Conflicts: A Heuristic Repair 
Method for Constraint Satisfaction and Scheduling 
Problems. Artificial Intelligence 58( l-3): 161-205. 
Selman, B., Levesque, H., and Mitchell, D. 1992. A 
New Method for Solving Hard Satisfiability Problems, 
Proc. AA A I-92, 440-446. 

Selman, B., and Kautz, H.A. 1993. Domain- 
Independent Extensions to GSAT: Solving Large 
Structured Satisfiability Problems. Proc. IJCA I-93, 
290-295. 
Slaney, J., Fujita, M., and Stickel, M. 1995. Au- 
tomated Reasoning and Exhaustive Search: Quasi- 
group Existence Problems. Computers and Mathe- 
matics with Applications 29(2): 115-132. 

Zhang, H., and Stickel, M. 1994. Implementing the 
Davis-Putnam Algorithm by Tries. Technical Report 
94-12, Dept. of Computer Science, University of Iowa. 
Zhang, J., and Zhang, H. 1995. SEM: a System for 
Enumerating Models. Proc. IJCA I-95, 298-303. 

We have implemented the new incomplete search 
strategy and conducted some preliminary experiments. 
The initial results are very encouraging. In particular, 
we are able to solve open problems that can not be 
solved by other programs. We plan to conduct more 
experiments in the future in order to have a better 
understanding of the new procedure. 

41n the GSAT program, one may also use unit propa- 
gation in generating the initial assignment. But in general 
constraint propagation plays only a minor role. 

374 Constraint Satisfaction 


